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Our work aims at modelling and simulating the growth processes that allow
the cardiovascular system to adapt to the overall body development and to
changing physiological (and pathological) conditions. Within the cardiovascular
system, we pay particular attention to the heart and the aorta.

A healthy aortic wall succeeds in keeping a homeostatic stress level in
spite of long-standing alterations in pressure or flow by triggering growth and
remodelling processes that change its stress-free shape and its structure.

A normal heart grows in response to the gradually increasing haemody-
namic loading exerted on myocardial fibres. Postnatal cardiac growth is a form
of volume-overload hypertrophy, produced essentially by a progressive myocar-
dial cell enlargement, with no cell proliferation involved.

In our continuum model, growth is basically conceived of as the time evo-
lution of the stress-free configuration of the tiny fragments into which the
modelled tissue may be subdivided in imagination. It is governed by a novel
balance law—the balance of accretive couples—independent of, but constitu-
tively coupled with, the standard balance of forces.
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1. The Cardiovascular System and its Adaptability

The primary function of the cardiovascular system is the transport of oxy-
gen, carbon dioxide, nutrients, waste products within the body. Since the
body undergoes major changes during its life cycle, the capability of the
cardiovascular system to accommodate vastly increasing body demands is
a vital requirement.

The system consists primarily of the heart, which serves as the pump,
the blood, which serves as the conducting medium, and the vasculature,
which serves as the conduit through which the blood flows.1 We focus
on the heart and the aorta—the main artery of the body, supplying oxy-
genated blood to the circulatory system. In particular, we strive to model
the growth process through which the aortic wall keeps a homeostatic stress
level (Section 3.1) and the postnatal hypertrophy—either physiological or
pathological—of the cardiac muscle (Section 3.2). Both of these processes
take place on a time scale—weeks to years—which is extremely long if com-
pared with the heartbeat time scale (see Fig. 3). Nevertheless, understand-
ing the basic machinery of the cardiac cycle is crucial to our endeavour, since
physiological adaptation and pathological developments are both triggered
by the values attained during a cardiac cycle by rather gross mechanical
quantities, such as blood pressure and heart volume. This is demonstrated
by an overwhelming physiological and medical evidence, even though the
detailed feedback mechanisms are still largely unknown.2

The following two subsections collect some basic information on the
structural and functional properties of the heart and the aorta, respectively,
as an essential preliminary to mathematical modelling. For a fairly recent
overview on the biomechanics of cardiovascular development, the reader is
referred to the survey paper by Taber.3

1.1. Structure and function of the heart

The heart is a smart composite structure. Atria and ventricles have a differ-
ent microstructural organization; also heart valves and ventricle walls pos-
sess a different microstructure; moreover, the heart walls are comprised of
three different layers, with diverse structure and function. The inner layer—
endocardium—and the outer layer—epicardium—are both very thin, each
being about 100 µm thick; the middle layer, called myocardium, constitutes
the bulk of the cardiac tissue and endows it with the ability to pump blood.
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1.1.1. The myocardium

The myocardium is composed of cardiac myocites and fibroblasts, sur-
rounded by an extracellular matrix. In adults, cardiac myocites are typ-
ically 10 –20 µm in diameter and 80 –125 µm in length; their cytoplasm
contains mainly myofibrils (1–2 µm in diameter). Each myofibril consists
of a string of contractile units, called sarcomeres, each of which is about 2
µm long. Each sarcomere consists of hundreds of filamentous protein aggre-
gates (myofilaments). Thick myofilaments are composed of several hundred
molecules of myosin; thin myofilaments are composed of two helically in-
terwound polymers of actin.

Cardiac myocites are active components: they contract and relax at a
high frequency producing the heartbeats; on a much longer time scale, they
can grow bigger (hypertrophy). Muscle contraction is initiated by the release
of calcium ions which are sequestered in the surrounding sarcoplasmic retic-
ulum. A smooth ratcheting action (with a speed of about 15 µm/s) results
from the shortening of the sarcomere, operated by the action of the acto-
myosin cross-bridges that release, move forward, and reattach. The release
of calcium ions is triggered by an action potential that spreads from the
cell membrane. The passage of the electrical signal from cell to cell is facili-
tated by the fact that myocites are highly interconnected. The biochemical
mechanisms that drive the long-term hypertrophy process are more intrigu-
ing and far less understood. Some coarse-grained feedback mechanisms are
hypothesized in Sec. 3.2, as a first step in our modelling effort.

