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Gradient flows of nonconvex energies

[%-gradient flow for [, W(u') dx leads _
to a forward/backward parabollc s N
problem which we want to “solve” by +

means of a relaxation technique.
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Gradient flows of nonconvex energies

[%-gradient flow for [, W(u') dx leads
to a forward /backward parabollc
problem which we want to “solve” by
means of a relaxation technique.

Different approximations can lead in the
limit to different notions of “relaxed”
solutions. Here e.g. is the result of a
numerical relaxation with a finite
difference scheme in space, note the
formation of wrinkles.

This is the evolution by the
convexified energy!

=—/
N
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(Nonconvex) anisotropic mean curvature flow

Y is an evolving compact surface in RY, d = 2,3 (codimension 1).

Anisotropy is described by a norm (p°: surface energy density).
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(Nonconvex) anisotropic mean curvature flow

Y is an evolving compact surface in RY, d = 2,3 (codimension 1).
Anisotropy is described by a norm (p°: surface energy density).
Evolution law (anisotropic mean curvature flow):

V = —p°(v)k,

where V is the normal velocity and

Ky = divs ng, M = () Vg = so%(l/)
T°(&) = ¢°(§)Vew© () nonlinear and monotone
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(Nonconvex) anisotropic mean curvature flow

Y is an evolving compact surface in RY, d = 2,3 (codimension 1).
Anisotropy is described by a norm (p°: surface energy density).

Evolution law (anisotropic mean curvature flow):

V = —p°(v)k,

where V is the normal velocity and

Ky = divs ng, M = () Vg = so%(l/)
T°(&) = ¢°(§)Vew© () nonlinear and monotone

Gradient flow for [; ©°(v) dH7 L.
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(Nonconvex) anisotropic mean curvature flow

Y is an evolving compact surface in RY, d = 2,3 (codimension 1).
Anisotropy is described by a norm (p°: surface energy density).

Evolution law (anisotropic mean curvature flow):

V = —p°(v)k,

where V is the normal velocity and

Ky = divs ng, M = () Vg = #(y)
T°(&) = ¢°(§)Vew© () nonlinear and monotone

Gradient flow for [; ©°(v) dH7 L.

Nonconvexity

The evolution law becomes ill-posed when ©° is nonconvex.
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Allen-Cahn approximation and finite elements

Approximation by diffusing the interface:

edru — ediv T°(Vu) + %f(u) =0

(gradient flow of ¢ [, [p°(Vu)]> dx + L [, F(u)dx.) where e >0 is
a small relaxation parameter, u is a “phase” indicator exhibiting a
thin transition layer O(e)-wide; f is the derivative of a double well
potential F (or double-obstacle: deep quench limit )
with equal minima in +1.
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Allen-Cahn approximation and finite elements

Approximation by diffusing the interface:

edru — ediv T°(Vu) + %f(u) =0

(gradient flow of ¢ [, [p°(Vu)]> dx + L [, F(u)dx.) where e >0 is
a small relaxation parameter, u is a “phase” indicator exhibiting a
thin transition layer O(e)-wide; f is the derivative of a double well
potential F (or double-obstacle: deep quench limit )
with equal minima in +1.

This is again ill-posed for nonconvex °, however spatial
discretization such as piecewise linear finite elements does not blow
up and could provide a notion of relaxed solution of the limit
problem.
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Allen-Cahn with nonconvex anisotropy

Numerical simulation with piecewise linear finite elements for a
smooth nonconvex choice of ¢°.

Dashed line is the so-called Wulff shape (with swallowtails!).
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The bidomain model for the cardiac tissue

The bidomain model is a singularly perturbed system of two
reaction—diffusion equations in the unknowns v’ and u€: Q — R:

edeu — ediv MVl + 1f(u) =0
edeu + edivMeVue + Lf(u) =0

in Q € R? with appropriate initial and boundary conditions.

u',u¢: intra—cellular and extra—cellular potentials;

M',Me: symmetric positive definite matrices modelling the
anisotropy induced by the cell orientations;

u = u' — u®: transmembrane potential

f(-) = F'(-): cubic-like function, derivative of a double well
potential.

@ ¢ > 0: small perturbation parameter
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Remarks on the bidomain model (cardiac tissue)

@ It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Q' and Q¢, coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin—Huxley
model), simplified to a single “recovery variable”
(FitzHugh—Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.
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Remarks on the bidomain model (cardiac tissue)

@ It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Q' and Q¢, coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin—Huxley
model), simplified to a single “recovery variable”
(FitzHugh—Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.

