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Abstract: We prove the existence of the universal attractor for the strongly damped semi-
linear wave equation, in the presence of a quite general nonlinearity of critical growth.
When the nonlinearity is subcritical, we prove the existence of an exponential attractor
of optimal regularity, having a basin of attraction coinciding with the whole phase-space.
As a byproduct, the universal attractor is regular and of finite fractal dimension. More-
over, we carry out a detailed analysis of the asymptotic behavior of the solutions in
dependence of the damping coefficient.

1. Introduction

Let� ⊂ R
3 be a bounded domain with smooth boundary ∂�. Givenω > 0, we consider

the following initial-boundary value problem for u : �× R
+ → R:






utt − ω�ut −�u+ φ(u) = f, x ∈ �, t > 0,
u(x, 0) = u0(x), x ∈ �,
ut (x, 0) = u1(x), x ∈ �,
u(x, t) = 0, x ∈ ∂�, t ≥ 0.

(P )

The semilinear wave equation with strong damping has been investigated by many
authors in the last years (see, e.g., [2–4, 7, 10, 14, 16, 17]). In particular, Carvalho and
Cholewa [4] have recently proved that for Problem P with the critical nonlinearity (i.e.,
when the growth of φ is of order 5), the associated semigroup possesses a universal
attractor. Actually, in [4] the authors analyze a more general situation, with a term of
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Nazionale di Alta Matematica “F. Severi” (INdAM).
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the form (−�)θut , for θ ∈ [ 1
2 , 1], in place of −�ut . This was, in our opinion, a sig-

nificant progress, since the passage from the subcritical to the critical case is highly
nontrivial, mainly due to the fact that in the critical situation the embeddings are no
longer compact. The key ingredient of [4] is Alekseev’s nonlinear variation of constants
formula, which has been successfully employed also to establish an analogous result for
the weakly damped semilinear wave equation (see [1]). However, the universal attractor
is not shown to have the best possible regularity, even in the subcritical case. This lack
of regularity prevents a more detailed asymptotic analysis.

In this paper, using a different approach, we prove the existence of a universal attrac-
tor for Problem P , with a more general nonlinearity than the one used in [4]. Moreover,
in the subcritical case, we demonstrate the existence of an exponential attractor of opti-
mal regularity, and in turn the existence of a regular universal attractor of finite fractal
dimension. We should mention that the basin of attraction of the exponential attractor is
the whole phase-space, and not just a compact invariant subset. This is obtained as a con-
sequence of a remarkable result due to Fabrie, Galusinski, Miranville and Zelik [9], who
have proved that the exponential attraction enjoys a transitivity property. Indeed, after
the paper [9], it is now clear that the interesting object to investigate is the exponential
attractor, rather than the universal attractor, which is recovered as a byproduct. Finally,
we pursue a detailed analysis of the longtime behavior of solutions in dependence of the
damping coefficient ω > 0.

Our technique relies on a bootstrap argument that was envisaged in [11], together
with a sharp use of Gronwall-type lemmas.

2. Functional Setting

We denote the inner product and the norm on L2(�) by 〈·, ·〉 and ‖ · ‖, respectively, and
the norm onLp(�) by ‖ ·‖Lp . LetA be the (strictly) positive operator onL2(�) defined
by

A = −� with domain D(A) = H 2(�) ∩H 1
0 (�).

Identifying L2(�) with its dual space L2(�)∗, we consider the family of Hilbert spaces
D(As/2), s ∈ R, whose inner products and norms are given by

〈·, ·〉D(As/2) = 〈As/2·, As/2·〉 and ‖ · ‖D(As/2) = ‖As/2 · ‖.
Then we have

D(A0) = L2(�), D(A1/2) = H 1
0 (�), D(A−1/2) = H−1(�),

and the compact and dense injections

D(As/2) ↪→ D(Ar/2), ∀s > r.