The passive myocardium exhibits a nonlinear, essentially incompressible

←− aorta

←− pulmonary trunk

left ventricle −→

Fig. 1. View of the interior of the left ventricle, showing the mitral valve (reproduced
from Ref. 4). The flap is opened in the posterolateral wall.
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(visco-) elastic response, as is typical of all soft tissues. An important feature
to be accounted for is the complex distribution of the predominant orienta-
tion of muscle fibres across the myocardium. In fact their orientation, while
staying everywhere tangent to the wall, changes notably with position: in
the equatorial region, for instance, the predominant muscle fibre direction
changes from about −65◦ in the sub-epicardial region to nearly 0◦ in the
mid-wall region to about +65◦ in the sub-endocardial region, all relative
to the circumferential direction. This transmural splay of fibre directions
causes the heart to twist during the cardiac cycle.1 Another peculiar fea-
ture that cannot be disregarded is the existence of a major self-stress that
contributes to a more uniform intramural stress distribution under physi-
ological conditions. The self-stress is distributed across the heart wall in a
way closely related to the fibered structure of the myocardium, as shown by
a series of tests performed by Omens and Fung5 on rat left ventricles about
twenty years ago and recently reported by Humphrey.1 Evidence of com-
pressive circumferential residual stress in equatorial rings of myocardium
tissue excised from the left ventricle was obtained by effecting radial cuts
that left the rings open and stress-free. A comparison of the length of sar-
comeres in this stress-free configuration with the one they had in the intact
configuration showed that, while the relaxed length of sarcomeres varies
significantly from the endocardium to the epicardium in the unloaded (but
self-stressed) myocardium configuration, it is nearly uniform across the wall
in the stress-free configuration.

1.1.2. The cardiac cycle

The main heart function is to ensure blood pumping into both the high pres-
sure systemic circuit and the low pressure pulmonary circuit (see Fig. 2).
The cardiac cycle may be split into four stages (see Fig. 3). The first is the
diastolic filling (comprising phases 6,7 and 1 in Fig. 3), which is started by
the opening of the valve connecting the left atrium with the left ventricle—
the mitral valve. This stage is characterized by a dilation of the left ventricle
caused by the higher pressure in the atrium and progressively slowed down
by the increasing apparent stiffness of the ventricle wall. During the dias-
tolic filling, the pressure in the left ventricle does not change significantly,
achieving a maximum of 15 mmHg (= 2 KPa), versus an aortic pressure
of 90 mmHg. The contraction of myocardial fibres makes the mitral valve
close, thus starting the second stage of the cardiac cycle—the isovolumic

contraction (phase 2 in Fig. 3). The left-ventricle pressure rises rapidly dur-
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Fig. 2. A heart-centred schematic picture of blood circulation (reproduced from Ref. 6):
the upper part schematizes the pulmonary circuit, the lower part the systemic circuit;
the left side carries oxygen-poor blood, the right side oxygen-rich blood.
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Fig. 3. Pressure and volume monitored along a cardiac cycle (reproduced from Ref. 7)
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ing this stage, and the aortic valve opens when it exceeds the aortic pres-
sure. On the contrary, the volume of the left ventricle does not change, as
it stays filled with blood. The stage of systolic ejection (comprising phases
3 and 4 in Fig. 3) starts with the opening of the aortic valve. Most of the
cardiac output is provided in the first quarter of this stage, before the pres-
sure peaks at about 120 mmHg. Then, when the pressure drops to about
100 mmHg, the aortic valve closes, starting the fourth stage: the isovolu-

mic relaxation (phase 5 in Fig. 3). During this stage the volume of the left
ventricle keeps its minimum value, while the left ventricular pressure drops
fast to the value of the atrial pressure, triggering the opening of the mitral
valve and starting a new cardiac cycle.

