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Many discrete structures are of interest in geometry. That was already true in 1968 when Peter Dembowski
chose the plural “Finite Geometries” as the title of his famous book. It is even more so today. Still, planes always
deserve special attention. These lectures will attempt to explain why, at least from my own very personal point of
view. Planes, permutations and perspectivities will be recurrent notes in the themes I want to develop, so here we
go with our “Variations on three p’s”

Two little warnings before we start. First of all the audience is very composite, consequently the level of these
lectures will not meet everyone’s taste. I will spend some time on material which is now considered “standard,”
but I will also try to touch some results which are part of current research. So maybe the pace will increase as
we go on. Secondly, I have used Dembowski’s book as a major source of information, especially for quotations,
which are usually given at length in the text. Sometimes I could check the sources, sometimes I could not. I make
no claim of thoroughness, nor of absolute correctness, especially when stating priorities in proving results and the
like. Anyone spotting errors of any sort is kindly urged to let me know.

My acquaintanceship with the group in Brescia extends over the past two decades, since my initial meeting
with Mario Marchi at an “Arbeitstagung über Geometrie” that was being organized by Helmut Karzel in Munich
in February 1982. I am therefore very grateful to the organizers for their invitation and for the careful schedule
arrangements which made my participation possible.

1 Are finite projective planes geometric or combinatorial objects?

Many great mathematicians worked on the foundations of geometry between the end of the nineteenth and the
beginning of the twentieth century. It will be sufficient to mention David Hilbert in Europe and Oswald Veblen
in North America. The italian school was also involved in the discussion on the foudations of geometry. I just
mention that Fano and Veronese, two names which are frequently encountered in Finite Geometry, both wrote
papers on this subject. This theme is very wide and I do not want to go into it any further and so I will simply
quote the lecture I geometri italiani e il problema dei fondamenti (1889–1899) that Umberto Bottazzini gave at the
1999 Congress of the Unione Matematica Italiana in Naples, the printed version of which appears in the Bollettino
U.M.I., La matematica nella Società e nella Cultura, Serie VIII, Vol IV-A, Agosto 2001, 281–329.

For my purposes it will be sufficient to remark that projective geometries of “dimension 2” were established in
those years to be of a somewhat special kind. As a matter of fact, a projective space of dimension at least three
can always be coordinatized by a non–necessarily–comutative division ring, a so called skew–field. Essentially, in
these spaces the use of homogeneous coordinates is allowed in much the same way as for complex or real projective
geometry, once the multiplication of scalars from the left or from the right has been agreed upon.
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From the point of view of the system of axioms required to describe it, a projective plane is the “simplest”
kind of a projective geometry. That is in fact a point–line incidence structure in which any two distinct points
lie on a unique common line, any two distinct lines have a unique common point and satisfying a non–degeneracy
condition assuming the existence of four points, no three of which lie on a common line.

It was Hilbert himself that exhibited a projective plane in which the coordinate structure was not a skew–field.
The algebraic properties of the coordinate structure were soon connected to the validity of Desargues’ theorem and
so people started talking of non–desarguesian projective planes.

Projective geometry admits a finite model since finite (skew–)fields exist. This fact is important both from
a conceptual point of view and from the point of view of the methods which can be employed in research. A
mathematical theory admitting a finite model is non–contradictory, no matter how funny the logic you have
adopted may be...! Hence we know that we are working on solid foundations. On the other hand a structure which
has finitely many entities allows counting, no matter how difficult the counting may be. Increasing interest in finite
structures arose during the two world wars, when the theory of designs grew from the work of F. Yates and R.C.
Bose.

In modern terminology a finite projective plane is nothing but a 2–(v, k, 1) design in which the parameters v
and k have the form

v = n2 + n + 1, k = n + 1

for some integer n ≥ 2 which is called the order of the plane. It is a symmetric design, that is one in which the
total number b of blocks is equal to the total number v of points and consequently the number r of blocks through
any given point is equal to the number k of points on any given block.

How can we study finite projective planes? The following quotation from the Introduction to P. Dembowski’s
Finite Geometries, Springer, Berlin 1968, traces the beginning of the general approach based on collineation groups:

“ . . . An alternative approach to the study of projective planes began with a paper by BAER 1942
in which the close relationship between Desargues’ theorem and the existence of central collineations
was pointed out. Baer’s notion of (p, L)–transitivity, corresponding to this relationship, proved to be
extremely fruitful. On the one hand, it provided a better understanding of coordinate structures (here
SCHWAN 1919 was a forerunner); on the other hand it led eventually to the only coordinate–free, and
hence geometrically satisfactory, classification of projective planes existing today, namely that by LENZ
1954 and BARLOTTI 1957 . . . ”

Non–desarguesian finite projective planes do exist as O. Veblen and J.H.M. Wedderburn showed in their paper
Non–Desarguesian and non–Pascalian geometries, Transactions of the American Mathematical Society 8 (1907)
379–388. It is no wonder that progress in the study of finite projective planes from the point of view of collineations
and coordinate structures was influenced and sometimes was a source of motivation for corresponding progress in
the study of algebraic systems of various nature.

What is the existence spectrum for 2–(v, k, 1) designs? This very basic combinatorial question becomes even
more intriguing for finite projective planes. What are the orders of finite projective planes, that is what are the
possible values of n? A finite field of order n exists if and only if n is a prime power, hence the orders of finite
desarguesian planes are precisely the prime powers. Designs with the strangest values for k and v exist, so there
is no a priori reason prohibiting the existence of a finite projective plane whose order is not a prime power. The
fact is that every finite projective plane constructed thus far has prime power order, while no proof is available
of the assertion that this MUST be the case. The best piece of information that we have in this direction is still
the result by R.H. Bruck, H.J. Ryser, The non–existence of certain finite projective planes, Canadian Journal of
Mathematics 1 (1949) 88–93.

Proposition 1.1 Assume n is congruent to 1 or 2 mod 4. If there exists a finite projective plane of order n then
n can be expressed as a sum of two integral squares.

As the title of the original paper stresses, this theorem excludes the existence of a projective plane of order 6,
14, 21 and infinitely many other values of n. Unfortunately it says nothing about n = 10, 12, 15 and infinitely
many others. The case n = 10 is a very instructive story: anyone wishing to know the details is encouraged to read
the extremely well written report by C.W.H. Lam, The search for a finite projective plane of order 10, American
Mathematical Monthly 98 (1991) no. 4, 305–318.

Geometric or combinatorial? I do not know what the ultimate answer is or will be. The Bruck–Ryser theorem
itself addresses a question which is probably combinatorial in nature, but looking at the proof one actually realizes
that it is a theorem on quadratic forms, and so here comes geometry again. The results that I am going to present
will probably suggest that finite projective planes are BOTH geometric AND combinatorial entities, a point of
view that I am certainly willing to subscribe.
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I shall usually denote by π a finite projective plane of order n. Unlike Dembowski I grew up with the idea that
points of π should be denoted by latin capitals such as P , Q, R, whereas lines of π should be denoted by small
latin letters such as a, b, c, `. I will stick to this convention whenever possible.

An arc in π is a set of points no three of which are collinear. An oval in π, which I will usually denote by Ω, is
an arc admitting a unique tangent line at any one of its points. The combinatorics of ovals in finite projective planes
is assumed (see the textbook by D.R. Hughes, F.C. Piper, Projective Planes, Springer, Berlin 1971), in particular
an arc is an oval if and only if it has cardinality n + 1, or, as people more frequently say, it is an (n + 1)–arc.

In case n is even, I usually denote by Ω′ the union of an oval Ω with its nucleus. That is an (n + 2)–arc, a
so called hyperoval and, conversely, each point of a hyperoval is the nucleus of the oval which remains after the
deletion of the point.

If n is odd, then the points not on the oval Ω are of two kinds: those which lie on precisely two tangents are
called external points, while those which lie on no tangent are called internal points. There are (n + 1)n/2
external points and (n− 1)n/2 internal points.

A subplane of a projective plane π consists of some points and some lines of π forming themselves a projective
plane with respect to the incidence induced by that of π. The following result was proved in R.H. Bruck, Difference
sets in a finite group, Transactions of the American Mathematical Society 78 (1955) 464–481.

Proposition 1.2 If a finite projective plane of order n has a proper subplane of order m then n = m2 or n ≥
m2 + m.

A subplane of order m of a projective plane of order m2 is called a Baer subplane. It has the remarkable
property that every point of the plane is incident with some line of the subplane and every line of the plane is
incident with some point of the subplane. Combinatorics shows that a line in the Baer subplane meets the Baer
subplane in m + 1 points, while a line not in the Baer subplane meets the Baer subplane in precisely one point. A
similar statement holds for the number of lines in the Baer subplane through a given point: this number is m + 1
if the point lies in the Baer subplane, 1 if not.

An example of a subplane can be obtained in a desarguesian plane PG(2, F ) by taking points and lines whose
coordinates lie in some subfield K of F . Such a subplane is usually called a subfield subplane (another frequent
terminology is subplane in canonical position). In the finite case we have F = GF (pe) and K = GF (pd) for some
divisor d of e and so the subfield subplane will be a Baer subplane if and only if e = 2d.

2 A review of permutation groups and sets

Some textbooks dealing specifically with permutation groups:

– H. Wielandt, Finite permutation groups, Academic Press, New York 1964.

– D.S. Passman, Permutation groups, Benjamin, New York 1968.

– N.L. Biggs, A.T. White, Permutation Groups and Combinatorial Structures, Cambridge Univ. Press, Cambridge
1979.

– J.D. Dixon, B. Mortimer, Permutation Groups, Springer, Berlin 1996.

Some textbooks on group theory with sections devoted to permutation groups:

– M. Hall, The Theory of Groups, Macmillan, New York 1959.

– B. Huppert, Endliche Gruppen I, Springer, Berlin 1967.

– J.S. Rose, A course on group theory, Cambridge Univ. Press, Cambridge 1978.

In Italian:

– A. Mach̀ı, Introduzione alla teoria dei gruppi, Feltrinelli.

– G. Zappa, Fondamenti di teoria dei Gruppi, Cremonese, Roma I 1965, II 1970.

If X is a finite set of cardinality n we shall denote by Sym(X) or Sym(n) or Sn the full symmetric group of
degree n, that is the group of all permutations on X. We shall denote by Alt(X) or Alt(n) or An the alternating
group of degree n, that is the group of all even permutations on X. Note that n here might have nothing to do
with the order of a finite projective plane.

We shall call a permutation set of degree n an arbitrary subset G of Sn. If the subset is a subgroup then
we shall speak of a permutation group of degree n.

Besides the functional notation, I shall often use the exponential notation for permutations, which means if g
is a permutation on Ω and x is an element of Ω I denote by xg the image element of x under g. The choice of
notation will be evident from the context or it will be set by some explicit remark.
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2.1 Actions

Let X be a set and let G be a group. We shall say that G acts or operates on X if a mapping µ : X ×G → X is
defined, for which we shall write xg instead of µ

(
(x, g)

)
, satisfying the following properties:

1) xgh = (xg)h, for all x ∈ X, g, h ∈ G;

2) x1 = x, for all x ∈ X (where 1 denotes the identity element of G).

Proposition 2.1 Let G be a group acting on the set X. For each element g ∈ G the mapping ϕg : X → X, x 7→ xg

is a permutation on X. The mapping ϕ : G → Sym(X), g 7→ ϕg is a group homomorphism. It is sometimes called
the permutation representation of G on X or the representation of G as a permutation group on X.

In order to define an action of a group G on a set X it is sufficient to know the homomorphism ϕ, in which
case xg is defined as xϕg . Therefore the study of the actions of a given group on a given set essentially amounts to
the study of the homomorphisms mapping that group to the full symmetric group on the given set.