In particular, naming α1 the first eigenvalue of A, we get the inequalities

‖Ar/2v‖ ≤ α1
(r−s)/2‖As/2v‖, ∀v ∈ D(As/2). (1)

We also recall the continuous embedding

D(As/2) ↪→ L6/(3−2s)(�), ∀s ∈ [0, 3
2 ), (2)
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and the Ehrling lemma, that is, given s > r > q, for every ν > 0 there exists cν > 0
such that

‖Ar/2v‖ ≤ ν‖As/2v‖ + cν‖Aq/2v‖, ∀v ∈ D(As/2). (3)

Concerning the phase-spaces for our problem, we consider, for s ∈ R, the product
Hilbert spaces

Hs = D(A(1+s)/2)× D(As/2),
endowed with the usual inner products and norms (denoted by ‖ · ‖s).

Throughout the paper, we will denote by c ≥ 0 a generic constant, that may vary
even from line to line within the same equation, depending only on�, φ and the external
source f . Further dependencies will be specified on occurrence. Also, we will tacitly
use (1)–(3), as well as the Young and the generalized Hölder inequalities, and the usual
Sobolev embeddings.

We conclude the section with two technical lemmas that will be needed in the course
of the investigation.

Lemma 1. Let X be a Banach space, and let Z ⊂ C(R+, X). Let E : X → R be a
function such that

sup
t∈R+

E(z(t)) ≥ −m and E(z(0)) ≤ M,

for somem,M ≥ 0 and every z ∈ Z . In addition, assume that for every z ∈ Z the func-
tion t �→ E(z(t)) is continuously differentiable, and satisfies the differential inequality

d

dt
E(z(t))+ δ‖z(t)‖2

X ≤ k,

for some δ > 0 and k > 0, both independent of z ∈ Z . Then

E(z(t)) ≤ sup
ζ∈X

{
E(ζ ) : δ‖ζ‖2

X ≤ 2k
}
, ∀t ≥ m+M

k
.

The proof can be found, for instance, in [2, Lemma 2.7].

Lemma 2. Let 
 be an absolutely continuous positive function on R
+, which satisfies

for some ε > 0 the differential inequality

d

dt

(t)+ 2ε
(t) ≤ g(t)
(t)+ h(t),

for almost every t ∈ R
+, where g and h are functions on R

+ such that
∫ t

τ

|g(y)|dy ≤ m1
(
1 + (t − τ)µ

)
, ∀t ≥ τ ≥ 0,

for some m1 ≥ 0 and µ ∈ [0, 1), and

sup
t≥0

∫ t+1

t

|h(y)|dy ≤ m2,

for some m2 ≥ 0. Then


(t) ≤ β
(0)e−εt + ρ, ∀t ∈ R
+,
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for some β = β(m1, µ) ≥ 1 and

ρ = βm2e
ε

1 − e−ε
. (4)

For the proof, we refer the reader to [11, Lemma 2.2].
In the applications of the above lemmas, we might not have the required regularity

forE and
. However, this is not really a problem, since we can always suppose to work
within a proper regularization scheme.

3. The Solution Semigroup

We will consider for simplicity a time-independent external source, namely

f ∈ H−1(�) independent of time, (5)

although the results could be generalized with little effort to the nonautonomous case,
provided that f enjoys some translation-compactness properties. Concerning the non-
linearity, we stipulate the following set of assumptions. Let φ ∈ C(R) be such that

|φ(r)− φ(s)| ≤ c|r − s|(1 + |r|4 + |s|4), ∀r, s ∈ R. (6)

Also, let φ admit the decomposition

φ = φ0 + φ1,

with φ0 ∈ C(R), φ1 ∈ C(R), satisfying

|φ0(r)| ≤ c(1 + |r|5), ∀r ∈ R, (7)

φ0(r)r ≥ 0, ∀r ∈ R, (8)

|φ1(r)| ≤ c(1 + |r|γ ), γ < 5, ∀r ∈ R, (9)

lim inf
|r|→∞

φ1(r)

r
> −α1. (10)