1.2. The aorta as a prototype large vessel

Arteries are roughly classified as elastic or muscular. Elastic arteries are
larger and are located close to the heart, like the aorta; muscular arteries are
smaller and closer to the arterioles. The walls of both elastic and muscular
arteries consist of three different layers: intima, media, and adventitia.

The intima, which is the innermost of the threes and consists of a sin-
gle layer of endothelial cells, is extremely thin with respect to the arterial
wall, at least in large arteries. Its contribution to the mechanical properties
of the wall may only become significant in old age or under degenerative
conditions: atherosclerosis, in fact, implies a thicker and stiffer intima. The
middle layer—the media—is characterized by a complex mixture of smooth
muscle cells, elastin and collagen fibrils. Vascular smooth muscles modify
the distensibility of large arteries and regulate the lumen size in medium
and small arteries. Consistent with their different roles, smooth muscles
are organized differently in large (elastic) and in small (muscular) arter-
ies. In elastic arteries, vascular smooth muscles are organized in musculo-
elastic fascicles—that is, alternate layers of smooth muscle and elastin (up
to 70 layers in the human aorta). In muscular arteries, elastin is absent and
smooth muscles form a single layer embedded in a matrix of connective
tissue. The outermost layer—the adventitia—consists primarily of colla-
gen fibres arranged in helical structures. It contributes significantly to the
strength of the arterial wall.

The mechanical properties of an arterial wall are approximately homo-
geneous within each single layer, but not overall. In fact, the difference in
stiffness exhibited by different layers plays an important role in the adaptive
response of the arterial wall to perturbations from its homeostatic state.
The differential growth of the layers originates a non uniform self-stress dis-
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tribution within the wall. Such self-stress (also called residual stress) has
been extensively investigated, due to its importance in stress redistribution
and vascular remodelling. When excised from the vascular tree, an arte-
rial segment shortens drastically. A further radial cut releases most of the
residual stress in an unloaded intact arterial ring, allowing it to open up,
the opening angle being a rough measurable indicator of the preexisting
self-stress (see Refs. 8, 9 and our discussion in Sec. 3.1).

The aorta, like the other large arteries, exhibits a highly nonlinear be-
haviour under large strains. A constitutive model of such behaviour should
account for both its passive response, due to elastin and collagen, and its
active response, due to muscle fibres. Following the fluctuations of the intra-
mural pressure, the arterial wall undergoes instantaneous elastic deforma-
tions, essentially determined by its passive response. Despite its complex-
ities, such a response is by no means the most characteristic mechanical
property of the arterial wall as a living tissue. When the normal condi-
tions are altered for a sufficiently long time, the passive response may be
supplemented by a suitable contraction of the vascular smooth muscles,
that constitutes the primary adaptive mechanism aiming at keeping the
flow-induced shear stress and the wall stress distribution at their baseline
values. Of course, such a goal is achieved at the expense of an altered con-
tractile state of smooth muscle cells.10,11 Therefore, alterations in pressure
or flow which hold out over long periods of time (days, weeks) trigger a
different adaptive response, consisting in growth and remodelling processes
that modify the stress-free shape and the structure of the vessel wall.

The passive mechanical response of arterial walls has been extensively
investigated through uniaxial, biaxial, and torsion tests. On the contrary,
very few data are available on the active response of vascular smooth mus-
cles. Moreover, these data come only from uniaxial tests performed on ar-
terial rings or helical strips excised from an artery following the local ori-
entation of the muscle fibres. Therefore, they cannot account for the effects
of the complex three-dimensional arrangement of these fibres. Even less is
known of the long-term adaptive response implying growth and remodelling.

