Curvature flow with nonconvex anisotropy and the bidomain model

Maurizio Paolini (paolini@dmf.unicatt.it)
Università Cattolica di Brescia
Oberwolfach, november/december 2011

numerical simulations by Franco Pasquarelli, based on code by Meggie Bugatti, Università Cattolica di Brescia

Outline of the talk

- Gradient flow for nonconvex energy (motivation: the graph case)
- Anisotropic mean curvature flow, the nonconvex case
- Allen-Cahn approximation
- The bidomain model for the cardiac tissue
- Matched asymptotics and「-convergence
- Numerical simulations in 2D

Gradient flows of nonconvex energies

L^{2}-gradient flow for $\int_{\Omega} \Psi\left(u^{\prime}\right) d x$ leads to a forward/backward parabolic problem which we want to "solve" by

$+1$ means of a relaxation technique.

Gradient flows of nonconvex energies

L^{2}-gradient flow for $\int_{\Omega} \Psi\left(u^{\prime}\right) d x$ leads
to a forward/backward parabolic problem which we want to "solve" by

$+1$ means of a relaxation technique.

Different approximations can lead in the limit to different notions of "relaxed" solutions. Here e.g. is the result of a numerical relaxation with a finite difference scheme in space, note the formation of wrinkles.
This is not the evolution by the convexified energy!

[Fierro, Goglione, P. ('98)]

(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in $\mathbb{R}^{d}, d=2,3$ (codimension 1). Anisotropy is described by a norm (φ° : surface energy density).

(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in $\mathbb{R}^{d}, d=2,3$ (codimension 1). Anisotropy is described by a norm (φ^{0} : surface energy density). Evolution law (anisotropic mean curvature flow):

$$
V=-\varphi^{\circ}(\nu) \kappa_{\varphi}
$$

where V is the normal velocity and

$$
\begin{aligned}
& \kappa_{\varphi}=\operatorname{div}_{\Sigma} n_{\varphi}, \quad n_{\varphi}=T^{\circ}\left(\nu_{\varphi}\right), \quad \nu_{\varphi}=\frac{\nu}{\varphi^{\circ}(\nu)} \\
& T^{\circ}(\xi)=\varphi^{\circ}(\xi) \nabla_{\xi} \varphi^{\circ}(\xi) \quad \text { nonlinear and monotone }
\end{aligned}
$$

(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in $\mathbb{R}^{d}, d=2,3$ (codimension 1).
Anisotropy is described by a norm (φ^{0} : surface energy density). Evolution law (anisotropic mean curvature flow):

$$
V=-\varphi^{\circ}(\nu) \kappa_{\varphi}
$$

where V is the normal velocity and

$$
\begin{aligned}
& \kappa_{\varphi}=\operatorname{div}_{\Sigma} n_{\varphi}, \quad n_{\varphi}=T^{\circ}\left(\nu_{\varphi}\right), \quad \nu_{\varphi}=\frac{\nu}{\varphi^{\circ}(\nu)} \\
& T^{\circ}(\xi)=\varphi^{\circ}(\xi) \nabla_{\xi} \varphi^{\circ}(\xi) \quad \text { nonlinear and monotone }
\end{aligned}
$$

Gradient flow for $\int_{\Sigma} \varphi^{\circ}(\nu) d \mathcal{H}^{d-1}$.

(Nonconvex) anisotropic mean curvature flow

Σ is an evolving compact surface in $\mathbb{R}^{d}, d=2,3$ (codimension 1). Anisotropy is described by a norm (φ^{0} : surface energy density). Evolution law (anisotropic mean curvature flow):

$$
V=-\varphi^{\circ}(\nu) \kappa_{\varphi}
$$

where V is the normal velocity and

$$
\begin{aligned}
& \kappa_{\varphi}=\operatorname{div}_{\Sigma} n_{\varphi}, \quad n_{\varphi}=T^{\circ}\left(\nu_{\varphi}\right), \quad \nu_{\varphi}=\frac{\nu}{\varphi^{\circ}(\nu)} \\
& T^{\circ}(\xi)=\varphi^{\circ}(\xi) \nabla_{\xi} \varphi^{\circ}(\xi) \quad \text { nonlinear and monotone }
\end{aligned}
$$

Gradient flow for $\int_{\Sigma} \varphi^{\circ}(\nu) d \mathcal{H}^{d-1}$.