Without loss of generality, we can think γ large enough, say, γ ≥ 3. Notice that, by
virtue of (10), there exists α < α1 such that

φ1(r)r ≥ −αr2 − c, ∀r ∈ R. (11)

Remark 1. It is apparent that we can replace φ0 with ηφ0 and φ1 with φ1 + (1 − η)φ0,
where η is a smooth function with values in [0, 1], such that η(r) = 0 if |r| ≤ 1, and
η(r) = 1 if |r| ≥ 2. Then φ0 and φ1 still fulfill (8)–(10); moreover,

|φ0(r)| ≤ c(|r| + |r|5), ∀r ∈ R. (12)

Thus, in the sequel, we will assume the stronger condition (12) in place of (7).

Remark 2. Analogously to what observed in [1, Lemma 1.2], a function φ ∈ C(R) such
that

|φ(r)| ≤ c(1 + |r|5), ∀r ∈ R,

lim inf
|r|→∞

φ(r)

r
> −α1,

admits a decomposition φ = φ0 + φ1 satisfying (7)–(10).
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Throughout the paper, we will assume conditions (5)–(6), (8)–(10), and (12).
By [3] (see also [4, Theorem 1]), the following holds.

Theorem 1. For every T > 0, and every (u0, u1) ∈ H0, Problem P admits a unique
weak solution

u ∈ C([0, T ], H 1
0 (�)),

with

ut ∈ C([0, T ], L2(�)) ∩ L2([0, T ], H 1
0 (�)),

which continuously depend on the initial data. In other words, Problem P generates a
strongly continuous semigroup S(t) on the phase space H0.

Actually, the result has been proved for f ≡ 0, but it holds as well in the present
case.

Remark 3. As a matter of fact, it is not hard to check that, when f ∈ L2(�), S(t) is a
strongly continuous semigroup also on the phase space H1.

For further use, let us write down explicitly the continuous dependence estimate for
S(t) on H0.

Theorem 2. Given anyR > 0 and any two initial data z0, z1 ∈ H0 such that ‖z0‖0 ≤ R

and ‖z1‖0 ≤ R, there holds

‖S(t)z0 − S(t)z1‖0 ≤ e
K
ω
t‖z0 − z1‖0, ∀t ∈ R

+, (13)

for some K = K(R).

Proof. Given two solutions u1 and u2 corresponding to different initial data, the differ-
ence ū = u1 − u2 fulfills the inequality

d

dt

(‖A1/2ū‖2 + ‖ūt‖2) + 2ω‖A1/2ūt‖2 = −2〈φ(u1)− φ(u2), ūt 〉.

Taking into account the uniform energy estimates for the solutions (see the subsequent
Theorem 3), from (6) we have, for every ν > 0,

−2〈φ(u1)− φ(u2), ūt 〉 ≤ c
(
1 + ‖u1‖4

L6 + ‖u2‖4
L6

)‖ū‖L6‖ūt‖L6

≤ c
(
1 + ‖A1/2u1‖4 + ‖A1/2u2‖4)‖A1/2ū‖‖A1/2ūt‖

≤ k

ν
‖A1/2ū‖2 + kν‖A1/2ūt‖2,

for some k = k(R). Therefore, setting ν = 2ω
k

, we obtain

d

dt

(‖A1/2ū‖2 + ‖ūt‖2) ≤ k2

2ω

(‖A1/2ū‖2 + ‖ūt‖2),

and the assertion follows from the Gronwall lemma. ��
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4. Dissipativity

We now deal with the dissipative feature of the semigroup S(t). Namely, we show that
the trajectories originating from any given bounded set eventually fall, uniformly in time,
into a bounded absorbing set B0 ⊂ H0. In order to highlight the dependence on ω > 0,
we introduce the function

�(ω) =
{
ω, ω < 1,
1
ω
, ω ≥ 1.

(14)

Theorem 3. There exists a constant R0 > 0 with the following property: given any
R ≥ 0, there exist t0 = t0(R, ω) such that, whenever

‖z0‖0 ≤ R,

it follows that
‖S(t)z0‖0 ≤ R0, ∀t ≥ t0.

