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Abstract. Biology is becoming one of the most attractive fields of applica-
tion of mathematics. The discoveries that have characterized the biological
sciences in the last decades have become the most fertile matter for applica-
tion of classical mathematical methods, while they offer a natural environ-
ment where new theoretical questions arise. Mathematical Biology has born
many years ago and has developed along directions that now constitute its tra-
ditional background: population dynamics and reaction–diffusion equations.
Nowadays Mathematical Biology is differentiating into several branches, es-
sentially depending on the specific spatial scale size under consideration:
molecular scale, i.e., DNA transcription, protein folding and cascades, cel-
lular scale, i.e., motility, aggregation and morphogenesis, and macroscale,
i.e., tissue mechanics. Currently one of the most attractive scientific top-
ics is the mathematics of growth and remodelling of soft biological tissues.
This area, located at the crossroads of biology, mathematics and continuum
mechanics, concerns the statement and analysis of the equations that charac-
terize the mechanics, growth and remodelling of systems like arteries, tumors
and ligaments, studied at the macroscopic scale. These are open continuous
systems that pose new challenging questions, which go beyond the standard
mechanics that is traditionally devoted to closed systems. Past initiatives in
Oberwolfach have been devoted to the interaction between biology and math-
ematics in a broad sense. The idea to this minisymposium is to bring together
established researchers on this topic with newer entrants to the field and initi-
ate discussion on established and novel approaches towards the mathematics
of growth and remodelling of soft biological tissues.

Mathematics Subject Classification (2000): 74A05, 74L15, 92-08, 92C05, 92C10, 92C15, 92C37.



Elementary mechanics of muscular exercise
Antonio DiCarlo

The mathematical theory of growth and remodelling of living tissues—either soft
or hard—is still in its infancy, as unanimously acknowledged and amply testified
during the miniworkshop. In these conditions, the lack of a well-founded and
widely recognized axiomatic basis is only to be expected, and could even be re-
garded as a felicitous opportunity for the emergence of brand new ideas. However,
this is no excuse for disregarding clean axiomatics nor for being opportunistic and
sloppy in basic assumptions. At best, these are symptoms of a nasty infant disease
we should fight against. To this end, I chose to discuss a very simple—but not
too simple—macroscopic model of muscular exercise. Admittedly, nobody views
muscle contraction—as opposed to muscle buildup—as an example of growth or
remodelling. However, it is a fact that the very same formalism—which I call ma-
terial remodelling—fitly covers both phenomena (and many others, either in living
or non-living materials). At the same time, the utmost simplicity of the muscle
model I consider makes the mathematical structure and the physical motivation
of the underlying theory readily accessible.

Prelude. Let me invite you to an easy-to-do experiment: go to the gym, pick up a
dumbbell, raise your forearm at ninety degrees with your upper arm, and hold on.
Whoever has tried knows that an isometric exercise can be strenuous. However,
null work is being done: no motion, no power expended. How is it that a tough
isometric workout implies no work? What’s wrong? In actual fact, zillions of
minuscule myosin heads have to move back and forth inside your biceps in order
to keep your arm still under load. A decent model of muscular exercise, while
eschewing all molecular details, should account for their net results on the gym
scale. I consider the simplest macroscopic caricature of the muscular machinery
able to mimic actin-myosin sliding and myosin action as independent mechanisms.
Avoiding to lump them into a single effective mechanism is of the essence: in
fact, the effort demanded by an isometric exercise and the energy apportionment
required are simply cancelled in the lumping. Keeping track of the power expended
separately by each mechanism, my model encompasses all regimes of muscular
activity. In particular, it provides a non-null estimate of the energy required to
perform an isometric exercise for a given amount of time.

A two-bar model. A whole skeletal muscle is modelled as a telescoping unit com-
prised of two straight bars, sliding into one another. Each bar is assumed to
be uniformly tensed, and its present tension Ti(τ) (with τ the present time, and
i = a, p) to depend only on the present stretch λi(τ):

Ti(τ) = �Ti

�
λi(τ)

�
,

the stretch being defined as the ratio between the actual and the relaxed length
of the bar, both strictly positive:

λi(τ) := �i(τ)/�∗i (τ) > 0 .
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Both response functions
�Ti : ] 0,+∞ [ → R

are assumed to be one-to-one and monotonously increasing, with inverses
�λi := �T −1

i .