Nonconvexity

The evolution law becomes ill-posed when φ^{0} is nonconvex.

Allen-Cahn approximation and finite elements

Approximation by diffusing the interface:

$$
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} T^{\circ}(\nabla u)+\frac{1}{\varepsilon} f(u)=0
$$

(gradient flow of $\epsilon \int_{\Omega}\left[\varphi^{\circ}(\nabla u)\right]^{2} d x+\frac{1}{\epsilon} \int_{\Omega} F(u) d x$.) where $\epsilon>0$ is a small relaxation parameter, u is a "phase" indicator exhibiting a thin transition layer $\mathcal{O}(\varepsilon)$-wide; f is the derivative of a double well potential F (or double-obstacle: deep quench limit [Elliott et al]) with equal minima in ± 1.
[Bellettini, Giga, Elliott, Novaga, P., Schätzle, ...]

Allen-Cahn approximation and finite elements

Approximation by diffusing the interface:

$$
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} T^{o}(\nabla u)+\frac{1}{\varepsilon} f(u)=0
$$

(gradient flow of $\epsilon \int_{\Omega}\left[\varphi^{\circ}(\nabla u)\right]^{2} d x+\frac{1}{\epsilon} \int_{\Omega} F(u) d x$.) where $\epsilon>0$ is a small relaxation parameter, u is a "phase" indicator exhibiting a thin transition layer $\mathcal{O}(\varepsilon)$-wide; f is the derivative of a double well potential F (or double-obstacle: deep quench limit [Elliott et al]) with equal minima in ± 1.
[Bellettini, Giga, Elliott, Novaga, P., Schätzle, ...]
This is again ill-posed for nonconvex φ°, however spatial discretization such as piecewise linear finite elements does not blow up and could provide a notion of relaxed solution of the limit problem.

Allen-Cahn with nonconvex anisotropy

Numerical simulation with piecewise linear finite elements for a smooth nonconvex choice of φ°.
Dashed line is the so-called Wulff shape (with swallowtails!).

The bidomain model is a singularly perturbed system of two reaction-diffusion equations in the unknowns u^{i} and $u^{e}: \Omega \rightarrow \mathbb{R}$:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f(u)=0 \\
\varepsilon \partial_{t} u+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f(u)=0
\end{array}\right.
$$

in $\Omega \in \mathbb{R}^{d}$ with appropriate initial and boundary conditions.

- u^{i}, u^{e} : intra-cellular and extra-cellular potentials;
- M^{i}, M^{e} : symmetric positive definite matrices modelling the anisotropy induced by the cell orientations;
- $u=u^{i}-u^{e}$: transmembrane potential
- $f(\cdot)=F^{\prime}(\cdot)$: cubic-like function, derivative of a double well potential.
- $\varepsilon>0$: small perturbation parameter

Remarks on the bidomain model (cardiac tissue)

- It originates from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e}, coupled through the cellular membrane with the addition of a number of "gating variables" (Hodgkin-Huxley model), simplified to a single "recovery variable" (FitzHugh-Nagumo). The recovery variable w (which we shall neglect) allows to recover the rest state of the cell.

Remarks on the bidomain model (cardiac tissue)

- It originates from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e}, coupled through the cellular membrane with the addition of a number of "gating variables" (Hodgkin-Huxley model), simplified to a single "recovery variable" (FitzHugh-Nagumo). The recovery variable w (which we shall neglect) allows to recover the rest state of the cell.
- The bidomain model derives as a homogeneization process so that in the end $\Omega^{i}=\Omega^{e}=\Omega$ are superposed and the macroscopic potentials u^{i} and u^{e} are defined in the same domain.