2.2 Notation and some definitions

The kernel of the homomorphism ϕ is called the kernel of the representation and is sometimes denoted by G(X).
The quotient group GX = G/G(X), which is isomorphic to a subgroup of Sym(X), is called the group induced by
G on X. If the kernel of the representation ϕ is trivial then we say that G acts faithfully on X or that the action
of G on X is faithful. In such case ϕ is an isomorphism and G turns out to be isomorphic to a permutation group
on X.

We say that the action of G on X is transitive or that G is transitive on X if whenever x, y are (not
necessarily distinct) elements of X there exist a group element g ∈ G with xg = y. More generally we define the
G–orbit of x to be the set

orbG(x) = {xg ; g ∈ G}.

The orbits of the group G on X form a partition of the set X. A transitive group G on X is said to be regular if
whenever x and y are in X there exists a unique group element g in G with xg = y.

Example a). The general linear group G = GL(d, F ) consists of all non–singular d × d square matrices with
entries in the field F . The group G acts on the set X of all non–zero vectors in F d.

Example b). The group G also acts on the set Y consisting of all 1–dimensional vector subspaces of F d. We have
that G(Y ) is the subgroup of scalar matrices, (matrices of type λId with λ ∈ F ∗. We have thus GY = PGL(d, F ).

Example c). Let G be a group, let H be a subgroup of G (we write H ≤ G). Let Ω = (G : H) be the set of all
right cosets of H in G. The action of G on (G : H) by right multiplication is defined by µ

(
(Hx, g)

)
= Hxg.

Example d). Let X be a set of cardinality 10. Let G be the subgroup of S10 preserving the Petersen graph on
the vertex–set X. The group G is isomorphic to S5 in its action on the set of all 2–element subsets of {1, 2, 3, 4, 5}.
This action is faithful.

Example e). Each group can be regarded as a regular permutation group on itself: ϕg : G → G, x 7→ xg. The
representation ϕ is known as the right regular Cayley representation. This theorem shows that the whole theory
of groups can in principle be embodied into the theory of permutation groups.

Example f). A group G acts on itself by conjugation: for any elements x, g in G define xg = g−1xg. The orbits
in this action are the conjugacy classes of elements of G. For example two elements of Sym(n) are conjugate if
and only if their decomposition into disjoint cycles has the same shape. Quite similarly G acts on the set of its
subgroups by conjugation: if H ≤ G and g is an element of G we define Hg = g−1Hg. The orbits of this action
are the conjugacy classes of subgroups G.
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2.3 Stabilizers

The subgroup Gx = {g ∈ G; xg = x} ≤ G is called the stabilizer of the element x in G.

Proposition 2.2 i) If y = xg then Gy = g−1Gxg. ii) If the group G is transitive on X then

G(X) = ∩ Gy

y∈X

= ∩ g−1Gxg

g∈G

is the largest subgroup of Gx which is normal in G.

A transitive group is regular if and only if the stabilizer Gx of one element is reduced to the identity.

Proposition 2.3 (Lagrange). |orbG(x)| = |G : Gx|.
Proof. It is sufficient to observe that xg = xh implies gh−1 ∈ Gx, that is g and h lie in one and the same right
coset of Gx in G. 2

If the group G acts on X and Y is a subset of X then we define Y g = {yg ; y ∈ Y }. The setwise stabilizer
of Y in G to be the subgroup of G consisting of all group elements g such that Y g = Y holds. The elementwise
(or pointwise) stabilizer of Y in G is defined to be the subgroup of G consisting of all group elements g such
that yg = y holds for each element y ∈ Y . We sometimes denote by G{Y } and G(Y ) the setwise and elementwise
stabilizer of Y in G respectively. If Y = {y1, . . . , yr} we shall also denote by Gy1...yr the elementwise stabilizer of
Y in G.

A group G is said to act semiregularly on X if the stabilizer Gx reduces to the identity for each x ∈ X. In
the finite case Lagrange’s theorem shows that if G acts semiregularly on X then all G–orbits on X have the same
length and this length is equal to the group order |G|, which is thus a divisor of |X|.

2.4 Comparison of actions

Suppose that a given group G acts simultaneously on the set Γ and on the set Σ. These actions are said to be
isomorphic if there exists a bijective mapping ϕ : Γ → Σ such that the relation

ϕ(xg) = (ϕ(x))g

holds for x in Γ. Note that xg is an element of Γ, while ϕ(x) is an element of Σ. Note further that Gx = Gϕ(x).

Proposition 2.4 If G acts transitively on X and x ∈ X then the actions of G on X and of G on (G : Gx) are
isomorphic.

Proof. Define ϕ : (G : Gx) → X, Gxg 7→ xg. This is a well defined bijective mapping. It yields an isomorphism
of actions because the relation ϕ

(
(Gxh)g

)
= ϕ(Gxhg) = xhg = (xh)g =

(
ϕ(Gxh)

)g holds. 2

Proposition 2.5 If H,K < G, then the actions of G on (G : H) and on (G : K) are isomorphic if and only if the
subgroups H and K are conjugate in G.

Proof. The actions in question are transitive. In each such action the stabilizers are thus conjugate. The stabilizer
of the coset Hx in the action of G on (G : H) by right multiplication is the subgroup x−1Hx. The stabilizer of the
coset Kx in the action of G on (G : K) by right multiplication is the subgroup x−1Kx.

If the two actions are isomorphic and ϕ : (G : H) → (G : K) realizes the isomorphism then the stabilizer
of Hx is equal to the stabilizer of ϕ(Hx) = Ky, that is x−1Hx = y−1Ky. From that, we obtain the relation
K = (xy−1)−1H(xy−1).

Suppose conversely that K = g−1Hg holds for some element g in G. Define ϕ : (G : H) → (G : K),
Hx 7→ Kg−1x. It is verified that ϕ yields an isomorphism betweeen the two actions. 2

Example d) revisited. Set G = S5 and let Ω be the set of all transpositions in S5; the group G acts on Ω by
conjugation. The stabilizer of the transposition (12) in this action is its centralizer (the subgroup consisting of all
permutations commuting with the given transposition): this stabilizer is isomorphic to the direct product S2×S3.
Hence this action can equivalently be seen on (S5 : S2 × S3) or on the set of all 2–element subsets of a set of
cardinality five. In order to obtain the Petersen graph, we join two transpositions by an edge if and only if they
commute.

Let the group G act on Γ, let the group H act on Σ. We shall say that the two actions are similar if there
exists a bijective map ϕ : Γ → Σ and a group isomorphism ψ : G → H such that the relation ϕ(xg) = (ϕ(x))(ψ(g))

holds for x in Γ.
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Example g). Set G = GL(d, F ) = H. Let Γ be the set of all 1–dimensional vector subspaces of F d. Let Σ be
the set of all hyperplanes, that is the set of all (d− 1)–dimensional vector subspaces of F d. The natural actions of
G on Γ and of H on Σ are similar, if one defines, with the obvious meaning of symbols,

ϕ : Γ → Σ, (a1, . . . , ad) → [a1, . . . , ad], ψ : G → H, A → (At)−1.

For d > 2 these actions are not isomorphic.

Example h). The subgroups G, H of Sym(X) are conjugate in Sym(X) if and only if the actions of G and H
on X are similar.

2.5 Applications of the concept of group action to the Theory of Groups

Perhaps the most famous of all such applications is the following famous property of finite groups

Proposition 2.6 (Sylow’s Theorem). Let G be a finite group with |G| = pmr where p is a prime, m ≥ 0 and r is
a positive integer which is not divisible by p.

(a) The group G admits a subgroup of order pm. Such a subgroup is called a Sylow p–subgroup of G.
(b) If H is a Sylow p–subgroup of G and J is a p–subgroup of G then we have J ≤ Hg = g−1Hg for a suitable

g ∈ G. In particular, any two Sylow p–subgroups are conjugate in G.
(c) Denoting by Sp the set of all Sylow p–subgroups of G and setting n = |Sp| we have n = |G : NG(H)|, n is a

divisor of r and the relation n ≡ 1 mod p holds (here NG(H) denotes the normalizer of H in G).

Proof. The proof by H. Wielandt can be found for example in the textbooks by Huppert or Rose. 2

2.6 Multiple transitivity and primitivity

Let k be an integer with k ≤ |X|. We shall say that the group G acts k–transitively on X if whenever (x1, x2, . . . , xk),
(y1, y2, . . . , yk) are k–tuples of distinct elements of X there exists a group element g ∈ G such that the relation
xg

i = yi holds for i = 1, 2, . . . , k.
Note that 1–transitivity is the same as transitivity. Furthermore, k–transitivity implies (k − 1)–transitivity for

k ≥ 2.
A group G acting k–transitively on X is said to act sharply k–transitively on X if the group element g subject

to xg
i = yi for i = 1, 2, . . . , k is not only assumed to exist but it is also assumed to be unique. It is immediately

seen that this request is equivalent to the assumption that the elementwise stabilizer of any k distinct elements
reduces to the identity.

Sharp 1–transitivity is the same as regularity.
Let G be a group acting on X and let ∆ be a subset of X. For g ∈ G we define ∆g = {xg ; g ∈ G}. We shall

say that ∆ is a block of imprimitivity (or simply a block) for G on X if for each g ∈ G we either have ∆g = ∆
or ∆g ∩∆ = ∅.

Let G be a transitive on X. If ∆ is a block of imprimitivity for G on X then the family F = {∆g ; g ∈ G} is
a partition of X. It is fairly easy to see that G acts on F , in other words F is a G–invariant partition of X. If,
conversely, a G–invariant partition is assigned, then its members are blocks of imprimitivity for G on X. That is
the reason why such a G–invariant partition is called a system of blocks of imprimitivity for G on X. For
a transitive group G it is thus essentially equivalent to assign a single block of imprimitivity or a full system of
blocks of imprimitivity.

A group acting transitively on X always admits two systems of blocks of imprimitivity, the one consisting of the
single block X and the one consisting of all singletons {x} as x varies in X. These are called the trivial systems
of blocks of imprimitivity.

Let the group G act transitively on X. We say that G acts primitively on X if the unique systems of blocks
of imprimitivity for G on X are the trivial ones. A transitive group is primitive if and only if the stabilizer of one
element is a maximal subgroup.

Proposition 2.7 If G is 2–transitive on X then G is primitive.

Proof. Let Γ be a block with |Γ| ≥ 2. Let x, y ∈ Γ, x 6= y. For each u ∈ X there exists h ∈ G with xh = x,
yh = u. Hence x ∈ Γh ∩ Γ, Γh = Γ, u ∈ Γh = Γ, X ⊆ Γ. 2

Proposition 2.8 Let G be a group acting transitively on X. We have that G is k–transitive on X if and only if
Gx is (k − 1)–transitive on X \ {x}.
Proposition 2.9 If G is k–transitive on X then n(n − 1) . . . (n − k + 1) is a divisor of |G| and the equality
|G| = n(n− 1) . . . (n− k + 1) holds if and only if G is sharply k–transitive on X.
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Example i). Sn is sharply n–transitive on {1, 2, . . . , n}.

Example ii). An is sharply (n− 2)–transitive on {1, 2, . . . , n}.

Example iii). PGL(2, F ) is 3–transitive but not 4–transitive (except for |F | = 3). The 3–transitivity is sharp.

Example iv). PGL(d, F ) is 2–transitive but not 3–transitive if d > 2, since it cannot map a triple of collinear
points to a triple of non–collinear points.

A normal subgroup of a group G containing no proper subgroup which is normal in G is called a minimal
normal subgroup of G. The following result goes back to W. Burnside, Theory of groups of finite order, Cambridge
Univ. Press, Cambridge 1911, p.202:

Proposition 2.10 A 2–transitive group has a unique minimal normal subgroup, which is elementary abelian or
simple.