2. Gross Mechanics of Bulk Growth

We concentrate on the growth phenomena which are key to the adaptabil-
ity of the cardiovascular system—and, more generally, of all smart living
systems. In Section 3 we offer the results of our preliminary simulations
of the adaptive remodelling of arterial walls (Section 3.1) and sketch the
conceptual underpinning of our incipient project aiming at modelling post-
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natal cardiac hypertrophy (Section 3.2). The present section is devoted to
a condensed, but reasonably self-contained, presentation of the theoreti-
cal framework common to both models, based on the dynamical theory
of growth introduced by DiCarlo and Quiligotti.12 We follow the lines of
Ref. 13, where an abridged account of the theory of bulk growth was given as
a preliminary to the treatment of surface growth.a A comprehensive account
of experimental and theoretical issues in the biomechanics of growth and
remodelling may be found in the review papers by Taber15 and Cowin.16

2.1. Kinematics: gross and refined motions

We regard a growing piece of tissue—which we call the body in the rest
of Sec. 2—as a smooth manifold B (with boundary ∂B), and call (gross)
placement any smooth embedding

p : B → E (1)

of the body into the Euclidean place manifold E , whose translation space
will be denoted by VE . Tangent vectors on the body manifold itself are
called line elements. The set of all line elements attached to a single body-
point b ∈ B is called the body element at b, and denoted TbB (the tangent
space to B at b). The union of all body elements is denoted TB (the tangent
bundle of B).

The body gradient ∇p of a placement p is a tensor field on B, whose
value at any given point b, denoted by ∇p|b, maps linearly the body element
TbB onto VE . We call element-wise configuration—or, with a much shorter
monosyllable, stance—any tensor field of this kind, be it a gradient or not.
Therefore, a stance is any smooth mapping

P : TB → VE , (2)

such that the restriction P|TbB is a linear embedding, for all b ∈B. If a
stance happens to be the gradient of a placement, we say that it is induced
by that placement: all placement induces a stance, but a general stance is
not induced by any placement, not even locally.

In order to distinguish growth from passive deformation, we postulate
that, at each time τ ∈T (the time line, identified with the real line),
there exists a dynamically distinguished stance P(τ)—smoothly depending

aThe same theory encompasses also modes of material remodelling that are not treated
here nor in Refs. 12, 13, such as the evolution of the elastic stiffness due to microstructural
rearrangements: see Ref. 14 for a treatment of the remodelling of anisotropic bone tissue.
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on time—which we call prototypal stance or, briefly, prototype. The assign-
ment of a gross placement and a prototype to each time defines a refined

motion (p, P). The idea to refine the gross motion in this way dates back
to Kröner17 and Lee,18 who introduced the notion of an “intermediate”
configuration in the sixties, to distinguish between elastic and visco-plastic
strains. Much later Rodriguez, Hoger and McCulloch imported that notion
into biomechanics, reinterpreting it as the “zero-stress reference state” of a
growing body element, to quote verbatim from their 1994 paper.19

The velocity realized along the refined motion (p, P) at the time τ ∈T

is the pair of fields (a superposed dot denoting time differentiation):

( ṗ(τ), Ṗ(τ)P(τ)−1) : B → VE ×(VE ⊗VE ) . (3)

The linear space of test velocities T , comprising all smooth fields

(v, V ) : B → VE ×(VE ⊗VE ) , (4)

will play a central role in Sec. 2.2. The gross velocity of body-points is given
by the vector field v, while the tensor field V gives the growth velocity of
the corresponding body elements.

2.2. Dynamics: brute and accretive forces; balance principle

A force is primarily a continuousb linear real-valued functional on the space
of test velocities, whose value we call the working expended by that force.
We assume that the total working—i.e., the working expended by the sum
of all forces at play—expended on any test velocity (v, V ) ∈ T admits the
following integral representation:

�

B

�
Ai · V− S · Dv

�
+

�

B
( b · v + Ao · V ) +

�

∂B
t∂B · v , (5)

where the integrals are taken with respect to the bulk volume and sur-
face area of body elements in their prototypal configuration—to be called
prototypal volume and prototypal area, for short—, and

Dv := (∇v)P−1 (6)

denotes the prototypal gradient of v (shorthand for ‘Euclidean representa-
tion of the body gradient ∇v mediated by the prototypal configuration’).