Consequently, the set
B0 = {

z0 ∈ H0 : ‖z0‖0 ≤ R0
}

is a bounded absorbing set for S(t) on H0, that is, for any bounded set B ⊂ H0, there
is t0 = t0(B, ω) such that S(t)B ⊂ B0 for every t ≥ t0.

Remark 4. Before proceeding to the proof, let us dwell on the physical meaning of The-
orem 3. Firstly, the solution corresponding to any set of initial data, after a certain time
t0 (depending only on the size of the data) is controlled in norm by the constant R0.
Notice that R0 does not depend on the damping coefficient. What makes the difference
is actually the time t0 needed to stabilize the system. As shown in formula (21) below, t0
is an increasing function ofR, and so far this is no surprise, since the larger are the initial
data, the larger is the time needed to squeeze them. Less evident, at a first glance, is the
dependence on ω. Indeed, for a fixed R, t0 → ∞ both if ω → 0 and ω → ∞. This is
obvious when ω → 0, for in the limiting case ω = 0 the dissipation is lost. On the other
hand, a very large damping has the effect of freezing the system, since the damping acts
only on the velocity ut , and this prevents the squeezing of the component u. Therefore
the most dissipative situation occurs in between, that is, for a certain damping ω∗, which
depends on the other coefficients of the equation (in our case, for simplicity, they are all
set equal to 1).

Proof of Theorem 3. In view of a further use, throughout this proof, besides c, we will
also employ the generic constant c0 ≥ 0, which is independent of R and vanishes if
φ1 ≡ 0 and f ≡ 0. Denoting

z(t) = S(t)z0 = (u(t), ut (t)),

we consider the functional

F(t) = F(u(t)) = 2
∫

�

∫ u(x,t)

0
φ(y)dydx.

Set � = min{1, ω}. Given ε ∈ [0, ε0], for some ε0 ≤ 1 to be determined later, we
introduce the auxiliary variable

ξ(t) = ut (t)+ ε�

ω
u(t).
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Testing the equation with ξ yields

1

2

d

dt
E + ε�

ω
(1 − ε�)‖A1/2u‖2 + ω‖A1/2ξ‖2

= ε�

ω
‖ξ‖2 − ε2� 2

ω2 〈u, ξ〉 + ε�

ω
〈f, u〉 − ε�

ω
〈φ(u), u〉, (15)

where the energy functional E is defined as

E(t) = E(z(t)) = (1 − ε�)‖A1/2u(t)‖2 + ‖ξ(t)‖2 + F(t)− 2〈f, u(t)〉.
By (5), (9) and (12), we get the bound from above

E(t) ≤ c
(
1 + ‖z(t)‖6

0

)
, (16)

whereas by (5), (8) and (11), and the continuity of φ1, we find the bound from below

E(t) ≥ λ‖z(t)‖2
0 − c0, (17)

provided that ε0 is small enough, for some (possibly very small) λ > 0. We now proceed
to the evaluation of the right-hand side of (15). Making use of (8) and (11),

〈φ0(u), u〉 ≥ 0, 〈φ1(u), u〉 ≥ −(1 − 2λ0)‖A1/2u‖2 − c0, (18)

for some λ0 ∈ (0, 1
2 ). All the constants appearing here are independent of ε ∈ [0, ε0].