The statement of Burnside’s theorem is sufficient to explain the interest in simple groups. As a matter of fact
the classification of finite simple groups has produced, among other important consequences, a classification of
finite primitive permutation groups, the so called O’Nan–Scott theorem. A proof of this result is presented in the
paper by M.W. Liebeck, C. Praeger, J. Saxl, On the O’Nan–Scott theorem for finite primitive permutation groups,
Journal of the Australian Mathematical Society 44 (1988) 389–396. I also refer to the paper P.J. Cameron, Finite
permutation groups and finite simple groups, Bulletin of the London Mathematical Society 13 (1981) 1–22 for a
more thorough account of the role of simple groups.

We conclude with a property which will be useful later on.

Proposition 2.11 Let H be a permutation group on a finite set X and assume that there exists a prime p such
that for each x ∈ X there is an element of order p in H fixing x and no other element of X. Then H is transitive
on X.

Proof. Assume Y and Z are distinct orbits of H on X. Pick an element y ∈ Y : since there exists a permutation
in H fixing y and permuting all other elements of X into cycles of length p, we see that p divides both |Y | − 1 and
|Z|. Taking an element z ∈ Z instead and repeating the same argument, we see that p divides |Y | and |Z| − 1, a
contradiction. There is thus just one H–orbit,that is X itself. 2

3 Collineation groups: some classics and the role of perspectivities

A collineation of a projective plane π is simply an automorphism of π. The action of a collineation is faithful on
the point–set of π (it is also faithful on the line–set of π) and so I shall usually identify a collineation with the
permutation it induces on the point–set of π. Here is a quick review of some elementary but important properties
of collineations.

Proposition 3.1 A collineation in a (not necessarily finite) projective plane π fixing every point on each of two
distinct lines is the identical collineation.

Proof. Let `1 and `2 be the pointwise fixed lines and let Q be their common point. Let P be a point off `1 and
`2. Consider two distinct points A1 and B1 on `1 other than Q. Let the line PA1 meet `2 in A2. Let the line
PB1 meet `2 in B2. Since A1 and A2 are distinct fixed points on the line PA1, we have that this line is fixed and,
similarly, the line PB1 is fixed. The point P is the common point of two distinct fixed lines and so it is itself a
fixed point. 2

Proposition 3.2 A collineation in a (not necessarily finite) projective plane π fixing every point on one line and
two further points off the line is the identical collineation.

Proof. The same argument of the previous proof shows that each point off the pointwise fixed line and off the
line joining the two extra fixed points is itself a fixed point. So there must be a further line which is pointwise fixed
and we are back to the case of the previous proposition. 2
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3.1 Perspectivities

An axial collineation is one fixing each point of a line `, called the axis. A central collineation is one fixing each
line through a point C, called the center.

Proposition 3.3 Each axial collineation is central. Each central collineation is axial. The fixed points of a non–
identical central collineation are the center itself and all points on the axis, while the fixed lines are the axis and
all lines through the center. A central collineation g is completely determined by its center C, its axis ` and the
mapping P 7→ P g of any point P not on ` and different from C.

Proof. Let g be a non–identical axial collineation with axis `. If g fixes a point C off the axis `, then each line
though C is fixed, since it contains two distinct fixed points, namely C and the point of intersection with `. Hence
C is the center of g in this case.

Assume g fixes no point off the line `. Consider an arbitrary point P off the line `. The point P g is distinct
from P . The line a joining P to P g meets ` at a fixed point A and we have thus a = AP = AP g = AgP g = ag.
Hence every point P off the axis lies on a fixed line. Should two such fixed lines meet off the axis `, then their
common point would be a fixed point off the axis, contradicting our assumption. Hence any two fixed lines meet
in one and the same point of the axis which is thus the center of g.

We have proved that a collineation with an axis must also have a center. The dual argument shows that each
central collineation is axial. The statement on fixed points and fixed lines is an immediate consequence of the two
previous propositions.

It is immediately seen that if two central collineations have distinct centers then they have distinct actions on
at least one point off the axes and off the line joining the centers. Similarly, two axial collineations with distinct
axes have distinct actions on at least one line.

Assume g and h are central collineations with the same center C and the same axis `. If there exists a point P
distinct from the center and off the axis with P g = Ph, then the collineation gh−1 fixes each point on `, each line
through C and the point P , and so gh−1 is the identity. 2

A perspectivity is a central collineation. Since a central collineation is also an axial collineation, it turns out
that the terms perspectivity, central collineation and axial collineation are synonymous. We shall speak for short of
a C–` perspectivity to mean a perspectivity with center C and axis `. We distinguish further between a homology
when the center lies off the axis and an elation when the center is on the axis.

The fixed points of a non–identical perspectivity are the center itself and all points on the axis; the fixed lines
are the axis and all lines through the center. A perspectivity acts thus semiregularly on the points of each line
through the center other than the center itself and the point of intersection of the line with the axes (dually: on
the lines of each pencil through a point of the axis other than the axis itself and the line of the pencil through the
center). The case of a perspectivity of order 2 will be of special interest and we record it as a separate statement.

Proposition 3.4 A perspectivity of order 2 of a finite projective plane is an elation or a homology according as
the order of the plane is even or odd respectively. 2

The set of all collineations of π with given center or with given axis or with given center and axis clearly forms
a group. More generally, for a given collineation group G of π one can consider the subgroups of G consisting of
all perspectivities with given center C or with given axis ` or with center C and axis `: these subgroups will be
denoted by G(C), G(`) and G(C, `) respectively.

Proposition 3.5 Let A and B be distinct points on a line `. Let g be a non–identical A–` elation. Let h be a
non–identical B–` elation. The product gh is an elation with axis ` whose center C is different from both A and
B.

Proof. Clearly gh is an axial collineation with axis `. In order to see that gh is an elation we must show it does
not fix any point off the axis `. Let P be one such point and assume P gh = P . Then P g = Ph−1

, the points A, P ,
P g are collinear and so are the points B, P , Ph−1

. Since P 6= P g and P 6= Ph−1
the relation P g = Ph−1

forces
A = B, a contradiction. Hence f = gh is an elation with axis `.

Let C denote the center of f . If C = A then h = g−1f should also be an elation with center A, a contradiction.
Similarly we cannot have C = B and the assertion is proved. 2

3.2 Local versus global properties

Given a point C and a line ` we say that the plane π is C–` transitive if for any pair of distinct points P and Q
which are collinear with C and not on ` there exists a C–` perspectivity mapping P to Q.

It is known that the existence of central collineations is related to the validity of special instances of Desargues’
theorem.
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Proposition 3.6 A plane π is C–` transitive if and only if the Theorem of Desargues holds for all triangles which
are perspective with respect to C and having two pairs of corresponding sides intersect on `, whence the third pair
also intersect on `.

Proof. A thorough discussion can be found in §20.2 of M. Hall, The Theory of Groups, Macmillan, New York
1959. 2

The detailed analysis of the “configuration” formed by the point–line pairs (C, `) for which the plane π is C–`
transitive is the essence of the so called Lenz–Barlotti classification that was mentioned in lecture 1. A projective
plane is said to be desarguesian if the theorem of Desargues holds universally. In view of the previous result a
projective plane is desarguesian if and only if it is C–` transitive for each possible point–line pair (C, `). In the
language of the Lenz–Barlotti classification such a plane is of Lenz–Barlotti type VII.2, the highest possible.

A line ` of π such that for each point P on ` the plane π is P–` transitive is said to be a translation line and
π is said to be a translation plane with respect to `. In this case every conceivable elation with axis ` actually
exists.

Proposition 3.7 A sufficient condition for a line ` to be a translation line for the plane π is that π be A–`
transitive and B–` transitive for two distinct points A, B on `.

Proof. Let P , Q be distinct points off the line ` such that the line PQ meets ` at a point C which is different
from both A and B. Let the lines AP and BQ meet at a point R. Let g be the A–` elation mapping P to R; let h
be the B–` elation mapping R to Q. Then gh is an elation with axis ` such that P gh = Rh = Q holds, and so the
center of gh is C. We have proved that π is C–` transitive. 2

Translation planes form a chapter of their own in the theory of finite planes. They can be studied from different
points of view. The most famous textbook on this subject is perhaps H. Lüneburg, Translation planes, Springer,
Berlin, 1980. The most recent treatment is probably that by M. Biliotti, V. Jha, N.L. Johnson, Foundations of
Translation Planes, Dekker, New York, 2001.

Proposition 3.8 (Baer). Let G be a collineation group of π. If for two distinct centers A and B on ` the groups
G(A, `) and G(B, `) are non–trivial, then the subgroup T consisting of all elations with axis ` in G is elementary
abelian.

Proof. Take non–identical elations g ∈ G(A, `) and h ∈ G(B, `) and let P be a point not on `. The points A,
P , P g are on a line a, the points B, P , Ph are on a line b. The points A, Ph, Phg are also on a line a′ and the
points B, P g, P gh are on a line b′. We have a′ = ah and b′ = bg, hence the common point of a′ and b′ must be
simultaneously equal to Phg and to P gh. We conclude that Phg = P gh holds for each point P off the line `. Since
the relation also holds for all points on `, we have hg = gh.

We have proved that g commutes elementwise with each group G(C, `) whenever C is a point on ` different
from A. Let g′ be a non–identical collineation in G(A, `) with g′ 6= g. We know from Proposition 3.5 that g′h is
a C–` elation for some center C which is different from both A and B. As before we must have g(g′h) = (g′h)g,
whence also (gg′)h = g(g′h) = (g′h)g = g′(hg) = g′(gh) = (g′g)h, that is (gg′)h = (g′g)h, yielding gg′ = g′g. We
have proved that any two elations with axis ` in G commute and so T is abelian.

As a non–trivial finite group T contains some element g of prime order p. Assume g is an A–` elation. Let
h be a non–identical B–` elation in G with B 6= A. Then gh is a C–` elation in G with C 6= A,B. We have
(gh)p = gphp = hp. Since (gh)p ∈ G(C, `), hp ∈ G(B, `) and these subgroups have only the identity in common,
we see that hp is the identity.

Hence the fact that g has order p implies that every non–trivial elation in G with axis ` and center different
from A has order p. Similarly, the fact that h has order p implies that every non–trivial elation in G(A, `) has
order p.

We have proved that T is an abelian group in which every non–trivial element has order p, that means T is an
elementary abelian p–group. 2

3.3 Involutions and Baer collineations

Consider a plane π of square order n admitting a Baer subplane. A Baer collineation g of π is a collineation
fixing a Baer subplane π0 elementwise (pointwise and linewise). An involution (collineation of order 2) which is a
Baer collineation is called a Baer involution.

Proposition 3.9 (Baer). Let g be an involution of a finite projective plane π of order n. Then either n is a square
and g is a Baer involution or g is a perspectivity.
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Proof. Assume the point P is not fixed by g. Then P and P g are distinct points which are exchanged by g, and
so the line joining them is a line through P which is fixed by g.

Assume the point P is fixed by g. Let Q be another point and assume the line ` = PQ is not fixed by g. Then
the point Qg is not on ` and we have `g = PQg. Take a point R on ` other than P , Q. The point Rg is on `g and
is distinct from P and Qg. The lines RQg and QRg are exchanged by g and their common point S is distinct from
P and is fixed from g. The line joining S to P is a line through P which is fixed by g.

We have proved that each point lies on a fixed line. Dually, each line contains a fixed point. Assume there
exists a quadrangle of fixed elements; then the fixed elements of g form a proper subplane π0 of π the order of
which we denote by m. The counting argument involved in the proof of Proposition 1.2 shows that if n > m2 then
there is a line of π missing π0. This possibility is excluded by the previous observation that each line of π must
contain a fixed point. We conclude that π0 is a Baer subplane and g is a Baer involution in this case.