bContinuity of force functionals is physically essential; to make it meaningful, the space
of test velocities should be endowed with the structure of a topological vector space.
We gloss over this issue, leaving up to the mathematically conscious reader the task to
complete the space of smooth test fields T in a topology appropriate to Eq. (5).
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Because of the compound structure of test velocities, the force functional
splits additively into a brute force, dual to v, and an accretive force, dual
to V. Another important splitting—to be discussed in Sec. 2.4—is between
the inner working, given by the first bulk integral in Eq. (5), and the outer

working, given by the remaining sum. The brute bulk-force per unit volume
b and the brute boundary-force per unit area t∂B take values in VE ; the
inner (outer) accretive couple per unit volume Ai (Ao) and the brute Piola

stress S —also a specific couple—take values in VE ⊗VE .
All balance laws are systematically provided by the universal balance

principle stating that, at each time, the total working expended on any
test velocity should be zero, i.e., all forces at play should sum up to the
null functional. Via standard localization arguments, this yields the local
statements of balance:

balance of brute forces: Div S+b = 0 on B & Sn∂B = t∂B on ∂B ; (7)

balance of accretive couples: Ai + Ao = 0 on B. (8)

In Eq. (7), Div S is the only vector field satisfying the scalar identity

div (S�v) = (Div S) · v + S · Dv

for each vector field v, while the divergence of a vector field is the trace of its
prototypal gradient: div v = (Dv) · I , I being the identity on VE ; n∂B is the
outward unit normal to the facets in ∂B in their prototypal configuration.
Once brute forces and accretive couples are constitutively related to the
refined motion, the balance principle rules out all refined motions that do
not satisfy Eqs. 7 and 8 at all times.

2.3. Energetics

To parametrize the state of the body, an additional energetic descriptor is
needed. We postulate the existence of a real-valued free energy measure,
such that the energy available to any part P of B is given by Ψ(P)=

�
P ψ ,

where the density ψ is the free energy per unit prototypal volume (the
integral being taken with respect to the bulk volume of body elements in
their prototypal configuration). A body-part is a body-like subset of B.

2.4. Constitutive issues: theory and recipes

The constitutive theory of inner forces rests on two main pillars, altogether
independent of balance: the principle of material indifference to change in
observer, and the dissipation principle. Both of them deliver strict selection



June 14, 2007 10:12 WSPC - Proceedings Trim Size: 9in x 6in SmartCardio

11

rules on admissible constitutive recipes for the inner force. None of them
applies to the outer force, which has to be regarded as an adjustable con-
trol on the motion. In fact, while the inner force represents the interactions
among the (few) degrees of freedom resolved by the theory, the outer force
represents their interactions with the (myriad) degrees of freedom in the
universe whose evolution is not described by the motion—however refined.
Not all the degrees of freedom left unresolved by the theory are necessar-
ily localized outside of the body it considers, since its resolution is limited
not only in breadth, but also—and possibly more importantly—in depth.
Therefore, the crucial inner/outer dichotomy encompasses, but does not co-
incide with, the more obvious distinction internal/external to the body. A
force is inner or outer with respect to the theory, not to the body: what ap-
pears as an outer force within a given theory may always—in principle— be
accounted for as inner within a broader, deeper and more cumbersome the-
ory. In an all-embracing theory there would be no outer force at all. In our
theory of the biomechanics of growth, the outer accretive couple Ao plays a
primary role, representing the mechanical effects of the biochemical control
system, smartly distributed within the body itself: ignoring the chemical
degrees of freedom does not make negligible their feedback on mechanics.

2.4.1. Material indifference to change in observer

The group O of changes in observer we consider consists of all smooth maps
of the time line T into the group of isometries of E , Isom � O×VE , O

being the group of orthogonal transformations of VE . Taking for granted
the action of O on the set of gross motions, we extend it to the set P

of refined motions as follows: a change in observer (�Q,�u) ∈O transforms
(p, P) ∈ P into the corresponding refined motion (�p, �P), defined by

�p(b, τ) = �xo(τ) + �Q(τ) ( p (b, τ)− xo(τ)) , �P(b, τ) = P(b, τ) , (9)

for each b ∈B, τ ∈T . In Eq. (9), xo(τ)∈ E is the centre of the spherical
isometry (�Q(τ), 0), and �xo(τ) :=xo(τ)+ �u (τ). Notice that O acts trivially
on prototypal stances: this trivial extension, while strongly motivated, is
by no means obvious and has momentous consequences.c Consequently, the
velocity (�v, �V ) corresponding to (v, V ) is