In particular, λ and λ0 depend only on the value of the limit in (10). Using now (18) and
the inequalities

−ε
2� 2

ω2 〈u, ξ〉 ≤ ε3� 3

4α1ω3 ‖A1/2u‖2 + ε�

ω
‖ξ‖2,

ε�

ω
〈f, u〉 ≤ ε�λ0

ω
‖A1/2u‖2 + ε�

ω
c0,

we get from (15) the differential inequality

d

dt
E + 2ε�

ω

(
λ0 − ε� − ε2� 2

4α1ω2

)
‖A1/2u‖2 +

(
2α1ω − 4ε�

ω

)
‖ξ‖2 ≤ ε�

ω
c0,

which, for ε0 small enough, becomes

d

dt
E + ε�λ0

ω
‖A1/2u‖2 +

(
2α1ω − 4ε�

ω

)
‖ξ‖2 ≤ ε�

ω
c0. (19)

All the inequalities we wrote so far, hold for every ε ∈ [0, ε0], provided that ε0 is small
enough. However, the size of ε0 does not depend on ω. At this point, we need to treat
separately two cases. So, assume first that ω ≥ 1. Then it is easy to see that

2α1ω − 4ε�

ω
≥ 2α1 − 4ε ≥ ελ0

ω
= ε�λ0

ω
,

up to taking ε0 possibly smaller. On the contrary, if ω < 1, then

2α1ω − 4ε�

ω
= 2α1ω − 4ε ≥ ελ0 = ε�λ0

ω
,
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provided that ε0 is of the form ε̃ω, for some small ε̃. In either case, the term ε�λ0
ω

can
be given the form 2δ�(ω), for some δ > 0 small (independently of ω). Then, inequality
(19) reads

d

dt
E + 2δ�(ω)

(‖A1/2u‖2 + ‖ξ‖2) ≤ c0�(ω), (20)

which in turn (if δ is sufficiently small) entails

d

dt
E + δ�(ω)‖z‖2

0 ≤ c0�(ω).

Applying now Lemma 1, on account of (16)–(17), and taking c0 strictly positive, there
exists

t0 = t0(R, ω) = c0 + c(1 + R6)

c0�(ω)
(21)

such that

E(z(t)) ≤ sup
ζ∈H0

{
E(ζ ) : δ�(ω)‖ζ‖2

0 ≤ 2c0�(ω)
}
, ∀t ≥ t0,

that is equivalent to

E(z(t)) ≤ sup
ζ∈H0

{
E(ζ ) : δ‖ζ‖2

0 ≤ 2c0

}
, ∀t ≥ t0.

The thesis then follows from (16)–(17). ��
Corollary 1. Given any R ≥ 0, there exist K0 = K0(R) and �0 = �0(R) such that,
whenever ‖z0‖0 ≤ R, the corresponding solution S(t)z0 = (u(t), ut (t)) fulfills

‖S(t)z0‖0 ≤ K0, ∀t ∈ R
+,

and

ω

∫ ∞

0
‖A1/2ut (y)‖2dy ≤ �0.

Proof. Set ε = 0 and integrate (15), on account of (16)–(17). ��
Incidentally, the set

{
z0 ∈ H0 : ‖S(t)z0‖0 ≤ K0(R0), ∀t ∈ R

+}
turns out to

be a bounded absorbing set for S(t) on H0 which is invariant under the action of the
semigroup.

5. The Universal Attractor

The aim of this section is to prove the existence of a universal attractor for S(t) on H0.
Recall that the universal attractor is the (unique) compact set A ⊂ H0, which is at the
same time attracting, in the sense of the Hausdorff semidistance, and fully invariant for
S(t), that is, S(t)A = A for all t ∈ R

+ (see, e.g., [12, 15]).

Theorem 4. For every ω > 0, the semigroup S(t) possesses a connected universal
attractor A = A(ω) ⊂ H0.
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In order to prove Theorem 4, and for further purposes, we decompose the solution u
to Problem P with initial data z0 = (u0, u1) ∈ H0 into the sum

u(t) = v(t)+ w(t),

where v and w are the solutions to the problems





vtt + ωAvt + Av + φ0(v) = 0,
v(0) = u0,

vt (0) = u1,

(22)

and





wtt + ωAwt + Aw + φ(u)− φ0(v) = f,

w(0) = 0,
wt (0) = 0.

(23)

It is convenient to denote

z(t) = (u(t), ut (t)), zd(t) = (v(t), vt (t)), zc(t) = (w(t), wt (t)).