Assume no quadrangle of fixed elements exists. We prove first of all that there is a line containing three fixed
points. Pick a line `1 and a fixed point P1 on `1. Choose a second line `2 not through P1 and let P2 be a fixed
point on `2. The line P1P2 is fixed. Choose a third point Q on P1P2. If Q is fixed then the line P1P2 has the
required property. If not, then a line `3 through Q other than P1P2 contains a fixed point P3 not on P1P2. Take a
line `4 not through any one of the points P1, P2, P3, and let P4 be a fixed point on `4. Since we are assuming that
no quadrangle of fixed elements exists, we see that P4 must lie on one of the sides of the triangle P1P2P3, and this
side is the line with the required property.

If ` is a line with three fixed points then there is at most one fixed point P off `, because otherwise a quadrangle
of fixed elements should exist. Take a point Q on `. Choose a line through Q other that ` itself and (possibly) PQ.
This line must contain a fixed point which, by our choice, must lie on `, hence it must be Q. We conclude that `
is pointwise fixed by g and the assertion follows. 2

3.4 Some characterizations of finite desarguesian planes in terms of collineations

A Moufang plane is a projective plane in which every line is a translation line. The coordinate structure of a
Moufang plane is an alternative division ring, that is a set with two binary operations (addition and multiplication)
satisfying the following properties: i) the additive structure is an abelian group; ii) both distributive laws hold; iii)
multiplication has an identity element and each non–zero element has a multiplicative inverse; iv) the identities
a−1(ab) = b = (ba)a−1 hold for each non–zero element a and arbitrary element b; v) the alternative laws a(ab) =
(aa)b, (ba)a = b(aa) hold for arbitrary elements a, b. The Artin–Zorn theorem states that in every finite alternative
division ring multiplication is associative and consequently each such ring is actually a finite field by the theorem
of Wedderburn. Each finite Moufang plane is therefore desarguesian.

The connection between projective and affine planes is assumed for the next property.

Proposition 3.10 Suppose that there exists a line ` of π such that for all points C on ` the groups of all C–`
elations have the same order r > 1. Then ` is a translation line for π.

Proof. For each point C on ` we define TC to be the group of all C–` elations; we denote by T the group of all
elations with axis `, that is T = ∪C∈`TC (this is is sometimes referred to as the translation group of π, or better, of
the affine plane obtained from π when ` is viewed as a line at infinity). If C1, C2 are distinct points on ` then the
subgroups TC1 , TC2 have only the identity in common. We have thus |T | = (n + 1)(r − 1) + 1. The group T acts
semiregularly off the line ` (in fact a non–identical elation fixes precisely the points of its axis). As a consequence
each T–orbit of points off the axis ` has length |T |, which is thus a divisor of n2, the number of “affine” points:
say n2 = [(n + 1)(r − 1) + 1]m for some positive integer m. Since r − 1 > 0 we have m < n. We also have n2 ≡ 1
mod n + 1 and if we interpret the equation n2 = [(n + 1)(r− 1) + 1]m modulo n + 1 we obtain n2 ≡ m mod n + 1.
The relation m ≡ 1 mod n + 1 with m < n yields m = 1, whence also |T | = n2, in other words T permutes the n2

“affine” points in a single orbit and the assertion follows. 2

Proposition 3.11 (Gleason’s theorem). If for any incident point–line pair (P, `) of π there exists a non–trivial
P–` elation, then π is desarguesian.

Proof. By a previous result if the line ` admits non–trivial elations for two distinct centers on `, then all elations
with axis ` form an elementary abelian p–group for some prime p. By the dual of this statement if the point P is the
center of non–trivial elations for two distinct lines through P , then the elations with center P form an elementary
abelian p–group (where p is the same prime as before). For any incident point–line pair (P, `) of π the group of all
P–` elations is an elementary abelian p–group.

Take a given line a of π and let A be an arbitrary point on A. Choose another line b through A and consider
a non–trivial A–b elation. This elation has order p and fixes the line a through its center: since A is the unique
fixed point on a, all other orbits have length p. By Proposition 2.11 the group of all collineations of π fixing a is
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transitive on the points of a. In particular, the groups of all C–a elations as C varies on a are all conjugate in this
group and have thus the same size r > 1. Proposition 3.10 shows that a is a translation line. Each line of π is thus
a translation line for π, hence π is a finite Moufang plane, therefore also a desarguesian plane. 2

Proposition 3.12 (the Ostrom–Wagner theorem). If π admits a collineation group G acting doubly transitively
on points, then π is desarguesian and G contains all elations of π, whence also PSL(3, n) (the subgroup generated
by all elations).

Proof. We only prove the first part of the statement under the further assumption that n is not a square. Since
every 2–transitive group has even order, we see that G contains an involution g. As the order of the plane is not a
square, we see that g cannot be a Baer involution and so it is an elation or a homology according as n is even or
odd. In the general case the proof must be modified by showing that in any case at least one involution in G is a
perspectivity.

We want to prove that if n is odd then G still contains elations. Let the involutory homology g have center C
and axis d; choose a point D on d and a point B off d, B 6= C. By 2–transitivity there exists a collineation f ∈ G
with Cf = C, Df = B. The involutory homology h = f−1gf has center C and axis df , a line through B hence
different from d. The collineation gh fixes each line through C and so it is a central collineation with center C.
Assume gh fixes a line t not through C. If tg 6= t then gh fixes the two distinct lines t and tg not through C, hence
gh is the identity, yielding g = h, a contradiction since g and h have distinct axes. Hence tg = t, showing that t is
the axis of both g and h, again a contradiction. We conclude that the central collineation gh fixes no line off the
center and so its axis is incident with the center, that is gh is an elation.

Consider an elation in G with center C and axis ` and let A be another point on `. By 2–transitivity G contains
a collineation j exchanging A and C. Then j fixes `. As a consequence the stabilizer of ` in G acts transitively
on the points of `, yielding in particular that the subgroups of G consisting of all elations with axis ` and center
in a given point P of ` have the same order r > 1. By Propostition 3.10 ` is a translation line for π. Since G is
2–transitive on points, G can map a given pair of points on ` onto any other pair, hence can map ` onto any other
line. Every line is thus a translation line and π is a Moufang plane. A finite Moufang plane is desarguesian as we
already observed. 2

We observe that the Ostrom–Wagner theorem has no analogue for finite affine planes: the Hering plane of order
27 is non–desarguesian and its full collineation group is doubly transitive on affine points, see p.236 in Dembowski’s
book.

What is known for projective planes if 2–transitivity is replaced by primitivity? I found some references in the
paper by F. Buekenhout, A. Delandtsheer, J. Doyen, Finite Linear Spaces with Flag–Transitive Groups, Journal
of Combinatorial Theory, Series A, 49 (1988) 268–291. Tim Penttila has suggested me to look at the paper by
W.M. Kantor Primitive permutation groups of odd degree, and an application to finite projective planes, Journal of
Algebra 106 (1987) 15–45. Indeed, Theorem B of that paper gives the relevant information.

Proposition 3.13 If a finite projective plane π of order n admits a collineation group G acting primitively on
points, then either π is desarguesian and G contains PSL(3, n) or n2 + n + 1 is a prime and G is a regular group
or a Frobenius group of order dividing (n2 + n + 1)(n + 1) or (n2 + n + 1)n.

It is interesting to read Bill Kantor’s comment on his own proof:

“The proof of the Ostrom–Wagner Theorem is both elegant and informative. By contrast, our proof of
Theorem B uses a sledgehammer approach, involving detailed properties of all finite simple groups. In
fact, the proof uses relatively little concerning projective planes.”

4 An exercise: a non–classical representation of a classical group

Let F be a (not necessarily finite) commutative field of characteristic 6= 2. We have seen in lecture 2 how the
projective general linear group PGL(d, F ) is defined. In case d = 2 the group PGL(2, F ) is often represented
as the group of all fractional linear transformations on the projective line PG(1, F ) = F ∪ {∞}. These are the
mappings

F ∪ {∞} → F ∪ {∞}, x 7→ ax + b

cx + d

where ad − bc 6= 0 and the usual conventions on dealing with 0 and ∞. This representation yields a sharply
3–transitive permutation representation on PG(1, F ).
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Consider a non–empty irreducible conic Ω in the projective plane PG(2, F ). We have that Ω consists of all
points (X0, X1, X2) satisfying an equation of the form

(
X0 X1 X2

) ·A ·



X0

X1

X2


 = 0

for a suitable 3× 3 matrix A with entries in F and det(A) 6= 0
By the fundamental theorem of projective geometry every collineation of PG(2, F ) is induced by a semilinear

transformation of the underlying vector space (see the textbook by D.R. Hughes, F.C. Piper, Projective Planes,
Springer, Berlin 1971), and so the full collineation group of PG(2, F ) is PΓL(3, F ). Here ‘3’ is the dimension of the
underlying vector space. The collineations which are induced by linear transformations of the underlying vector
space are called linear collineations, forming a normal subgroup PGL(3, F ) of PΓL(3, F ).

What is the setwise stabilizer of Ω in the linear and in the full collineation group of PG(2, F ) respectively?
Quoting from page 348 of F. Buekenhout, Étude intrinsèque des ovales, Rendiconti di Matematica e Applicazioni
(5), 25 (1966) 333–393:

“On sait que ce groupe est isomorphe à un groupe projectif à une dimension PGL2(K) [J. Dieudonné,
La géométrie des groupes classiques, Springer, Berlin 1955] et il est bien connu que le normalisateur d’un
tel groupe dans le groupe symétrique des permutations de la droite est le groupe PΓL2(K)”

Here we go with explicit calculations, see §II.7 in Hughes–Piper’s textbook.
The process of reducing a conic to its canonical form is probably still taught in most undergraduate courses

and so nobody should be surprised by the statement that an appropriate choice of coordinates yields for Ω the
equation

X0X2 = X2
1

or, equivalently, the matrix A can be chosen of the form



0 0 −1
0 2 0
−1 0 0


 .

We have Ω = {(1, t, t2); t ∈ F} ∪ {(0, 0, 1)}. For a, b, c, d in F we define the matrix

M =




d2 2dc c2

db da + cb ca
b2 2ba a2


 .

The relation det(M) = (ad − bc)3 shows that if ad − bc 6= 0 then M induces a linear collineation ϕ of PG(2, F ).
We assume that ϕ multiplies M by the column–vector representing a point and write the outcome as a row–vector.
We have thus

(1, t, t2)ϕ = ((d + ct)2, (d + ct)(b + at), (b + at)2)),
(0, 0, 1)ϕ = (c2, ca, a2),

and so ϕ fixes Ω inducing on it the fractional linear transformation

t 7→ at + b

ct + d
.

Hence if we let a, b, c, d vary on F subject to ad − bc 6= 0, we obtain a collineation group of PG(2, F ) which is
clearly isomorphic to PGL(2, F ). Since the quadratic character of (ad− bc)3 is the same as that of ad− bc we have
that the linear collineations induced by the matrices in which ad − bc is a square form a subgroup isomorphic to
PSL(2, F ).

The conic Ω is also clearly invariant under the collineation (X0, X1, X2) 7→ (Xσ
0 , Xσ

1 , Xσ
2 ) induced by an arbitrary

automorphism σ of the field F . We have

(1, t, t2) 7→ (1σ, tσ, (t2)σ) = (1, tσ, (tσ)2),
(0, 0, 1) 7→ (0σ, 0σ, 1σ) = (0, 0, 1).

If we add all these collineations as σ varies in Aut(F ), we obtain a representation of PΓL(2, F ) fixing the conic Ω.
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In the terminology of lecture 2 we have shown that the action of the setwise stabilizer on Ω is similar to the
natural action of PΓL(2, F ) on the projective line. Students attending seminars at the Università della Basilicata
were always confused by the fact that, whenever talking of the projective general linear group, Gábor Korchmáros
always drew a circle while I was drawing a straight line instead . . . !