@ The bidomain model derives as a homogeneization process so
that in the end Q' = Q¢ = Q are superposed and the
macroscopic potentials v’ and u® are defined in the same
domain.
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Remarks on the bidomain model (cardiac tissue)

@ It originates from a microscopic model of the electrical
properties of the (disjoint) intracellular and extracellular media
Q' and Q¢, coupled through the cellular membrane with the
addition of a number of “gating variables” (Hodgkin—Huxley
model), simplified to a single “recovery variable”
(FitzHugh—Nagumo). The recovery variable w (which we shall
neglect) allows to recover the rest state of the cell.

@ The bidomain model derives as a homogeneization process so
that in the end Q' = Q¢ = Q are superposed and the
macroscopic potentials v’ and u® are defined in the same
domain.

@ Cells form elongated fibers with orientation that depends
strongly on position, and this geometry is the source of the
anisotropy.
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The anisotropy in the bidomain model

Recall:

ed(u' — u®) —edivM'Vu' + Lf(u' — u®) =0
ede(u' — u®) +edivMeVue + 1f(u' — u®) =0

Matrices M’ and M€ (in general depending on position) are
symmetric positive definite with common eigenvectors consistent
with fiber orientation. The eigenvalues \i, % k=1,2,3 come
from the homogeneization procedure of the microscopic geometry
and depend on properties of the intra and extra—cellular media.

Noncovex anisotropy and the bidomain model
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The anisotropy in the bidomain model

Recall:

ede(u' — uf) —edivM'Vu' + 1f(u' — u€) =
ede(u' — u®) + edivMeVue + 1f(u' — u®) =

Matrices M’ and M€ (in general depending on position) are
symmetric positive definite with common eigenvectors consistent
with fiber orientation. The eigenvalues \i, % k=1,2,3 come
from the homogeneization procedure of the microscopic geometry
and depend on properties of the intra and extra—cellular media.

Special case M€ = pM' (equal anisotropic ratio) the system
reduces to a single reaction—diffusion Allen-Cahn equation for
= — o

However equal anisotropic ratio is not physiologically feasible.
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Differences w/r to the standard bidomain model

In contrast to the actual bidomain model we assume:
F has two equal minima F(—1) = F(1) = 0;
rescaled time (e0:u instead of O;u);

no recovery variable;

no space dependence for M’ and Me.
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Differences w/r to the standard bidomain model

In contrast to the actual bidomain model we assume:
F has two equal minima F(—1) = F(1) = 0;
rescaled time (e0:u instead of O;u);

no recovery variable;

no space dependence for M’ and Me.

Remark
We can substitute one of the two parabolic equations with the
elliptic combination

div(M'Vu' + MeVu) =0  in Q.

The bidomain model is a degenerate parabolic system.
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Vectorial formulation and Wellposedness

u=[v,ue]", q=[MVu,-MVue]T

£0¢(Bu) —edivq + é]—"(u) =0

where
1 -1
e B= [1 _1],

@ div acts componentwise
o F([u,u]T) = [f(u" — ue), f(u' — u®)]"
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Vectorial formulation and Wellposedness

u=[v,ue]", q=[MVu,-MVue]T

£0¢(Bu) —edivq + é]—"(u) =0

where
1 -1
° b= [1 —1]’
@ div acts componentwise
o F([u,uf]") = [f(u" — u®), fu" — u®)]"

Although matrix B is singular the problem is well-posed for any
choice of the two symmetric positive—definite matrices M', M¢€.
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Formal asymptotics and singular limit

Matched asymptotics suggests that the transmembrane potential u
develops a thin O(e)-wide transition region that moves with
normal velocity

Ve = —¢°()r, + O()

where v is normal to the limit interface,
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Formal asymptotics and singular limit

Matched asymptotics suggests that the transmembrane potential u
develops a thin O(e)-wide transition region that moves with
normal velocity

Ve = —¢°()r, + O()

where v is normal to the limit interface,

p°(&) =/ %

with of = ¢TMi¢, a® = ¢TMe¢ and

— 1 — o — v
Ky = div ny, n, = T°(vy,), Yy = )

T°(8) = ¢°(§)Vep©(£)
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Formal asymptotics and singular limit (2)