Remarks on the bidomain model (cardiac tissue)

- It originates from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e}, coupled through the cellular membrane with the addition of a number of "gating variables" (Hodgkin-Huxley model), simplified to a single "recovery variable" (FitzHugh-Nagumo). The recovery variable w (which we shall neglect) allows to recover the rest state of the cell.
- The bidomain model derives as a homogeneization process so that in the end $\Omega^{i}=\Omega^{e}=\Omega$ are superposed and the macroscopic potentials u^{i} and u^{e} are defined in the same domain.
- Cells form elongated fibers with orientation that depends strongly on position, and this geometry is the source of the anisotropy.

The anisotropy in the bidomain model

Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\varepsilon \partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend on properties of the intra and extra-cellular media.

The anisotropy in the bidomain model

Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\varepsilon \partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend on properties of the intra and extra-cellular media.

Special case $M^{e}=\rho M^{i}$ (equal anisotropic ratio) the system reduces to a single reaction-diffusion Allen-Cahn equation for $u=u^{i}-u^{e}$
However equal anisotropic ratio is not physiologically feasible.

Differences w / r to the standard bidomain model

In contrast to the actual bidomain model we assume:

- F has two equal minima $F(-1)=F(1)=0$;
- rescaled time ($\epsilon \partial_{t} u$ instead of $\left.\partial_{t} u\right)$;
- no recovery variable;
- no space dependence for M^{i} and M^{e}.

Differences w / r to the standard bidomain model

In contrast to the actual bidomain model we assume:

- F has two equal minima $F(-1)=F(1)=0$;
- rescaled time ($\epsilon \partial_{t} u$ instead of $\left.\partial_{t} u\right)$;
- no recovery variable;
- no space dependence for M^{i} and M^{e}.

Remark

We can substitute one of the two parabolic equations with the elliptic combination

$$
\operatorname{div}\left(M^{i} \nabla u^{i}+M^{e} \nabla u^{e}\right)=0 \quad \text { in } \Omega .
$$

The bidomain model is a degenerate parabolic system.

Vectorial formulation and Wellposedness

[P. Colli Franzone, G. Savaré ('96)]

$$
\mathbf{u}=\left[u^{i}, u^{e}\right]^{T}, \quad \mathbf{q}=\left[M^{i} \nabla u^{i},-M^{e} \nabla u^{e}\right]^{T}
$$

$$
\varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathcal{F}(\mathbf{u})=0
$$

where

- $B=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$;
- div acts componentwise
- $\mathcal{F}\left(\left[u^{i}, u^{e}\right]^{T}\right)=\left[f\left(u^{i}-u^{e}\right), f\left(u^{i}-u^{e}\right)\right]^{T}$

Vectorial formulation and Wellposedness

[P. Colli Franzone, G. Savaré ('96)]

$$
\begin{aligned}
& \mathbf{u}=\left[u^{i}, u^{e}\right]^{T}, \quad \mathbf{q}=\left[M^{i} \nabla u^{i},-M^{e} \nabla u^{e}\right]^{T} \\
& \varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathcal{F}(\mathbf{u})=0
\end{aligned}
$$

where

- $B=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$;
- div acts componentwise
- $\mathcal{F}\left(\left[u^{i}, u^{e}\right]^{T}\right)=\left[f\left(u^{i}-u^{e}\right), f\left(u^{i}-u^{e}\right)\right]^{T}$

Although matrix B is singular the problem is well-posed for any choice of the two symmetric positive-definite matrices M^{i}, M^{e}.