Be it noted that �Ti

�
1
�

= 0 ⇔ �λi

�
0
�

= 1. Labels a, p stand for active and passive,
respectively: while the a-bar is susceptible of remodelling, i.e., its relaxed length
may actually evolve in time, �∗p is assumed to be constant: for all time τ ,

�∗p(τ) = �0 ⇒ �̇∗p = 0

(a superposed dot denotes differentiation with respect to time). The overall length
of the two-bar unit at time τ is given by

L(τ) = �a(τ) + �p(τ)− s(τ),

where s(τ) measures the present overlap between the two bars. The above assump-
tions are clearly inspired by the way actin and myosin filaments are organized in
sarcomeres and myofibrils. A quote from Andrew F. Huxley [1] is to the point:

Length changes in muscle take place by relative sliding of two
overlapping sets of filaments, composed respectively of myosin and
actin. Tension is generated in the overlap regions by cross-bridges
formed by the heads of myosin molecules, which attach to an ad-
jacent actin filament, exert force and detach. Attachment ends
when a molecule of ATP binds to the myosin head.

In conclusion we have to deal with 4 DOFs overall, the evolution of the muscle
during an exercise being parameterized by the extended motion

(1) τ �→
�
�a(τ), �p(τ), s(τ), �∗a(τ)

�
.

The governing equations are obtained following the uniform procedure set forth
in [2]. The equations corresponding to the first three DOFs in (1) are standard,
while the fourth is not.

Power and balance. The total power expended is assumed to be given by the sum

(2)
�
Ro�̇∗a + FL̇

�
+

�
Ri�̇∗a + Cṡ− Ta�̇a − Tp�̇p

�
,

where parentheses group the outer and the inner contribution, in this order. In (2)
F is the (standard) force applied to the muscle ends by the tendons; Ro and Ri are
the outer and inner remodelling forces, Ro representing the essential interaction
with the chemical degrees of freedom, which are left out—but not ignored!—by
the model; C is the (standard) force exchanged between the two bars, which—as
established by the assumptions in (2)—are connected in series.

The principle of virtual power yields the 4 balance equations:

Ta = Tp = C = F,(3)
Ro+ Ri = 0 .(4)
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Energetics. The free energy is assumed to be the sum of the elastic energies of the
two bars—the energy apportion from biochemical sources being accounted for by
the outer remodelling force Ro:

Ψ(τ) = �Ψa

�
λa(τ)

�
+ �Ψp

�
λp(τ)

�
.

A dissipation principle [2, 3] is enforced, requiring that the power dissipated—
defined as the difference between the power expended along a motion and the
time derivative of the free energy—should be non-negative:

(5) −

�
Ri�̇∗a + Cṡ− Ta�̇a − Tp�̇p

�
− Ψ̇ ≥ 0.

A distinguished set of constitutive assumptions satisfying identically inequality (5)
is the following (a prime denotes differentiation):

�Ti = �Ψ�
i ,(6)

C = −(1/M)ṡ (with M>0) ,(7)

Ri = λa
�Ta(λa)− D �̇∗a (with D>0) .(8)

Note that the additive structure of the right side of (8) is a necessary conse-
quence of the dissipation principle postulated. In particular, the energetic term
λa

�Ta(λa) = λa
�Ψ�
a(λa) is the pertinent Eshelby coupling between hyperelasticity

and remodelling of the a-bar.

Evolution equations. Substitution of eqs. (6–8) into (3) and (4) yields the equa-
tions determining the time rates of the overlap s and of the relaxed length of the
a-bar �∗a :

ṡ = −MF,

D �̇∗a = �λa(F )F + Ro,

plus the rate-independent balances �Ta(λa) = �Tp(λp) = F .

Biochemical power expended. It is readily seen that in an isometric (L̇ = 0) and
isotonic (Ḟ = 0) exercise the outer power coincides with the power expended by
the outer remodelling force and is non-null (unless F = 0):

Ro�̇∗a =
�
1 + DM /(�λa(F ))2

�
MF 2.

Note that �λa(F ) = 1 + O(F ) . Hence, Ro�̇∗a = (1 + DM)MF 2 + DM2O(F 4).
Consider, however, that there is no reason why the mobility M and the resistance
(or inverse mobility) D should not depend on F .
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