Assume F is a finite field F = GF (q). The group PGL(d, F ) admits a cyclic collineation group acting transi-
tively on the points of PG(d − 1, F ). This group is a so called Singer cycle, named after J. Singer, A theorem
in finite projective geometry and some applications to number theory, Transactions of the American Mathematical
Society 43 (1938) 377–385. Abelian transitive permutation groups are regular (see for instance Corollary 5.3.1. in
M. Hall, The Theory of Groups, Macmillan, New York 1959) and consequently a Singer cycle is regular on the
corresponding geometry.

How do we see Singer cycles of PGL(2, F ) = PGL(2, q)? Let us restrict our attention to the case q odd. Let
ω be a non–square in GF (q) (for instance ω can be chosen to be a primitive element in GF (q)). A fairly standard
argument shows that the 2× 2 matrices

(
a b
ωb a

)

as a and b vary over GF (q) form a field under matrix addition and multiplication (the construction of complex
numbers from the reals is presented in this manner in several textbooks). This field is necessarily GF (q2) and so,
in particular, the non–zero matrices of this form (i.e. those for which a and b are not simultaneously zero) form
the multiplicative subgroup thereof, hence a cyclic subgroup of order q2 − 1.

We conclude that the group C of fractional linear transformations

x 7→ ax + b

ωbx + a

as a, b vary in GF (q), (a, b) 6= (0, 0) is cyclic of order q + 1 (get rid of scalar transformations occurring for b = 0).
The thorough study of subgroups of PGL(2, q) can be traced back to E.H. Moore at the end of the nineteenth

century. In the monumental monograph by L.E. Dickson (a life’s work according to J.C. Fisher) Linear groups
with an exposition of the Galois field theory, Teubner, Leipzig 1901, the proof that PSL(2, q) is a simple group
(when q 6= 2, 3) is obtained by inspecting the list of all subgroups of PSL(2, q) and their conjugacy classes.

Let me mention in passing that it has been cojuectured the a finite projective planes admitting a collineation
group acting transitively on points must be desarguesian. I think it was M. Hall in his paper Cyclic projective
planes, Duke Mathematical Journal 14 (1947) 1079–1090, who first stated this conjecture for cyclic groups. I refer
to §4.4 in Dembowski’s book for a wider treatment of this difficult topic.

5 Some recent results on collineation groups fixing an oval

The appearance of Beniamino Segre’s paper Ovals in a finite projective plane, Canadian Journal of Mathematics
7 (1955) 414–416, has given rise to a number of investigations aiming at characterizing “classical” objects (the
irreducible conics in this case) by their incidence properties.

A slightly different point of view is suggested by the property we have proved in lecture 4 that a conic in a
desarguesian finite projective plane (of odd order) is left invariant by a collineation group acting 2–transitively on
the points of the conic.

It was Judita Cofman in her paper Double transitivity in finite affine and projective planes, Proceedings of
the projective geometry conference, University of Illinois, Chicago, (1967) 16–19, who started investigating the
opposite direction. In other words, let π be a finite projective plane of odd order n with an oval Ω. Assume Ω
is left invariant by a collineation group G of π acting doubly transitively on the points of Ω. Is it possible to say
something on π and G? In fact she proved that if all involutions in G are homologies then π is desarguesian and
G contains PSL(2, n). On p.218 of his book, Dembowski conjectures that “the condition that all involutions in G
be central collineations is probably superfluous.”

William M. Kantor, in his paper On unitary polarities of finite projective planes, Canadian Journal of Mathe-
matics 23 (1971) 1060-1077, reached the same conclusion as Cofman under the weaker assumption that G contains
some involutory homologies.

Gábor Korchmáros confirmed Dembowski’s conjecture: in the paper Una proprietà gruppale delle involuzioni
planari che mutano in sè un’ovale di un piano proiettivo finito, Annali di Matematica Pura ed Applicata (4) 116
(1978) 185–205, he reached the same conclusion under the sole assumption of the 2–transitivity of G on Ω.

The story was only apparently over. The result in the next proposition was proved in the paper by M. Biliotti,
G. Korchmáros, Collineation groups which are primitive on an oval of a projective plane of odd order, Journal of
the London Mathematical Society (2) 33 (1986) 525–534.
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Proposition 5.1 Assume G acts primitively on the points of Ω. Then π is desarguesian, Ω is a conic and either
G contains a normal subgroup acting on the points of Ω as PSL(2, n) in its natural doubly transitive permutation
representation, or n = 9 and G acts on Ω as Alt(5) or Sym(5) in the primitive permutation representation of degree
10.

The proof of this result requires a very detailed analysis and quite a good deal of group theory, although the
underlying idea is quite easy to explain and involves the consideration of an elementary abelian 2–subgroup E of
G. The involutory homologies in E together with the identity form a subgroup V of E of order at most 4.

Proposition 5.2 Let π be a finite projective plane of odd order n with an oval Ω. If V is a Klein 4–group of
collineations of π fixing Ω, then V contains at least one involutory homology inducing an even permutation on Ω.

Proof. The proof requires an analysis of the behavior of possibly existing Baer involutions in V : that was done
by pure counting arguments in Propositions 2.2 and 2.3 of the quoted paper by Biliotti and Korchmáros.

A subgroup of V of index at most 2 must induce even permutations on Ω.
If n is a non–square then V contains no Baer involutions and the assertion is clear.
Assume n is a square with

√
n ≡ −1 mod 4. According to the quoted Propositions each Baer involution induces

an odd permutation on Ω in this case and so there must exist a homology in V .
Assume n is a square with

√
n ≡ 1 mod 4. If all collineations in V induce even permutations on Ω, then the

quoted Propositions yield that the three involutions in V cannot simultaneously be Baer involutions. Assume the
collineations in V inducing even permutations on Ω form a subgroup W of index 2 in V . If both involutions in
V \W are Baer involutions then the same Propositions show that their product is a homology inducing an even
permutation on Ω. Assume the involution f in W is a Baer involution, one of the involutions in V \W , say g, is
a homology and the other one is a Baer involution. Since n ≡ 1 mod 4 and g induces an odd permutation on Ω,
we see that the axis a of g must be disjoint from Ω. The homology f−1gf has axis af , but the relation f−1gf = g
yields af = a, and so a is a line of the fixed Baer subplane of f missing Ω. Since case ii) of Proposition 2.2 in the
paper by Biliotti and Korchmáros applies here we have a contradiction. 2

Going back to our original 2–group E, if V < E then the previous Proposition shows that the product of any
two collineations in E \ V (these are Baer involutions) must lie in V and so |E : V | = 2 and consequently the
relation |E| ≤ 8 = 23 holds.

In other words the conclusion is that 23 is the largest possible order of an elementary abelian 2–subgroup of G,
a property which is often expressed by saying that the 2–rank of G is at most 3.

The key idea in the proof of the result on primitive ovals is based on the consideration of a minimal normal
subgroup of the group G under consideration. Minimal normal subgroups have the important property of being
characteristically simple. A characteristically simple group is one in which the unique characteristic subgroups are
the trivial subgroup and the entire group. A finite characteristically simple group can be represented as the direct
product of finitely many pairwise isomorphic finite simple groups, hence either cyclic of prime order or non–abelian
simple.

Let M be a minimal normal subgroup of the group G in the statement of Proposition 5.1. As a non–trivial
normal subgroup of a primitive group, M must be transitive on the oval Ω. If M is the direct product of cyclic
groups of the same prime order, in other words if M is elementary abelian, then as a transitive abelian permutation
group on Ω, the group M must be regular on Ω. Since the cardinality of Ω is n + 1, an even number, we have that
M is an elementary abelian 2–group. By the 2–rank property the size of M must be 4 or 8, hence n must be 3 or 5,
in either case the plane π must be desarguesian and a direct verification is possible. If M is the direct product of
pairwise isomorphic non–abelian simple groups, then since each non–abelian finite simple group contains at least
two commuting involutions, hence a Klein 4–group, we have that if the number of pairwise isomorphic factors in
the direct product is greater than one, then the group M has 2–rank at least 4, which is impossible. We conclude
that the number of factors is just one, that is M is a non–abelian finite simple group. Since M itself leaves the
oval Ω invariant we also see that the 2–rank of M is at most 3.

The relevant fact is that non–abelian finite simple groups of 2–rank not exceeding 3 are classified by the work
of G. Stroth, Über Gruppen mit 2–Sylow Durchschnitten vom Rang ≤ 3, Journal of Algebra 43 (1976) 398–456.
The detailed analysis of Stroth’s fairly long list yielded not only the result on primitive ovals, but also further
developments like the following result, which is Theorem A in M. Biliotti, G. Korchmáros, Collineation groups
preserving an oval in a projective plane of odd order, Journal of the Australian Mathematical Society Series A 48
(1990) 156–170. It is quite satisfactory within our context.

Proposition 5.3 If π is a finite projective plane of odd order n with an oval Ω which is left invariant by a
non–abelian simple collineation group M , then M must be isomorphic to PSL(2, q) with q odd ≥ 5.
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A collineation group of a projective plane is said to be irreducible if it fixes no point, line or triangle of
the plane. If, further, the group fixes no proper subplane setwise then it is said to be strongly irreducible on
the plane. The possible structures and actions of irreducible collineation groups of finite projective planes were
investigated by Christoph Hering. His paper On the structure of finite collineation groups of projective planes,
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 49 (1977) 95–101, started a systematic
study of irreducible collineation groups of finite projective planes and eventually led to a satisfactory classification
theorem when the existence of non–trivial perspectivities is assumed.

Hering’s techniques and results played a crucial role in the quoted results by Biliotti, Korchmáros and many
others. For example M.R. Enea, G. Korchmáros and I, in our paper Irreducible Collineation Groups fixing an Oval,
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 69 (1999) 259–264, consider an oval in
a finite projective plane of odd order which is fixed by an irreducible collineation group whose order is divisible
by four. We show that such a group must contain involutory perspectivities. We apply Hering’s classification and
prove the following result.

Proposition 5.4 Let G be a collineation group of an odd–order finite projective plane π. Assume that G fixes an
oval Ω and |G| ≡ 0 mod 4. Then G is a minimal irreducible collineation group of π if and only if G is isomorphic
to PSL(2, q) for some odd prime q ≥ 5 with q2 6≡ 1 mod 5 (here “minimal” means G contains no proper subgroup
which is still irreducible).

Recent papers have treated interesting situations in which the collineation group under consideration is neither
transitive on the oval nor irreducible on the plane. M.R. Enea, G. Korchmáros, in their paper I–transitive ovals
in projective planes of odd order, Journal of Algebra 208 (1998) 604–618, have proved the following result.

Proposition 5.5 Let π be a finite projective plane of odd order n containing an oval Ω. Assume a collineation
group G of π fixes Ω and acts transitively on the set of internal points. Then one of the following situations occurs:

I) G acts doubly transitively on Ω;

II) G fixes a point X on Ω and acts on Ω \ {X} as a primitive permutation group of affine type. If, in addition,
each involution in G is an involutory homology, then G is 2–transitive on Ω \ {X} and one of the following
two possibilities occurs:

IIa) G is a subgroup of AΓL(1, n);

IIb) n ∈ {52, 72, 112, 232, 292, 592} and G acts on Ω \ {X} as a sharply 2–transitive permutation group of
affine linear transformations over an irregular nearfield of order n.

They also suggest the following

Exercise. Let π be a finite projective plane of odd order n containing an oval Ω and let G be a collineation group
of π fixing Ω. The group G acts transitively on the set of external points if and only if it acts 2–transitively on Ω.

The following solutions of the Exercise were worked out in Brescia during the Summer School. I recall that a
group G is said to act 2–homogeneously on a set X if it acts transitively on the 2–element–subsets of X.