Formal asymptotics and singular limit

[Bellettini, Colli Franzone, P. ('97)]
Matched asymptotics suggests that the transmembrane potential u develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves with normal velocity

$$
V_{\varepsilon}=-\varphi^{\circ}(\nu) \kappa_{\varphi}+\mathcal{O}(\varepsilon)
$$

where ν is normal to the limit interface,

Formal asymptotics and singular limit

[Bellettini, Colli Franzone, P. ('97)]

Matched asymptotics suggests that the transmembrane potential u develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves with normal velocity

$$
V_{\varepsilon}=-\varphi^{o}(\nu) \kappa_{\varphi}+\mathcal{O}(\varepsilon)
$$

where ν is normal to the limit interface,

$$
\varphi^{o}(\xi)=\sqrt{\frac{\alpha^{i} \alpha^{e}}{\alpha^{i}+\alpha^{e}}}
$$

with $\alpha^{i}=\xi^{T} M^{i} \xi, \alpha^{e}=\xi^{T} M^{e} \xi$ and

$$
\begin{aligned}
& \kappa_{\varphi}=\operatorname{div} n_{\varphi}, \quad n_{\varphi}=T^{o}\left(\nu_{\varphi}\right), \quad \nu_{\varphi}=\frac{\nu}{\varphi^{\circ}(\nu)} \\
& T^{\circ}(\xi)=\varphi^{\circ}(\xi) \nabla_{\xi} \varphi^{\circ}(\xi)
\end{aligned}
$$

Formal asymptotics and singular limit (2)

$$
\varphi^{o}(\xi)=\sqrt{\frac{\alpha^{i} \alpha^{e}}{\alpha^{i}+\alpha^{e}}}
$$

$\alpha^{i}=\xi^{T} M^{i} \xi, \alpha^{e}=\xi^{T} M^{e} \xi$

Anisotropic mean curvature flow

φ^{0} is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

Formal asymptotics and singular limit (2)

$$
\varphi^{o}(\xi)=\sqrt{\frac{\alpha^{i} \alpha^{e}}{\alpha^{i}+\alpha^{e}}}
$$

$\alpha^{i}=\xi^{\top} M^{i} \xi, \alpha^{e}=\xi^{\top} M^{e} \xi$

Anisotropic mean curvature flow

φ^{0} is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain model behaves (formally) like the anisotropic Allen-Cahn equation (with this particular choice of the anisotropy) as $\epsilon \rightarrow 0$

Gamma-limit of the stationary problem

[L. Ambrosio, P. Colli Franzone, G. Savaré ('00)]

The functional

$$
\mathcal{F}_{\varepsilon}(\mathbf{u})=\varepsilon \int_{\Omega}\left[M^{i} \nabla u^{i} \cdot \nabla u^{i}+M^{e} \nabla u^{e} \cdot \nabla u^{e}\right] d x+\frac{1}{\varepsilon} \int_{\Omega} F(u) d x
$$

where $\mathbf{u}=\left[u^{i}, u^{e}\right]^{T}$ and $u=u^{i}-u^{e}, \Gamma$-converges (in the L^{2} topology) to a limit functional

$$
\mathcal{F}(\mathbf{u})=\int_{S_{u}^{*}} \phi(\nu(x)) d \mathcal{H}^{d-1}(x)
$$

that depends only in the difference $u=u^{i}-u^{e}$ which is a $B V$ function taking values in $\{-1,1\}$ with S_{u}^{*} as its jump set and $\nu(x)$ the corresponding unit normal.

Identification of ϕ

Although the formal asymptotics suggests that

$$
\phi(\xi)=c_{0} \varphi^{o}(\xi)=c_{0} \sqrt{\frac{\alpha^{i} \alpha^{e}}{\alpha^{i}+\alpha^{e}}}
$$

with c_{0} depending on the actual shape of F, the actual value on ϕ is not known yet. [Ambrosio et al] proved the following estimates

$$
\underline{\phi}(\xi) \leq \phi(\xi) \leq c_{0} \varphi^{\circ}(\xi)
$$

with

$$
\underline{\phi}(\xi)=\sqrt{\xi^{T} M^{i}\left(M^{i}+M^{e}\right)^{-1} M^{e} \xi}
$$

Remark

φ^{0} is not always convex (depending on the eigenvalues of M^{i} and M^{e}) whereas ϕ must be convex.