As a first step, we show that zd has an exponential decay in H0, which is uniform as z0
runs into a bounded subset of H0.

Lemma 3. Given any R ≥ 0, there exist M0 = M0(R) ≥ 0 and ν0 = ν0(R) > 0 such
that, whenever ‖z0‖0 ≤ R, it follows that

‖zd(t)‖0 ≤ M0e
−ν0�(ω)t , ∀t ∈ R

+,

with�(ω) given by (14). The constantsM0 and ν0 depend increasingly and decreasingly,
respectively, on R.

Proof. Repeating word by word the proof of Theorem 3, that applies to the present case
with zd(t) in place of z(t) (with the further simplification that c0 = 0, for now φ1 ≡ 0
and f ≡ 0), we get the differential inequality

d

dt
E + ε�λ0

ω
‖A1/2v‖2 +

(
2α1ω − 4ε�

ω

)
‖ξ‖2 ≤ 0, (24)

for some ε0 small enough, independent of ω. Integrating (24) for ε = 0 on (0, t) gives

sup
‖z0‖≤R

sup
t∈R+

‖zd(t)‖0 < ∞.

Hence, we find the uniform estimate

F(t) ≤ c
(‖v(t)‖2 + ‖v(t)‖6

L6

) ≤ k‖A1/2v(t)‖2, ∀t ≥ 0,

for some constant k = k(R) ≥ 1. Upon taking ε0 small enough, we may replace the
term ‖A1/2v‖2 appearing in (24) with

(1 − ε�)

2k
‖A1/2v‖2 + 1

2k
F = 1

2k
E − 1

2k
‖ξ‖2,
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so obtaining
d

dt
E + ε�λ0

2kω
E +

(
2α1ω − ε�m

ω

)
‖ξ‖2 ≤ 0,

where we set for simplicity m = m(R) = 4 + λ0
2k . Again, arguing as in the proof of

Theorem 3, we see that

2α1ω − ε�m

ω
≥ 0,

provided the term ε�λ0
2kω is given the form 2ν0�(ω). The only difference here is that ν0

is not a constant any longer, but a decreasing function of R. Thus we end up with

d

dt
E + 2ν0�(ω)E ≤ 0.

By means of the Gronwall lemma, and using subsequently (16)–(17) (recall that c0 = 0),
the proof is completed. ��

A straightforward consequence is

Corollary 2. If φ1 ≡ 0 and f ≡ 0, then S(t) decays to zero. Thus the set {0} ⊂ H0 is
the universal attractor for S(t) on H0.

Next we show that, for every fixed time, the component zc belongs to a compact
subset of H0, uniformly as the initial data z0 belongs to the absorbing set B0, given by
Theorem 3.

Lemma 4. For every time T ∈ R
+ and every ω > 0, there exists a compact set KT ,ω ⊂

H0 such that ⋃

z0∈B0

zc(t) ∈ KT ,ω, ∀t ∈ [0, T ].

Proof. The constant c appearing in this proof may depend on K0(R0) (given by Theo-
rem 3), which is however a fixed value. Due to Corollary 1 and Lemma 3,

‖A1/2u(t)‖ + ‖A1/2v(t)‖ ≤ c, ∀t ∈ R
+.

Choosing
σ = min

{ 1
4 ,

5−γ
2

}
,

and multiplying (23) times Aσwt , we are led to the identity

1

2

d

dt
‖zc‖2

σ + ω‖A(1+σ)/2wt‖2

= −〈φ(u)− φ(v), Aσwt 〉 − 〈φ1(v), A
σwt 〉 + 〈f,Aσwt 〉. (25)

By virtue of (6) we get

−〈φ(u)− φ(v), Aσwt 〉
≤ c

(
1 + ‖u‖4

L6 + ‖v‖4
L6

)‖w‖L6/(1−2σ)‖Aσwt‖L6/(1+2σ)

