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Gradient flows of nonconvex energies

L2-gradient flow for
∫

Ω Ψ(u′) dx leads
to a forward/backward parabolic
problem which we want to “solve” by
means of a relaxation technique.

Different approximations can lead in the
limit to different notions of “relaxed”
solutions. Here e.g. is the result of a
numerical relaxation with a finite
difference scheme in space, note the
formation of wrinkles.
This is not the evolution by the
convexified energy!

[Fierro, Goglione, P. (’98)]
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(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in Rd , d = 2, 3 (codimension 1).
Anisotropy is described by a norm (ϕo : surface energy density).

Evolution law (anisotropic mean curvature flow):

V = −ϕo(ν)κϕ

where V is the normal velocity and

κϕ = divΣ nϕ, nϕ = T o(νϕ), νϕ = ν
ϕo(ν)

T o(ξ) = ϕo(ξ)∇ξϕo(ξ) nonlinear and monotone

Gradient flow for
∫

Σ ϕ
o(ν) dHd−1.

Nonconvexity

The evolution law becomes ill-posed when ϕo is nonconvex.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in Rd , d = 2, 3 (codimension 1).
Anisotropy is described by a norm (ϕo : surface energy density).
Evolution law (anisotropic mean curvature flow):

V = −ϕo(ν)κϕ

where V is the normal velocity and

κϕ = divΣ nϕ, nϕ = T o(νϕ), νϕ = ν
ϕo(ν)

T o(ξ) = ϕo(ξ)∇ξϕo(ξ) nonlinear and monotone

Gradient flow for
∫

Σ ϕ
o(ν) dHd−1.

Nonconvexity

The evolution law becomes ill-posed when ϕo is nonconvex.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in Rd , d = 2, 3 (codimension 1).
Anisotropy is described by a norm (ϕo : surface energy density).
Evolution law (anisotropic mean curvature flow):

V = −ϕo(ν)κϕ

where V is the normal velocity and

κϕ = divΣ nϕ, nϕ = T o(νϕ), νϕ = ν
ϕo(ν)

T o(ξ) = ϕo(ξ)∇ξϕo(ξ) nonlinear and monotone

Gradient flow for
∫

Σ ϕ
o(ν) dHd−1.

Nonconvexity

The evolution law becomes ill-posed when ϕo is nonconvex.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in Rd , d = 2, 3 (codimension 1).
Anisotropy is described by a norm (ϕo : surface energy density).
Evolution law (anisotropic mean curvature flow):

V = −ϕo(ν)κϕ

where V is the normal velocity and

κϕ = divΣ nϕ, nϕ = T o(νϕ), νϕ = ν
ϕo(ν)

T o(ξ) = ϕo(ξ)∇ξϕo(ξ) nonlinear and monotone

Gradient flow for
∫

Σ ϕ
o(ν) dHd−1.

Nonconvexity

The evolution law becomes ill-posed when ϕo is nonconvex.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



Allen-Cahn approximation and finite elements

Approximation by diffusing the interface:

ε∂tu − ε divT o(∇u) +
1

ε
f (u) = 0

(gradient flow of ε
∫

Ω [ϕo(∇u)]2 dx + 1
ε

∫
Ω F (u)dx .) where ε > 0 is

a small relaxation parameter, u is a “phase” indicator exhibiting a
thin transition layer O(ε)-wide; f is the derivative of a double well
potential F (or double-obstacle: deep quench limit [Elliott et al])
with equal minima in ±1.

[Bellettini, Giga, Elliott, Novaga, P., Schätzle, ...]

This is again ill-posed for nonconvex ϕo , however spatial
discretization such as piecewise linear finite elements does not blow
up and could provide a notion of relaxed solution of the limit
problem.
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Allen-Cahn with nonconvex anisotropy

Numerical simulation with piecewise linear finite elements for a
smooth nonconvex choice of ϕo .
Dashed line is the so-called Wulff shape (with swallowtails!).
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The bidomain model for the cardiac tissue

[Colli Franzone, ...]
The bidomain model is a singularly perturbed system of two
reaction–diffusion equations in the unknowns ui and ue : Ω→ R:{

ε∂tu − ε divM i∇ui + 1
ε f (u) = 0

ε∂tu + ε divMe∇ue + 1
ε f (u) = 0

in Ω ∈ Rd with appropriate initial and boundary conditions.

ui ,ue : intra–cellular and extra–cellular potentials;

M i ,Me : symmetric positive definite matrices modelling the
anisotropy induced by the cell orientations;

u = ui − ue : transmembrane potential

f (·) = F ′(·): cubic–like function, derivative of a double well
potential.