Inverted anisotropic ratio, $d=2$

Suppose that the fibers are oriented in the x_{1} direction, then M^{i} and M^{e} are diagonal. Let

$$
\rho^{i}=\frac{\lambda_{1}^{i}}{\lambda_{2}^{i}}, \quad \rho^{e}=\frac{\lambda_{1}^{e}}{\lambda_{2}^{e}}
$$

We chose $\rho^{e}=1 / \rho^{i}$. This is to some extent the opposite of "equal anisotropic ratio" ($\rho^{i}=\rho^{e}$). This choice is not physiologically feasible, however it leads to a noncovex combined anisotropy if $\rho^{i}>3$.

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex anisotropy):
$\lambda_{1,2}^{i}=2,4, \lambda_{1,2}^{e}=4,2$
Black: Frank diagram $\left\{\varphi^{\circ}(\xi)=1\right\}$

Blue: Wulff shape (dual shape).

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex anisotropy):
$\lambda_{1,2}^{i}=2,4, \lambda_{1,2}^{e}=4,2$
Black: Frank diagram $\left\{\varphi^{\circ}(\xi)=1\right\}$
Blue: Wulff shape (dual shape).

Strong inverted ratio

$\rho=10$ (nonconvex anisotropy):
$\lambda_{1,2}^{i}=1,10, \lambda_{1,2}^{e}=10,1$
Convexification of Frank diagram corresponds to cutting off the swallowtails in the Wulff shape.

Numerical simulations

In all simulations we chose a square domain $\Omega=(0,1.2) \times(0,1.2)$. The initial condition is $u=\tanh \frac{|x|}{\epsilon}$ (unit circle). The relaxation parameter ϵ related to space discretization h through $h=C \epsilon$ (C small enough to resolve the transition layer). Reflection conditions along the axes and Dirichet condition on the other two sides.
Matrices $M^{i, e}$ are selected according to the choice of weak or strong inverted ratio.

Discretization

We use P_{1} finite elements in space.
One parabolic equations is discretized with explicit Euler in time to get the difference $u_{n+1}=u_{n+1}^{i}-u_{n+1}^{e}$ at the next time step. Then we recover u_{n+1}^{i} and u_{n+1}^{e} by solving an elliptic problem with a preconditioned conjugate gradient.

Weak inverted anisotropic ratio

By chosing the eigenvalues $2,4,4,2$ we obtain a convex combined anisotropy.

Black: Frank diagram Blue: Wulff shape

Simulation with $\rho=2(h=0.006)$

Time increments of 0.005 .

Simulation with $\rho=2$

Times 0.02, 0.04, 0.06, 0.08.

Simulation with $\rho=2$

Times 0.10, 0.15, 0.20, 0.25 .

Strong inverted anisotropic ratio

By chosing $\rho=10$ we obtain a nonconvex combined anisotropy.

Black: Frank diagram Blue: Wulff shape

Simulation with $\rho=10(h=0.003)$

Time increments of 0.005 .

Simulation with $\rho=10$

Times 0.02, 0.03, 0.04, 0.05.

Simulation with $\rho=10$

Times 0.06, 0.07, 0.08, 0.09.

Simulation with $\rho=10$

Times 0.10, 0.12, 0.14, 0.18.

Future work and Open problems

- Numerical simulatations of nonconvex Allen-Cahn with the combined anisotropy (convex and nonconvex)
- Dependence on position for φ°
- Nonequal wells: $F(-1) \neq F(1)$, and original time scaling
- Prove convergence of the bidomain model to the sharp limit as $\epsilon \rightarrow 0$, in the convex case.
- Identify the surface energy of the Γ-limit (for the stationary problem), which is conjectured to be the convex hull of φ°
- Sensitivity to the boundary conditions

Thank you for your attention