≤ c
(
1 + ‖A1/2u‖4 + ‖A1/2v‖4)‖A(1+σ)/2w‖‖A(1+σ)/2wt‖

≤ c

ω
‖zc‖2

σ + ω

3
‖A(1+σ)/2wt‖2. (26)
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Since γ
5−2σ ≤ 1, by (9) we deduce that

−〈φ1(v), A
σwt 〉

≤ c
(
1 + ‖v‖γ

L6γ /(5−2σ)

)‖Aσwt‖L6/(1+2σ)

≤ c
(
1 + ‖A1/2v‖γ )‖A(1+σ)/2wt‖

≤ c

ω
+ ω

3
‖A(1+σ)/2wt‖2. (27)

Finally,

〈f,Aσwt 〉 ≤ ‖A−1/2f ‖‖A(1+σ)/2wt‖ ≤ c

ω
+ ω

3
‖A(1+σ)/2wt‖2. (28)

Plugging (26)–(28) into (25), we obtain

d

dt
‖zc‖2

σ ≤ c

ω
‖zc‖2

σ + c

ω
,

and the Gronwall lemma entails

‖zc(t)‖2
σ ≤ e

kt
ω − 1,

which concludes the proof. ��

Collecting now Theorem 3, Lemma 3 and Lemma 4, we establish that S(t) is asymp-
totically smooth. Therefore, by means of well-known results of the theory of dynamical
systems (see, e.g., [12]), Theorem 4 is proved.

Remark 5. On account of Lemma 3 and Lemma 4, for every T ∈ R
+ the attractor A

belongs to a M0e
−ν0�(ω)T -neighborhood of KT ,ω. Note that, as ω → ∞, the set KT ,ω

shrinks, but the constantM0e
−ν0�(ω)T increases. This seems to suggest that the “small-

est" attractor occurs for a certain ω∗, away from zero and infinity. We will come back on
this in the next sections, where we discuss the dependence on ω in the subcritical case.

Remark 6. With the additional assumptions f ∈ L2(�) and φ0 ∈ C1(R) with φ′
0 ≥ 0,

it is also possible to prove that the semigroup S(t) possesses a universal attractor A1
on the phase-space H1. Clearly, A1 ⊂ A. If we could prove that A is a bounded subset
of H1, then, on account of the maximality properties of universal attractors (cf. [15]),
we would have the reverse inclusion. As a consequence, A would not only be bounded,
but also compact in H1. In general, one cannot have an H1-bound for A assuming only
f ∈ H−1(�). This follows from the fact that the stationary points (which belong to the
attractor) solve the equation

−�ũ+ φ(ũ) = f,

and are as regular as f permits. In particular, if f ∈ H−1(�), but not more, then
ũ ∈ H 1

0 (�), but not more. In this case A cannot be a subset of Hσ for any σ > 0.
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6. The Subcritical Case: Further Regularity

In the last two sections, we want to pursue a quite detailed asymptotic analysis when f
is more regular and the nonlinearity is subcritical. More precisely, we make the extra
assumptions

f ∈ L2(�) independent of time, (29)

φ0(r) = 0, ∀r ∈ R, (30)

φ1 ∈ C1(R) with |φ′
1(r)| ≤ c(1 + |r|γ−1), ∀r ∈ R. (31)

Also, we focus on the case when ω is separated from zero. As we will see, this
situation is much more interesting (see however Remark 9 at the end).

To this aim, we assume

ω ≥ ω0, for some ω0 > 0. (32)

All the constants and the sets appearing in the sequel are independent of ω ≥ ω0 (but
they do depend on ω0). Accordingly, all the estimates we will provide are understood to
be uniform as ω ≥ ω0.

From now on, let conditions (10) and (29)–(32) hold.

Remark 7. On account of (30)–(32), Lemma 3 simplifies as follows: given any R ≥ 0,
there exist M0 = M0(R) ≥ 0 and ν0 > 0 (independent of R), such that, whenever

‖z0‖0 ≤ R,

it follows that
‖zd(t)‖0 ≤ M0e

− ν0
ω
t , ∀t ∈ R

+.