�v(b) = �Q(τ) v(b) + �w(τ) + �W(τ) ( �p (b, τ)− �xo(τ)) , �V(b) = V(b) , (10)

with �w(τ) := �̇xo(τ)− �Q(τ) ẋo(τ), and �W(τ) := �̇Q(τ) �Q(τ)�.

cFor the crippling consequences of a different, nontrivial extension, see Ref. 20.
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The principle of material indifference to change in observer requires
that, under an arbitrary change in observer (�Q,�u) ∈ O, the working ex-
pended over each body-part on each test velocity (v, V ) by the inner force
constitutively related to each refined motion (p, P) at any given time should
be equal to the working expended on the corresponding velocity (�v, �V ) (at
the same time, over the same body-part) by the inner force related by the
same constitutive prescription to the corresponding refined motion (�p, �P). A
parallel requirement of the same principle is that the free energy Ψ should
be constitutively prescribed in such a way as to be invariant under all
change in observer. Since arbitrarily small parts can be taken around any
body-point, these identities localize at each body-point b ∈ B .

The above principle rules out non-symmetric values of the brute Cauchy

stress T := (det F)−1 S F�, where the warp

F := Dp = (∇p) P−1 (11)

measures how the gross stance, i.e., the body gradient of the gross place-
ment, differs from the prototypal stance. If we further assume that the
response of the body element at b filters off from (p, P) all information
other than p|b, ∇p|b, and P|b, we obtain the following reduction theorem:
there are constitutive mappings �Sb, �Ai

b and �ψb such that

S(b, τ)=R(b, τ) �Sb(�b, τ), Ai(b, τ)= �Ai
b(�b, τ), ψ(b, τ)= �ψb(�b, τ), (12)

where the constitutive list �b reduces to

�b := (U|b, P|b) , (13)

the rotation R and the stretch U being, respectively, the orthogonal and
the right positive-symmetric factor of the warp: F = R U .

2.4.2. Dissipation principle

We call power expended along a refined motion at any given time the op-
posite of the working expended by the inner force constitutively related to
that motion on the velocity realized along the motion at the given time.
Hence, the power expended measures the working done by a putative outer
force balanced with the constitutively determined inner force. The dissipa-

tion principle we enforce requires that the power dissipated—defined as the
difference between the power expended along a refined motion and the time
derivative of the free energy along that motion—should be non-negative,
for all body-parts, at all times. This localizes into:

ψ̇ + ψ I · ( ṖP−1) ≤ S · (D ṗ) − Ai · ( ṖP−1) , (14)
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it being intended that S, Ai and ψ are given by Eq. (12). The second term
on the left side of Eq. (14) stems from the fact that the prototypal-volume
form, say ω, evolves in time as dictated by the growth velocity ṖP−1:

Ψ̇(P) =
��

P
ψ ω

�·
=

�

P
(ψ ω)· =

�

P
(ψ̇ ω + ψ ω̇) =

�

P

�
ψ̇ + ψ I ·( ṖP−1)

�
ω.

2.4.3. Constitutive assumptions: free energy and inner force

Our main constitutive assumption concerns the free energy. We posit that,
for each body-point b at any given time τ , ψ(b, τ) depends solely on the
value F(b, τ) of the warp at that time (in fact, only on the value U(b, τ) of
the stretch, because of Eqs. 12, 13): there exists a map ϕb such thatd

ψ(b, τ)= �ψb( U|b, P|b, τ) = ϕb (F(b, τ)) . (15)

The requirement that Eq. (14) be satisfied along all refined motions is
fulfilled if and only if for each b (which will be dropped from now on) the
mappings �S and �Ai satisfy:

�S = ∂ϕ +
+

S , �Ai = E +
+

A , (16)

where ∂ denotes differentiation. The Eshelby couple

E := F� �S− ϕ I (17)

bridges between brute and accretive mechanics; the extra-energetic re-

sponses
+

S,
+

A are restricted by the reduced dissipation inequality

+

A(�, τ) · ( Ṗ(τ)P(τ)−1)−
+

S(�, τ) · Ḟ(τ) ≤ 0 , (18)

to be abided by along all refined motions, at all times (� being given by
Eq. (13)). We regard all dissipative mechanisms extraneous to growth to be

negligible, assuming the extra-energetic brute stress to be null:
+

S=0. Then,
we make Eq. (18) satisfied in the most facile—though scarcely warranted—
way, letting the extra-energetic accretive couple be simply proportional to
the growth velocity through a prescribed negative scalar factor:

+

A(� , τ) = −c Ṗ(τ)P(τ)−1, (19)

the resistance to growth c being positive: c > 0.
In our preliminary simulations, we specify the free-energy map ϕ think-

ing of a putatively homogenized material, in order to avoid detailing the

dSee the paper21 by Epstein for an insightful discussion of the implications of Eq. (15).
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micro-geometry, a common practice in similar applications.23–26 In partic-
ular, following Humphrey and Yin,23,24 we envisage to model the passive
myocardium response assuming that ϕ splits additively into an isotropic
component ϕm, accounting for the matrix surrounding the fibres, and a
transversely isotropic component ϕf, accounting for the oriented collagen
fibres: ϕ = ϕm +ϕf. Our first results on growth-induced self-stress in arter-
ies, summarized in Sec. 3.1, have been obtained in the most simplistic way,
disregarding anisotropy altogether: ϕf = 0 , and identifying the isotropic
component as neo-Hookean:

ϕ(F) = ϕm(F) = 1
2 µ

�
F·F− 3

�
, (20)

where the single scalar parameter µ > 0 is a shear modulus; Eq. (20) has
to be complemented by the incompressibility constraint: det F = 1 .

2.4.4. Constitutive assumptions: outer force

In the intended applications, the brute bulk-force plays a negligible role:
we assume b = 0. The brute boundary-force t∂B represents blood pressure
and contact interactions with surrounding tissues. The key assumption is
the one concerning the outer accretive couple Ao, whose constitutive pre-
scription should hopefully short-circuit the complex—and ill-understood—
sensing/actuating mechanobiological functions that control growth.

We offer a preliminary, crude recipe we have being using for simulating
the adaptive remodelling of arterial walls (see Sec. 3.1 and Ref. 22); the
contrivance of an analogous recipe for postnatal cardiac hypertrophy is still
in progress (see Sec. 3.2). Inspired by the stress-dependent growth laws
proposed by Taber,27–29 we posit a target Cauchy stress T⊙ (as detailed in
Sec. 3.1) and assume

Ao = ϕ I− (det F)F�T⊙ F−�, (21)

in order that the outer accretive couple compensates for the Eshelby couple
if and only if the target stress is met:

E + Ao = F�( T− T⊙) F−�. (22)

3. Mathematical Models of Adaptive Growth

3.1. Growth-induced residual stress in large arteries

As mentioned in Sec. 1.2, the fact that in vivo arteries are highly self-
stressed is revealed by two salient phenomena. Soon after an arterial seg-
ment is excised and removed, its undergoes a conspicuous longitudinal
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shortening, the ratio between the in vivo and excised lengths ranging from
1.4 to 1.7. Furthermore, when a shallow ring-shaped segment is cut in the
radial direction, the ring springs open into a sector (see Fig. 4c). A coarse
evaluation of the preexisting residual stress is obtained by measuring the
opening angle, defined as the angle subtended by two segments drawn from
the midpoint of the inner wall to the tips of the open section. The opening
angle varies widely with the organ in which the blood vessel is located, with
its size and shape, and with tissue remodelling. The opening angle is larger
where the vessel is more curved, or thicker. For example, the opening angle

(a) (b)

(c) (d)

Fig. 4. Photographs reproduced from Ref. 8: (a) cross section of a rat pulmonary artery
fixed in vivo at normal pressure; (b) after excision; (c) after stress release. Our simulation
(see text): (d) opening angle for a rat aorta = 58◦.
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of a normal rat artery is about 160◦ in the ascending aorta, 90◦ in the arch,
60◦ in the thoracic region, 80◦ in the abdomen.8