Solution 1 (T. Penttila & M. Law). The group G is transitive on external points to Ω if and only if it is
2–homogeneous on the points of Ω.

• A finite sharply 2–homogeneous group H has odd order. If not there exists an invoution h ∈ H and if xh 6= x
we have that {x, xh} is stabilized by h.

• A finite 2–homogeneous group is transitive. Apply Block’s lemma: the incidence matrix of 1–sets versus
2–sets has rank the number of 1–sets.

• A finite sharply 2–homogeneous group has degree d ≡ 3 mod 4 (both d and
(
d
2

)
are odd).

• G is transitive on external points to Ω if and only if G is 2–transitive on Ω. (if G is transitive on external
points to Ω then, since G has even degree n + 1, it is not sharply 2–homogeneous, so it is 2–transitive on Ω;
the converse is clear)
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Solution 2 (A. Bonisoli). Assume G is transitive on external points. Then G is 2–homogeneous on Ω. I show
first of all that G is transitive on Ω. Consider the partition of Ω into 2–element subsets obtained by intersecting
Ω with the secants throuh a given internal point P , say Λ = {{R1, S1}, {R2, S2}, . . . , {R(n+1)/2, S(n+1)/2}}. For
i = 1, . . . , (n + 1)/2 there exists gi ∈ G with {R1, S1}gi = {Ri, Si} and we may assume the labelling to be such
that Rgi

1 = Ri, Sgi

1 = Si.
The points R1, R2, . . . , R(n+1)/2 lie thus in one and the same G–orbit and so do the points S1, S2, . . . , S(n+1)/2.

Since n is odd, n ≥ 3, we have (n + 1)/2 ≥ 2. There exists g ∈ G with {R1, R2}g = {S1, S2}. We conclude that R1

lies in the same G–orbit as either S1 or S2 and so all points R1, R2, . . . , R(n+1)/2, S1, S2, . . . , S(n+1)/2 lie in the
same G–orbit, in other words G is transitive on Ω. In particular n + 1 is a divisor of |G|.

Let O be an external point. We have |G| =
(
n+1

2

)|GO| whence 2|G|/(n + 1) = n|GO| and so 2 is an integer
dividing n|GO| and since n is odd we obtain that |GO| is even and so, in particular, GO contains involutions.

I claim that GO contains an involution exchanging R, S, the points at which the tangents through O touch Ω.
Let j be an involution in GO and assume Rj = R, Sj = S. The collineation j cannot fix Ω elementwise, otherwise
j is the identity because the action on Ω is faithful. Hence there are two points R′, S′ on Ω which are exchanged by
j. If O′ is the external point obtained as the intersection of the tangents to Ω at R′ and S′, then j is an involution
in GO′ exchanging the two tangents through O′. Since GO′ is conjugate to GO in G we see that we must be able
to find an involution in GO exchanging the two tangents through O.

All we are left to prove is that if X ∈ Ω, then GX is transitive on Ω \ {X} = {X1, X2, . . . , Xn}. We know
that for i = 1, 2, . . . , n there exists hi ∈ G with {X, X1}hi = {X, Xi}. If Xhi 6= X then choose an involution j

exchanging X, Xi and obtain Xhij = (Xhi)j = Xj
i = X, Xhij

1 = (Xhi
1 )j = Xj = Xi. We conclude that we can

map X1 to any other point of Ω \ {X} by a collineation in G fixing X, and so GX is transitive on Ω \ {X}.

The following result is proved in the paper by A. Aguglia and myself, Intransitive collineation groups of ovals
fixing a triangle, which has just been submitted for publication.

Proposition 5.6 Let π be a finite projective plane of odd order n containing an oval Ω. If a collineation group G
of π satisfies the properties

(a) G fixes Ω and the action of G on Ω yields precisely two orbits Ω1 and Ω2,

(b) G has even order and a faithful primitive action on Ω2,

(c) G fixes neither points nor lines but fixes a triangle ABC in which the points A, B, C are not on the oval Ω,

then n ∈ {7, 9, 27}, the orbit Ω2 has length 4 and G acts naturally on Ω2 as A4 or S4.

Each order n ∈ {7, 9, 27} does furnish at least one example for the above situation; the determination of the
planes and the groups which do occur is complete for n = 7, 9; the determination of the planes is possibly still
incomplete for n = 27.

Note the assumption of faithfulness in (b): a collineation group fixing an oval has a faithful action on the oval
itself. If this group has more than one orbit on the oval, then the action might no longer be faithful on the single
orbits.

6 Benz–geometries with many symmetries

The plane sections of a non–degenerate quadric Q in 3–dimensional projective space form the classical model of a
“circle” geometry called a Möbius, Laguerre or Minkowski plane, depending on whether Q is an elliptic quadric,
a quadratic cone or a hyperbolic quadric respectively. These models are also said to be “miquelian” because they
are characterized by the validity of Miquel’s configurational condition.

These geometries admit a unified axiomatic treatment and it is now customary to call them “Benz planes”
after Walter Benz, see F. Buekenhout, Les plans de Benz: une approche unifiée des plans de Moebius, Laguerre et
Minkowski, Journal of Geometry 17 (1981) 61–68.

Also for these geometries the approach based on automorphism groups has been pursued. Let us consider for
example Möbius planes, which are probably more commonly known as inversive planes: in the finite case they
are precisely the 3–(n2 + 1, n + 1, 1) designs for some positive integer n (called the order). The following result
was proved by C. Hering, Endliche zweifach transitive Möbiusebenen ungerader Ordnung, Archiv der Mathematik
18 (1967) 107–110.

Proposition 6.1 A finite inversive plane of odd order admitting an automorphism group acting doubly transitively
on points is necessarily miquelian.
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The same conclusion holds if “doubly transitively” is replaced by “primitively” in the above statement. This
my result in Point–primitive inversive planes of odd order, Bulletin of the London Mathematical Society 25 (1993)
377-384.

6.1 Permutation sets and (B)–geometries

Formally speaking, a permutation on X is a special subset of the cartesian product X × X, but it is sometimes
more convenient to use standard functional notation for permutations. Therefore if g is a permutation on X and
x, y are elements of X the relations (x, y) ∈ g and g(x) = y will have the same meaning and I shall use either one
of them according to convenience.

Let H be a permutation set X. For arbitrary elements x1, x2, . . . , xr ∈ X we denote by Hx1...xr the subset of
H consisting of all permutations fixing each one of the given elements. If x, y are distinct elements of X we denote
by H(y 7→ x) the subset of H consisting of all permutations mapping y to x. If g ∈ Sym(X) then Fix(g) is the set
of all fixed points of g.

Adopting the terminology of B. Polster, Invertible Sharply n–Transitive Sets, Journal of Combinatorial Theory,
Series A 81 (1998) 231–254, we shall say that the permutation set H on X is invertible if H contains the identity
and if whenever a permutation g lies in H then so does its inverse g−1. Every permutation group is clearly invertible.

Let d be a positive integer. A permutation set H on X is said to be sharply d–transitive on X if whenever
(x1, x2, . . . , xd) and (y1, y2, . . . , yd) are d–tuples of distinct elements of X there exists precisely one permutation
h ∈ H with h(xi) = yi for each index i = 1, 2, . . . , d. We have already remarked that for permutation groups this
definition is usually given by saying that H is d–transitive and the stabilizer of d elements reduces to the identity:
for general permutation sets the two formulations are NOT equivalent.

If H is a permutation set on X and f ∈ Sym(X) then we write Hf = {hf : h ∈ H} and fH = {fh : h ∈ H}.
If H is a sharply d–transitive permutation set on X which does not contain the identical permutation and h is any
fixed permutation in H, then the permutation set h−1H is sharply d–transitive on X and contains the identical
permutation. When dealing with sharply d–transitive permutation sets it can therefore always be assumed without
loss of generality that the identical permutation lies in the set.

It is precisely Minkowski planes which can be described by sharply 3–transitive permutation sets. That led to
the consideration of the geometric structure arising from an arbitrary permutation set H on X. This structure is
called a (B)–geometry by W. Benz in his monograph Vorlesungen über Geometrie der Algebren, Springer, Berlin
1973, and it can be described by a very simple set of axioms. Italian readers who are interested in a very detailed
description of the geometric aspects of sharply d–transitive permutation set are encouraged to get hold of Volume
III of B. Segre’s Istituzioni di Geometria Superiore, Istituto Matematico “G. Castelnuovo”, Roma, 1965. Pier
Vittorio Ceccherini was personally involved in the preparation of those lecture notes and he confirms that only a
limited number of copies were produced, mainly for library distribution. I must therefore be counted as one of the
lucky owners.

The (B)–geometry M(H) associated to the permutation set H on X is defined as follows. The points of
M(H) are the elements of the cartesian product X × X. The blocks (or circles) of M(H) are the elements of
H. We distinguish further subsets of X ×X, namely, if a is any element of X we define (a)+ = {(a, y)| y ∈ X},
(a)− = {(x, a)| x ∈ X}; we set L+ = {(a)+| a ∈ X}, L− = {(a)−|a ∈ X}, L = L+ ∪ L−; the elements of L+

resp. L− resp. L will be called positive generators resp. negative generators resp. generators. Point–block
incidence and point–generator incidence is simply given by ∈ in the natural way.

Each family of generators yields a partition of the point set of M(H) and thus an equivalence relation: if P , Q
are points of M(H) we define P‖+Q if and only if P and Q lie on the same positive generator (plus–parallelism);
we define P‖−Q if and only if P and Q lie on the same negative generator (minus–parallelism); we shall say
that P and Q are parallel and write P‖Q if there exists a generator to which both P and Q belong; otherwise we
shall say that P and Q are non–parallel or independent.

An easy check shows that for |X| ≥ 3 the incidence structure M(H) satisfies the following properties:

(1) to given points A, B there exists a unique point P such that A‖+P‖−B;

(2) if P is a point and g is a block there exist uniquely determined points P+, P− ∈ g such that P+‖+P‖−P−;

(3) there exist three pairwise non–parallel points.

The above properties (1), (2), (3) form the axiomatic definition of what W. Benz calls a (B)–geometry; he
also shows that each (B)–geometry can be described as the incidence structure M(H) associated to a suitable
permutation set H in the manner described above.

Under a (B)–geometry we shall thus always understand the incidence structure M(H) associated to a non–
empty permutation set H on a set X. Even without explicit mention, whenever we want to avoid trivial cases we
shall also assume |X| ≥ 3 which amounts to axiom (3).
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In the (B)–geometry M(H) the cardinality of each generator is equal to the cardinality of each block, which
is in turn equal to the cardinality of the set X on which the permutations in G operate; to each positive generator
and each negative generator there exists precisely one point belonging to both; the same happens for each generator
and each block.

If f , g are blocks of the (B)–geometry M(H) we shall say that f and g are i–secant if |f ∩ g| = i; in particular
we shall say that f and g are disjoint resp. tangent resp. secant blocks if they are 0–secant resp. 1–secant
resp. 2–secant; tangent blocks with P as common point will be said to be tangent at P . Further terminology of
common use in geometry will be adopted whenever convenient.

Both properties defined above for H, that of being invertible and that of being sharply d–transitive, can be
entirely phrased in geometric terms inside the corresponding (B)–geometry.

If h is any given permutation in H, the mapping

X ×X, (x, y) 7→ (h−1(y), h(x))

is called the block symmetry with respect to h. It is easily seen that it is an involutory permutation of X ×X
fixing the block h pointwise, that is fixing each point (x, h(x)). In general this block symmetry will NOT be an
automorphism of the (B)–geometry arising from H: as a matter of fact the image of the block f ∈ H is the
permutation hf−1h, which, without further conditions, is NOT an element of H in general. It will always be an
automorphism whenever H is a permutation group. If h is the identity permutation, the given mapping will be
an automorphism if and only if for any block f ∈ H the inverse permutation f−1 is also a block, which means
f−1 ∈ H, in other words, H is invertible. We have thus seen that the request that a permutation set be invertible
amounts to the request that, in the corresponding (B)–geometry the block–symmetry with respect to a specified
block is actually an automorphism.