ε > 0: small perturbation parameter
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Remarks on the bidomain model (cardiac tissue)

It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Ωi and Ωe , coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin–Huxley
model), simplified to a single “recovery variable”
(FitzHugh–Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.

The bidomain model derives as a homogeneization process so
that in the end Ωi = Ωe = Ω are superposed and the
macroscopic potentials ui and ue are defined in the same
domain.

Cells form elongated fibers with orientation that depends
strongly on position, and this geometry is the source of the
anisotropy.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



Remarks on the bidomain model (cardiac tissue)

It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Ωi and Ωe , coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin–Huxley
model), simplified to a single “recovery variable”
(FitzHugh–Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.

The bidomain model derives as a homogeneization process so
that in the end Ωi = Ωe = Ω are superposed and the
macroscopic potentials ui and ue are defined in the same
domain.

Cells form elongated fibers with orientation that depends
strongly on position, and this geometry is the source of the
anisotropy.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



Remarks on the bidomain model (cardiac tissue)

It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Ωi and Ωe , coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin–Huxley
model), simplified to a single “recovery variable”
(FitzHugh–Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.

The bidomain model derives as a homogeneization process so
that in the end Ωi = Ωe = Ω are superposed and the
macroscopic potentials ui and ue are defined in the same
domain.

Cells form elongated fibers with orientation that depends
strongly on position, and this geometry is the source of the
anisotropy.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



The anisotropy in the bidomain model

Recall: {
ε∂t(u

i − ue)− ε divM i∇ui + 1
ε f (ui − ue) = 0

ε∂t(u
i − ue) + ε divMe∇ue + 1

ε f (ui − ue) = 0

Matrices M i and Me (in general depending on position) are
symmetric positive definite with common eigenvectors consistent
with fiber orientation. The eigenvalues λik , λek , k = 1, 2, 3 come
from the homogeneization procedure of the microscopic geometry
and depend on properties of the intra and extra–cellular media.

Special case Me = ρM i (equal anisotropic ratio) the system
reduces to a single reaction–diffusion Allen-Cahn equation for
u = ui − ue

However equal anisotropic ratio is not physiologically feasible.
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Differences w/r to the standard bidomain model

In contrast to the actual bidomain model we assume:

F has two equal minima F (−1) = F (1) = 0;

rescaled time (ε∂tu instead of ∂tu);

no recovery variable;

no space dependence for M i and Me .

Remark

We can substitute one of the two parabolic equations with the
elliptic combination

div(M i∇ui + Me∇ue) = 0 in Ω.

The bidomain model is a degenerate parabolic system.
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Vectorial formulation and Wellposedness

[P. Colli Franzone, G. Savaré (’96)]

u = [ui , ue ]T , q = [M i∇ui ,−Me∇ue ]T

ε∂t(Bu)− ε div q +
1

ε
F(u) = 0

where

B =

[
1 −1
1 −1

]
;

div acts componentwise

F([ui , ue ]T ) = [f (ui − ue), f (ui − ue)]T

Although matrix B is singular the problem is well-posed for any
choice of the two symmetric positive–definite matrices M i , Me .
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Formal asymptotics and singular limit

[Bellettini, Colli Franzone, P. (’97)]
Matched asymptotics suggests that the transmembrane potential u
develops a thin O(ε)–wide transition region that moves with
normal velocity

Vε = −ϕo(ν)κϕ +O(ε)

where ν is normal to the limit interface,

ϕo(ξ) =

√
αiαe

αi + αe

with αi = ξTM iξ, αe = ξTMeξ and

κϕ = div nϕ, nϕ = T o(νϕ), νϕ = ν
ϕo(ν)

T o(ξ) = ϕo(ξ)∇ξϕo(ξ)
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Formal asymptotics and singular limit (2)

ϕo(ξ) =

√
αiαe

αi + αe

αi = ξTM iξ, αe = ξTMeξ

Anisotropic mean curvature flow

ϕo is not guaranteed to be convex. If it is, then it is a norm and
we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain model behaves (formally) like the anisotropic
Allen-Cahn equation (with this particular choice of the anisotropy)
as ε→ 0
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Gamma-limit of the stationary problem