We try to relate the opening angle measured ex vivo with the growth
experienced in vivo by solving numerically the evolution equation

Ṗ = c−1
�

F�( T− T⊙) F−�
�

P (23)

deriving from Eqs. (8), (12), (16), (17), (19), (22), coupled with the standard
equation for nonlinear elasticity deriving from Eqs. (7), (11), (12), (15), (16),
(20). This is done on a 2D computational domain, the annular cross section
of a cylindrical vessel mimicking a rat aorta: lumen radius = 0.2 mm, wall
thickness = 50 µm (data taken from Ref. 27), shear modulus µ = 170KPa.
We assume this configuration to be initially stress-free and solve a cascade
of four problems: (i) passive response under intramural pressure = 16 KPa
and longitudinal stretch = 1.6; (ii) active response (2D growth) obtained by
integrating Eq. (23) from the solution to problem (i) to a steady state, T⊙

being pinpointed by two criteria: (1) to have a constant hoop component,
and (2) to satisfy Eq. (7); (iii) passive response under removal of pressure
and longitudinal tension (simulated excision) from the steady state reached
in (ii); (iv) same as in (iii) for the cut annulus (see Fig. 4d).

3.2. Towards a gross mechanics of cardiac hypertrophy

To attack the complex problem of modelling the growth of the human
heart from infancy to adulthood, we concentrate first on its most important
component, the left ventricle. Three months after birth, cardiac myocites
stop proliferating; however, they get longer and wider by synthesizing more
proteins. This slow process, that develops in response to the increasing
haemodynamic loading due to the overall body development and to physi-
cal exercise,30 is a form of volume-overload hypertrophy.31 It is absolutely
physiological, even though it admits dangerous, possibly lethal, pathological
variants.

The basic tenet of our model is that cardiac hypertrophy is chiefly driven
by brute mechanical circumstances associated with the myocardial pump
function, with other factors playing a minor role. As a secondary, provisional
hypothesis, we admit that the hypertrophic process can be described—at
least to a first approximation—by the sole evolution of the stress-free geom-
etry of the cardiac tissue, without any modification of its microstructure
and functionality.e Within the cardiac cycle (see Fig. 3), two events are

eSeemingly, this hypothesis has to be removed to cover pathological forms of hypertrophy.
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critical in determining the pumping efficiency of the left ventricle: the clo-
sure of the mitral valve (separating phase 1 from 2: notice the spike in the
electrocardiogram), and the opening of the aortic valve (separating phase
2 from 3: the left-ventricle pressure crosses over the aortic pressure).

The closure of the mitral valve at the end of the diastolic filling and
the successive systolic ejection are operated by the isometric contraction
of myocardial fibres. Now, the optimum overlapping between actin and
myosin filaments in sarcomeres is obtained when the sarcomere length lies
between 1.8 and 2.2 µm: if the sarcomeres were longer (or shorter), the force
exerted by the contraction of myocardial fibres would be smaller. Taking
it for granted that the ventricle size has to increase with age and physical
exercise to accommodate a larger blood volume, the only way to keep the
sarcomeres at their optimal relaxed length is to multiply their number by
synthesizing longer myofibrils within the preexisting cardiac myocites—
whose number does not increase, as already noted.

In order for the aortic valve to open, it is necessary that the left-ventricle
pressure exceeds the aortic pressure. Now, the value attained by the pres-
sure inside the ventricle at the end of the isovolumic contraction is di-
rectly correlated with the stress generated within the ventricle wall by the
myocardial contraction.32 A crude estimate of this correlation is readily
provided by a simplistic application of Laplace’s formula for a pressur-
ized thin-walled spherical container, establishing that the ratio (surface
tension)/(intramural pressure) equals the ratio (container diameter)/(wall
thickness). This motivates the assumption—consistent with abundant em-
pirical data—that the ventricle wall grows thicker as it grows wider. There-
fore, cardiac hypertrophy has to multiply sarcomeres also transversally to
myofibrils, packing more of them in parallel within each single myocite.
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