Oéi _ fTMif, af = é-TMeé-

Anisotropic mean curvature flow

° is not guaranteed to be convex. If it is, then it is a norm and

we have anisotropic curvature flow.
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Formal asymptotics and singular limit (2)

Oéi _ fTMif, af = é-TMeé-

Anisotropic mean curvature flow

° is not guaranteed to be convex. If it is, then it is a norm and

we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain model behaves (formally) like the anisotropic
Allen-Cahn equation (with this particular choice of the anisotropy)
ase—0
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Gamma-limit of the stationary problem

The functional

Fe(u) = 5/ [MiVui -Vu' + MeVue - Vue} dx + i/ F(u) dx
Q Q

where u = [u', u¢]" and u = v’ — u®, T-converges (in the L°
topology) to a limit functional

F(u) = . o(v(x)) dHI(x)

that depends only in the difference v = u’ — u® which is a BV
function taking values in {—1,1} with S as its jump set and v(x)
the corresponding unit normal.

Maurizio Paolini (paolini@dmf.unicatt.it) Noncovex anisotropy and the bidomain model



Identification of ¢

Although the formal asymptotics suggests that

o't

ol + ae

B(€) = cp®(§) = @

with ¢g depending on the actual shape of F, the actual value on ¢
is not known yet. proved the following estimates

$(§) < ¢(&) < cop®(€)

with

8(6) = \JETMI(Mi + Me)-t e
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o

is not always convex (depending on the eigenvalues of M’ and
M¢) whereas ¢ must be convex.

¥
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Inverted anisotropic ratio, d = 2

Suppose that the fibers are oriented in the x; direction, then M’
and M€ are diagonal. Let

:L:1 pe:ii
A Y

i

p

We chose | p¢ = 1/p'|. This is to some extent the opposite of

“equal anisotropic ratio” (p’ = p€). This choice is not
physiologically feasible, however it leads to a noncovex combined
anisotropy if p' > 3.
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Numerical simulations. Two choices for p

Weak inverted ratio

p = 2 (convex anisotropy):
)\572 = 2,4, )\i,2 = 47 2

Black: Frank diagram {¢°(&) = 1}
Blue: Wulff shape (dual shape).
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Numerical simulations. Two choices for p

Weak inverted ratio

p = 2 (convex anisotropy):
572 = 2,4, )\i,2 = 47 2

Black: Frank diagram {¢°(&) = 1}
Blue: Wulff shape (dual shape).

Strong inverted ratio

p =10 (nonconvex anisotropy):
i,=1,10, X, = 10,1

Convexification of Frank diagram
corresponds to cutting off the
swallowtails in the Wulff shape. o
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Numerical simulations

In all simulations we chose a square domain Q = (0,1.2) x (0, 1.2).
The initial condition is u = tanh \L€| (unit circle).

The relaxation parameter € related to space discretization h
through h = Ce (C small enough to resolve the transition layer).
Reflection conditions along the axes and Dirichet condition on the
other two sides.

Matrices M"€ are selected according to the choice of weak or
strong inverted ratio.
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We use P; finite elements in space.

One parabolic equations is discretized with explicit Euler in time to
get the difference upy1 = U,y — uf, at the next time step.

Then we recover vy, and uf, | by solving an elliptic problem with
a preconditioned conjugate gradient.
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Weak inverted anisotropic ratio

By chosing the eigenvalues 2,4,4,2 we obtain a convex combined
anisotropy.

Black: Frank diagram
Blue: Wulff shape
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Simulation with p

Times 0.02, 0.04, 0.06, 0.08.




Simulation with p

Times 0.10, 0.15, 0.20, 0.25.

model



Strong inverted anisotropic ratio

By chosing p = 10 we obtain a nonconvex combined anisotropy.

Black: Frank diagram
Blue: Wulff shape
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Simulation with p

Times 0.02, 0.03, 0.04, 0.05.




Simulation with p

Times 0.06, 0.07, 0.08, 0.09.




Simulation with p

Times 0.10, 0.12, 0.14, 0.18.




Future work and Open problems

@ Numerical simulatations of nonconvex Allen-Cahn with the
combined anisotropy (convex and nonconvex)

@ Dependence on position for ¢°
@ Nonequal wells: F(—1) # F(1), and original time scaling

@ Prove convergence of the bidomain model to the sharp limit
as e — 0, in the convex case.

@ Identify the surface energy of the -limit (for the stationary
problem), which is conjectured to be the convex hull of ©°

Sensitivity to the boundary conditions

‘ Thank you for your attention
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