Assume that P1 = (x1, y1), P2 = (x2, y2), . . . , Pd = (xd, yd), are points of the (B)–geometry. A necessary
condition for the existence of a block of the (B)–geometry containing all of these points is that these points be
pairwise independent. The sharp d–transitivity of the permutation set H on X amounts to the condition that for
any d pairwise independent points there exists a unique block of the (B)–geometry containing them.

The (B)–geometry arising from a sharply 2–transitive finite permutation set H is precisely a finite affine plane.
The unique little difference is that when an affine plane is treated as a (B)–geometry, there are two pencils of parallel
lines which play the somewhat special role of generators. According to Dembowski it was E. Witt in Section IV of
his paper Über Steinersche Systeme, Abhandlunhgen aus dem Mathematischen Seminar der Universität Hamburg
12 (1938) 265–275, who first pointed out the connection between finite affine planes and sharply 2–transitive sets
of permutations.

The (B)–geometry arising from a sharply 3–transitive finite permutation set H is a finite Minkowski plane.
Taking H to be PGL(2, q) we obtain a miquelian Minkowski plane, in other words we obtain the geometry of
plane sections of a hyperbolic quadric in PG(3, q). The “flocks” of such quadrics are classified by the result of
Laura Bader and Guglielmo Lunardon On the flocks of Q+(3, q), Geometriae Dedicata 29 (1989) 177–183. Nicola
Durante and Alessandro Siciliano give a new proof of that result in their paper (B)–geometries and flocks of
hyperbolic quadrics, which has been presented in a talk at the conference “Combinatorics 2002.” Their proof uses
concepts from (B)–geometry such as the so called “rectangle condition,” which has been used by W. Benz and H.
Karzel in various other contexts.

I am interested here in sharply d–transitive finite permutation sets with d ≥ 4. In the known examples, if such
a permutation set contains the identity it is always a group. In other words, by a previous observation, for d ≥ 4
the known examples for sharply d–transitive finite permutation sets are cosets of groups. Since sharply d–transitive
finite permutation groups are well classified, we know what we are talking about...!

Proposition 6.2 Each invertible sharply d–transitive finite permutation set with d ≥ 4 is a group.

Pasquale Quattrocchi and I proved this result in a paper with the same title in the Journal of Algebraic Combina-
torics 12 (2000) 239-248. I shall illustrate some of the ideas behind the proof and show how the computer comes
into play.

The corresponding property does not hold for d = 1. For each positive integer m a 1–factorization of the
complete graph on 2m vertices is known to exist and it can be represented by a sharply 1–transitive permutation
set of degree 2m consisting of the identity and 2m−1 fixed–point–free involutions (each 1–factor yields the involution
in which the edges of the 1–factor appear as 2–cycles); such a permutation set is clearly invertible but is certainly
not a group whenever m is not a power of 2, because a finite group in which each non–identical element has order
2 must be an elementary abelian 2–group.

The corresponding property does not hold for d = 2 either: in geometric terms that follows from the existence
of non–nearfield planes admitting involutory perspectivities. Whether it holds for d = 3 is still an open question
as far as I know. There do exist sharply 3–transitive finite permutation sets containing the identity which are not
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groups, but these examples are not invertible. Every finite Minkowski plane in which EACH block–symmetry is an
automorphism does arise from a sharply 3–transitive GROUP, as N. Percsy proved in his paper Finite Minkowski
Planes in which every circle symmetry is an automorphism, Geometriae Dedicata 10 (1981) 269–282. Here is the
formulation of the result in terms of permutations. Assume G is a sharply 3–transitive finite permutation set of
even degree containing the identity permutation and such that if f , g are permutations in G, then the permutation
fg−1f also lies in G. Then G is a group. The same conclusion holds under the weaker condition that fg−1f be in
G whenever f , g have at least two fixed points, as G. Korchmáros and I have shown in A Characterization of the
sharply 3–transitive finite permutation groups, European Journal of Combinatorics 11 (1990) 213–228.

Observe that if X is an arbitrary infinite set and d is an arbitrary positive integer, then there always exists
an invertible sharply d–transitive permutation set on X, which in general is not a group. That follows from the
constructions in the following papers, based on a suitable use of transfinite induction: W. Heise, K. Sörensen, Scharf
n–fach transitive Permutationsmengen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 144–145; P. Lancellotti, Una
nuova classe di insiemi di permutazioni strettamente n–transitivi, Atti Sem. Mat. Fis. Univ. Modena 30 (1981)
83–93.

I finally remark that, besides requiring the computer checks that I am going to describe, our proofs rely
essentially on the uniqueness of the sharply 3–transitive permutation sets of degree ten proved by G.F. Steinke
in A remark on Benz planes of order 9, Ars Combinatoria 34 (1992) 257–267. In turn, that ultimately rests on
the uniqueness of the projective planes of order nine, another computer result that C.W.H. Lam, G. Kolesowa, L.
Thiel illustrated in their paper A computer search for finite projective planes of order 9, Discrete Mathematics 92
(1991) 187–195.

7 Computer algebra packages may be of help

The first purpose of this lecture is to give yet another example of a typical use of the computer in solving problems
in discrete mathematics. Although each instance of such a problem generally involves finitely many elements, the
problem itself may have infinitely many instances, one for each value of some parameter, for instance the number
of vertices of a graph, or the number of points of a block of a design and so on. Sometimes the problem admits
a reduction to the consideration of finitely many special cases. The size of these special cases is often so large
that, if one does not have any other information, the computer turns out to be the best and sometimes unique
choice. Perhaps the most famous situation of this kind is the Four Color Theorem. Here I will present a proof of
Proposition 6.2.

The second purpose is to show that the use of computer packages like GAP or MAGMA can make life easier.
GAP (Groups, Algorithms, and Programming), is distributed free of charge by the GAP Group, previously in
Aachen (Germany) and currently in St. Andrews (United Kingdom). MAGMA is developed by the Computational
Algebra Group based at the University of Sydney and has platform–dependent licence fees. Both packages have
Web pages, from which download and installation informations for most platforms can be retrieved:

http://www-gap.dcs.st-and.ac.uk/~gap
http://magma.maths.usyd.edu.au/magma/

The syntax of these packages is quite close to the usual mathematical language and the fact that many useful “data
structures” (such as permutations) are already “built in” the language often reduce the work of the programmer
to just a few lines of code. I do know researchers who prefer to develop their own code, two examples that I am
personally aware of are Alan Prince using Fortran and Ivano Pinneri using Pascal.

Of course choices of software always depend on very personal habits. No matter what the choice is, I feel I can
recommend the golden rule that one learns in any basic course on computer programming: make your programs
intelligible to third parties, including yourselves.

7.1 The Mathieu group of degree 11

The proof of Proposition 6.2 moves its first step from the smallest case d = 4. Assume |X| ≥ 7 and let G be an
invertible sharply 4–transitive permutation set on X. It was proved by P. Quattrocchi, C. Fiori, in their paper A
result concerning the existence of certain Minkowski–2–structures, Journal of Geometry 14 (1980) 139–142, that
under these assumptions we must have |X| = 11: this is the reduction result that I was previously referring to.

Is G then necessarily a group, whence the Mathieu group of degree 11? Partial answers had been given
in two previous papers, both focusing attention on the involutions in G: A. Bonisoli, T. Grundhöfer, On the
uniqueness of the Minkowski 2–structure of order 9 possessing a reflection, Research Report, Modena, November
1987; P. Quattrocchi, G. Rinaldi, Insiemi di permutazioni strettamente 4–transitivi e gruppo di Mathieu M11,
Bollettino dell’Unione Matematica Italiana (7) 11–B (1997) 319–325.
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We shall now see that the answer to the previous question is affirmative under even milder assumptions. Setting
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} we assume that G is a sharply 4–transitive permutation set on X containing the
identical permutation. We have |Fix(gf−1)| ≤ 3 for any two distinct permutations f , g in G. In particular each
non–identical permutation in G has at most three fixed points.

We denote by M the Mathieu group of degree 11 in its sharply 4–transitive permutation representation. The
Mathieu group is uniquely determined up to permutation isomorphism: that is established for instance in §5.8 of
the book by M. Hall, The Theory of Groups, Macmillan, New York 1959. In other words, the sharply 4–transitive
subgroups of S11 form a single conjugacy class: we may take for M any specific version of the Mathieu group of
degree 11, I have chosen the one given by M. Hall, hence M will be the subgroup generated by the permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) (2, 5, 6, 10, 4)(3, 9, 11, 8, 7) (2, 6, 5, 4)(3, 7, 11, 8)

and I will denote the set of all involutions in M .
Let J be a subset of S11 with the following properties:

a1) |J | = 165;

a2) each permutation in J is an involution with three fixed points;

a3) I1 ⊆ J ;

a4) |Fix(ts)| ≤ 3 for any two distinct t, s ∈ J .

Proposition 7.1 There are precisely two subsets of S11 satisfying the above properties, namely the set I of all
involutions in M and a subset I∗ such that the subgroup 〈I∗〉 is conjugate to M in S11.

Proof. The fact that I satisfies properties a1), a2), a3), a4) follows easily from the property that M is a sharply
4–transitive permutation group of degree 11, see again §5.8 in M. Hall’s book.

The rest of the assertion has been verified by computer through the GAP program FIRST.G enclosed here
below. We summarize here the relevant steps.

Let T denote the set of all involutions in S11 with precisely three fixed points. The centralizer in S11 of an
involution in T is easily seen to have order 6 · 24 · 16 and so the cardinality of T is 17325.

Set I ′ = I \ I1 and define I ′′ = {h ∈ T \ I : |Fix(hj)| ≤ 3 for all j ∈ I1}. We have |I ′′| = 120 and the subgroup
of S11 generated by I∗ = I ′′ ∪ I1 is a conjugate M∗ of M in S11.

Form a graph Γ on the set of vertices V (Γ) = I ′ ∪ I ′′: two distinct involutions a, b ∈ I ′ ∪ I ′′ are declared to be
adjacent if and only if |Fix(ab)| > 3. That means a, b cannot sit together in a sharply 4–transitive permutation
set.

Since I ′ is a subset of M and M is sharply 4–transitive, we see that no two vertices in I ′ are adjacent and so I ′

is an independent subset of size 120 in Γ. Similarly, I ′′ is another independent subset of size 120 in Γ. In particular
Γ is a bipartite graph with bipartition {I ′, I ′′}. Now a candidate subset J with the required properties must be of
the form J = I1 ∪ J ′ where J ′ is an independent subset of size 120 in Γ.

The graph Γ is regular (of degree 16) and so the complement J ′′ = V (Γ) \ J ′ is also an independent subset of
size 120 in Γ. Clearly {J ′, J ′′} is a bipartition of Γ.