[L. Ambrosio, P. Colli Franzone, G. Savaré (’00)]
The functional

Fε(u) = ε

∫
Ω

[
M i∇ui · ∇ui + Me∇ue · ∇ue

]
dx +

1

ε

∫
Ω
F (u) dx

where u = [ui , ue ]T and u = ui − ue , Γ-converges (in the L2

topology) to a limit functional

F(u) =

∫
S∗
u

φ(ν(x)) dHd−1(x)

that depends only in the difference u = ui − ue which is a BV
function taking values in {−1, 1} with S∗u as its jump set and ν(x)
the corresponding unit normal.
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Identification of φ

Although the formal asymptotics suggests that

φ(ξ) = c0ϕ
o(ξ) = c0

√
αiαe

αi + αe

with c0 depending on the actual shape of F , the actual value on φ
is not known yet. [Ambrosio et al] proved the following estimates

φ(ξ) ≤ φ(ξ) ≤ c0ϕ
o(ξ)

with

φ(ξ) =
√
ξTM i (M i + Me)−1Meξ
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Remark

ϕo is not always convex (depending on the eigenvalues of M i and
Me) whereas φ must be convex.
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Inverted anisotropic ratio, d = 2

Suppose that the fibers are oriented in the x1 direction, then M i

and Me are diagonal. Let

ρi =
λi1
λi2
, ρe =

λe1
λe2

We chose ρe = 1/ρi . This is to some extent the opposite of

“equal anisotropic ratio” (ρi = ρe). This choice is not
physiologically feasible, however it leads to a noncovex combined
anisotropy if ρi > 3.
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Numerical simulations. Two choices for ρ

Weak inverted ratio

ρ = 2 (convex anisotropy):
λi1,2 = 2, 4, λe1,2 = 4, 2

Black: Frank diagram {ϕo(ξ) = 1}
Blue: Wulff shape (dual shape).

Strong inverted ratio

ρ = 10 (nonconvex anisotropy):
λi1,2 = 1, 10, λe1,2 = 10, 1

Convexification of Frank diagram
corresponds to cutting off the
swallowtails in the Wulff shape.
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Numerical simulations

In all simulations we chose a square domain Ω = (0, 1.2)× (0, 1.2).

The initial condition is u = tanh |x |ε (unit circle).
The relaxation parameter ε related to space discretization h
through h = Cε (C small enough to resolve the transition layer).
Reflection conditions along the axes and Dirichet condition on the
other two sides.
Matrices M i ,e are selected according to the choice of weak or
strong inverted ratio.
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Discretization

We use P1 finite elements in space.
One parabolic equations is discretized with explicit Euler in time to
get the difference un+1 = uin+1 − uen+1 at the next time step.
Then we recover uin+1 and uen+1 by solving an elliptic problem with
a preconditioned conjugate gradient.
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Weak inverted anisotropic ratio

By chosing the eigenvalues 2, 4, 4, 2 we obtain a convex combined
anisotropy.

Black: Frank diagram
Blue: Wulff shape
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Simulation with ρ = 2 (h = 0.006)

Time increments of 0.005.
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Simulation with ρ = 2

Times 0.02, 0.04, 0.06, 0.08.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



Simulation with ρ = 2

Times 0.10, 0.15, 0.20, 0.25.
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Strong inverted anisotropic ratio

By chosing ρ = 10 we obtain a nonconvex combined anisotropy.

Black: Frank diagram
Blue: Wulff shape
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Simulation with ρ = 10 (h = 0.003)

Time increments of 0.005.
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Simulation with ρ = 10

Times 0.02, 0.03, 0.04, 0.05.
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Simulation with ρ = 10

Times 0.06, 0.07, 0.08, 0.09.
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Simulation with ρ = 10

Times 0.10, 0.12, 0.14, 0.18.
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Future work and Open problems

Numerical simulatations of nonconvex Allen-Cahn with the
combined anisotropy (convex and nonconvex)

Dependence on position for ϕo

Nonequal wells: F (−1) 6= F (1), and original time scaling

Prove convergence of the bidomain model to the sharp limit
as ε→ 0, in the convex case.

Identify the surface energy of the Γ-limit (for the stationary
problem), which is conjectured to be the convex hull of ϕo

Sensitivity to the boundary conditions

Thank you for your attention
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