As the graph Γ is connected, it admits precisely one bipartition, which means {J ′, J ′′} = {I ′, I ′′} and the
assertion follows. 2

###################################################################################
# file "FIRST.G", a GAP program
###################################################################################
# Lines beginning with "#" are comments. It can either be loaded into GAP by a
# Read() command or the lines which are not comments can be typed in sequence
# directly from the keyboard
###################################################################################

S11:=SymmetricGroup(11);
a:=(1,2)(3,4)(5,6)(7,8);
T:=ConjugacyClass(S11,a);

###################################################################################
# We have constructed the full symmetric group S11 of degree 11 and the conjugacy
# class T of all involutions in S11 with 3 fixed points
###################################################################################

x:=(1,2,3,4,5,6,7,8,9,10,11);
y:=(2,5,6,10,4)(3,9,11,8,7);
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z:=(2,6,5,4)(3,7,11,8);
M:=Subgroup(S11,[x,y,z]);

###################################################################################
# The group M is a version of the Mathieu group of degree 11. This can be tested
# in many ways, for instance by checking that it is a non--abelian simple group of
# order 7920
###################################################################################

M_1:=Stabilizer(M,1);
M_12:=Stabilizer(M_1,2);
M_123:=Stabilizer(M_12,3);

###################################################################################
# M_1 is the stabilizer in M of the element 1;
# M_12 is the elementwise stabilizer in M of the set {1,2};
# M_123 is the elementwise stabilizer in M of the set {1,2,3}: it is a quaternion
# group of order 8
###################################################################################

for h in M_123 do
if Order(h)=2 then f:=h; break; fi;

od;
I:=ConjugacyClass(M,f);
I_1:=ConjugacyClass(M_1,f);

###################################################################################
# We have constructed the unique involution f in M_123, the subset I of all
# involutions in M and the subset I_1 of all involutions in M fixing the
# element 1
###################################################################################

IDASH:=Difference(I,I_1); IDDASH:=[];
for h in Difference(T,I) do

flag:=true;
for j in I_1 do

if NrMovedPointsPerm(h*j)<8 then
flag:=false; break;

fi;
od;
if (flag=true) then IDDASH:=Union(IDDASH,[h]); fi;

od;
###################################################################################
# We have constructed two subsets IDASH and IDDASH of S11, both consisting of
# involutions with precisely three fixed points: IDASH simply consists of the
# involutions in I which do not fix the element 1, while IDDASH consists of all
# involutions with three fixed points which are not in I and are "compatible"
# with each involution in I_1
###################################################################################

MSTAR:=Subgroup(S11,Union(I_1,IDDASH));
INVO:=Union(IDASH,IDDASH);
v:=Length(INVO);
A:=[];
for i1 in [1..v] do

A[i1]:=[];
for i2 in [1..v] do

k:=NrMovedPointsPerm(INVO[i1]*INVO[i2]);
if ((0<k) and (k<8)) then

A[i1][i2]:=1;
else

A[i1][i2]:=0;
fi;

od;
od;

###################################################################################
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# We have contructed the adjacency matrix A of the graph GAMMA having the union of
# IDASH and IDDASH as the set of vertices. Two vertices are declared to be
# adjacent if and only if the corresponding involutions are "incompatible"
###################################################################################

RequirePackage("grape");
###################################################################################
# The previous statement is the standard way to extend GAP by a so called
# "Share Package", in this case GRAPE developed by L.H. Soicher (QMW, University
# of London). This Share Package allows one to deal with graphs and their
# automorphisms
###################################################################################

GG:=Group( () );
GAMMA:=Graph(GG,[1..v],OnPoints,function(i1,i2)

return A[i1][i2]=1;end,true);
###################################################################################
# We have constructed the graph GAMMA on v vertices having the matrix A
# defined above as its adjacency matrix; a graph in GRAPE always comes with an
# automorphism group GG, but since we are not particularly interested in the
# automorphisms of our graph GAMMA we have defined GG to be the trivial group.
# We shall now test some graph-theoretical properties for GAMMA
###################################################################################

IsSimpleGraph(GAMMA);
###################################################################################
# GRAPE usually deals with directed graphs, which become simple as soon as their
# adjacency matrix is symmetric with zero’s on the main diagonal
###################################################################################

IsRegularGraph(GAMMA);
IsConnectedGraph(GAMMA);
IsBipartite(GAMMA);

###################################################################################
# The meaning of the properties is self-explanatory. They prove that the two sets
# IDASH and IDDASH form the UNIQUE bipartition for the graph GAMMA
###################################################################################

Runtime();
###################################################################################
# This command gives the amount of CPU time in milliseconds expired since the
# beginning of our GAP session. I obtained 1405100 milliseconds on a 32 bit
# Pentium Pro II under Windows 95 running GAP with 24 MBytes of RAM
###################################################################################

After such a proof of Proposition 7.1, Werner Heise will probably reinforce his belief that Pasquale Quattrocchi’s
electronic virginity is corrupted forever . . . !

Proposition 7.2 A sharply 3–transitive permutation set of degree 10 containing the identity is a group.

Proof. This result is the formulation in terms of permutation sets of the uniqueness of the Minkowski planes of
order 9 proved by G.F. Steinke in A remark on Benz planes of order 9, Ars Combinatoria 34 (1992) 257–267. 2

There are only two types of sharply 3–transitive groups of degree 10, namely PGL(2, 9) and another subgroup
of PΓL(2, 9) usually denoted by M(32). It is known that the group PGL(2, 9) cannot be a one–point–stabilizer in
a sharply 4–transitive permutation set of degree 10. Hence Gx is isomorphic to M(32) and admits thus a transitive
extension which is precisely the Mathieu group.

In other words we have that for each x ∈ X the stabilizer Gx is a conjugate of Mx in S11. After possibly
replacing G by a suitable conjugate hGh−1 in S11, we may assume G1 = M1.

Let J denote the set of involutions in G. We have that J is the union of the sets Jx as x varies in X. In
particular J 6= ∅; since each involution in Gx has two fixed points on X \ {x}, every involution in J has precisely
three fixed points on X.

The stabilizer of two points in Gx is a quaternion group of order 8. To any given three elements x, y, z ∈ X
there exists thus a unique involution in J fixing x, y and z. Distinct choices of x, y, z yield distinct involutions in
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J , as each non–identical permutation in G has at most three fixed points, whence

|J | =
(

11
3

)
= 165.

It is now clear that J satisfies properties a1), a2), a3) and a4) above. Proposition 7.1 yields J = I or J = I∗:
again, after possibly replacing G and M by suitable conjugates fGf−1, fMf−1 with f ∈ S11, we may limit our
discussion to the former case.

Thus far M and G share the stabilizer of the element 1 and the involutions. The idea is now that of showing
that M and G share more and more elements untill they share everything. The proof is obtained through the next
properties, requiring a combined use of combinatorial arguments and elementary facts from group theory.

Proposition 7.3 We have Gx = Mx for each x ∈ X.

Proof. The assertion is true if x = 1. Assume x 6= 1. As a 3–transitive permutation group on X \ {x}, the group
Mx acts primitively on X \ {x}; in particular the stabilizer M1x is a maximal subgroup of Mx and so, since Ix

contains at least one involution not fixing 1, we have 〈M1x, Ix〉 = Mx.
Since both M1 and I are in G, we have that Gx contains M1x and Ix. We already remarked that Gx is a group,

whence Mx = 〈M1x, Ix〉 ≤ Gx; the equality |Gx| = |Mx| yields now Gx = Mx. 2

Let F denote the subset of G consisting of all permutations in G with at least one fixed point. We have
F = ∪x∈XGx = ∪x∈XMx.

Proposition 7.4 We have |F ∩G(y 7→ x)| = 444 for any two distinct elements x, y ∈ X.

Proof. We have

F ∩G(y 7→ x) =
⋃

z ∈ X
z /∈ {x, y}

G(y 7→ x)z.

The principle of inclusion–exclusion has been invoked several times at this Summer School and we apply it here to
compute the cardinality of the right–hand–side as

∑

z ∈ X
z /∈ {x, y}

|G(y 7→ x)z| −
∑

z, u ∈ X
z, u /∈ {x, y}

z 6= u

|G(y 7→ x)zu| +
∑

z, u, w ∈ X
z, u, w /∈ {x, y}
|{z, u, w}| = 3

|G(y 7→ x)zuw|.

The sharp 4–transitivity of G on X yields

|G(y 7→ x)z| = 72, |G(y 7→ x)zu| = 8, |G(y 7→ x)zuw| = 1,

whence

|F ∩G(y 7→ x)| = 9 · 72−
(

9
2

)
· 8 +

(
9
3

)
· 1 = 444

2

Proposition 7.5 We have G(y 7→ x) = M(y 7→ x) for all pairs x, y of distinct elements in X.

Proof. Let g be an arbitrary permutation in F ∩ G(y 7→ x). The permutation set G(y 7→ x)g−1 contains the
identity, fixes x and acts sharply 3–transitively on X \ {x}. Proposition 7.2 shows that G(y 7→ x)g−1 is a group.
More precisely, since G(y 7→ x)g−1 fixes x, it is a conjugate in S11 of Mx fixing x, i.e. G(y 7→ x)g−1 = hMxh−1

for some permutation h ∈ S11 with h(x) = x. We have thus G(y 7→ x) = hMxh−1g and consequently hMxh−1g =
hMxh−1k for any two g, k ∈ F ∩ G(y 7→ x). Since g and k also lie in the Mathieu group M we also have
M(y 7→ x) = Mxg = Mxk. We obtain gk−1 ∈ Mx ∩ hMxh−1 and so the intersection Mx ∩ hMxh−1 contains all
444 distinct permutations gk−1 obtained when g is fixed and k varies over the 444 permutations in F ∩G(y 7→ x).
As both Mx and hMxh−1 are groups of order 720 we see that Mx = hMxh−1 is the unique possibility and the
assertion follows. 2

Proposition 7.6 We have G = M and so we conclude that a sharply 4–transitive permutation set of degree 11
containing the identity is a group, a copy of the Mathieu group of degree 11.

Proof. An immediate consequence of the above discussion and of the relations

G = Gx ∪
( ⋃

y ∈ X
y 6= x

G(y 7→ x)
)
, M = Mx ∪

( ⋃

y ∈ X
y 6= x

M(y 7→ x)
)
.

2
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7.2 Degrees 12, 13 and more

The next step in the proof of Proposition 6.2 are the following two properties.

Proposition 7.7 A sharply 5–transitive permutation set of degree 12 containing the identity is necessarily a group,
a copy of the Mathieu group of degree 12.

Proposition 7.8 There exists no sharply 6–transitive permutation set on 13 elements.

They are obtained in much the same way as Proposition 7.6, with the information on the one–point–stabilizers
coming from the previous degrees and computer checks on the involutions of similar nature and complexity as that
illustrated in Proposition 7.1. Running times returned by a Runtime() command were 354760 milliseconds for
degree 12 on a 32 bit Pentium Pro II under Windows 95 running GAP with 24 MB RAM and 4603960 milliseconds
for degree 13 on a 32 bit Pentium Pro II under Windows NT running GAP with 48 MB RAM.

Proposition 7.8 was actually the beginning of my involvement in this whole matter. I happened to attend
the closing lecture of the 17–th British Combinatorial Conference in 1997, in which John H. Conway presented
his beautiful puzzle M13 based on the projective plane of order 3. My attention was unavoidably attracted by
properties (2) and (4) in Section 2 of the written version of the lecture, appearing in Surveys in Combinatorics,
1997, R.A. Bailey ed., pp. 1–11, Cambridge University Press, Cambridge 1997. Having worked on sharply multiply
transitive permutation sets which are not groups, I was more and more “puzzled” by the statement that M13

yielded a sharply 6–transitive permutation set on 13 letters. It was in the process of reconstructing M13 with the
Computer Algebra packages, that I kept getting a false whenever I was issuing the appropriate command checking
sharp 6–transitivity...!

Proposition 7.9 Let d be an integer, d ≥ 6. There exists no invertible sharply d–transitive permutation set of
degree ≥ d + 3.

Proof. The proof is obtained essentially by considering the stabilizers and applying induction on d. 2

Putting it all together we have the final statement

Proposition 7.10 Let G be an invertible sharply d–transitive permutation set on a finite set X. If d ≥ 6 then G
is either Sd, Sd+1 or Ad+2. If d = 5 then G is either S5, S6, A7 or the Mathieu group of degree 12. If d = 4 then
G is either S4, S5, A6 or the Mathieu group of degree 11.
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