To be more precise, M0(R) = cR, for some c > 1.

The goal of this section is to prove the existence of a bounded set B1 ⊂ H1 which
is an attracting set in H0, with an exponential rate of attraction. Clearly, it is enough to
prove the attraction property on the absorbing set B0.

Let us state the result.

Theorem 5. There exist M ≥ 0, ν > 0, and a set B1, closed and bounded in H1, such
that

distH0(S(t)B0,B1) ≤ Me−
ν
ω
t , ∀t ∈ R

+,

where distH0 denotes the usual Hausdorff semidistance in H0.

In light of Remark 6, a straightforward consequence is

Corollary 3. The universal attractor A of S(t) on H0 is a compact subset of H1. Also,
its H1-bound is uniform as ω ≥ ω0.

The proof of Theorem 5 will be carried out by means of several lemmas. The main
ingredient is a bootstrap procedure, along the lines of [11]. We will keep the same
notation of Sect. 5 (with φ0 ≡ 0); in particular, we will use again the decomposition
z = zd + zc.
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Lemma 5. Let σ ∈ [0, 1] be given. Assume that ‖z0‖σ ≤ Rσ , for some Rσ ≥ 0. Then
there exist constants

Kσ = Kσ (Rσ ) ≥ 0, �σ = �σ (Rσ ) ≥ 0, µσ = µσ (Rσ ) ∈ [0, 1)

such that

‖z(t)‖σ ≤ Kσ , ∀t ∈ R
+, (33)

and

ω

∫ t

τ

‖A(1+σ)/2ut (y)‖2dy ≤ �σ
(
1 + (t − τ)µσ

)
, ∀t ≥ τ, τ ∈ R

+. (34)

Proof. The result for σ = 0 is already demonstrated, an account of Corollary 1. We will
reach the desired conclusion by means of a bootstrap argument. Namely, assuming the
result true for a certain σ ∈ [0, 1), we show that the thesis holds for σ + s, for all

s ≤ min
{ 1

4 ,
5−γ

2 , 1 − σ
}
.

It is thus apparent that, after a finite number of steps, we get the assertion for allσ ∈ [0, 1].
Let then σ ∈ [0, 1) be fixed. By the bootstrap hypothesis, (33)–(34) hold for such σ .
Along the proof, the generic constant c ≥ 0 will depend on Rσ . It is convenient to
consider separately two cases.

Case 1. σ < 1
2 . Given ε ∈ [0, 2ε0], with ε0 > 0 to be determined later, set ξ = ut + ε

ω
u

and define


(t) = (1 − ε)‖A(1+σ+s)/2u(t)‖2 + ‖A(σ+s)/2ξ(t)‖2 + G(t)+ k0,

for some k0 = k0(Rσ ) ≥ 0, where G is the functional

G(t) = 2〈φ1(u(t)), A
σ+su(t)〉 − 2〈f,Aσ+su(t)〉.

Choosing k0 large enough and ε0 small enough, we have

1

2
‖z(t)‖2

σ+s ≤ 
(t) ≤ 2‖z(t)‖2
σ+s + c, (35)

for all ε ∈ [0, 2ε0]. Indeed,

2
∣
∣〈φ1(u), A

σ+su〉∣∣
≤ c

(
1 + ‖u‖L6/(6+2γ σ−γ−4σ−2s)‖u‖γ−1

L6/(1−2σ)

)‖Aσ+su‖L6/(1+2σ+2s)

≤ c
(
1 + ‖Aq/2u‖‖A(1+σ)/2u‖γ−1)‖A(1+σ+s)/2u‖

≤ c
(
1 + ‖Aq/2u‖)‖A(1+σ+s)/2u‖,

where
q = max

{ γ+4σ+2s−3−2γ σ
2 , 0

}
.

Since q < 1 + σ + s, using (33) we get

‖Aq/2u‖ ≤ ν‖A(1+σ+s)/2u‖ + cν,
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for an arbitrarily small constant ν > 0 and some cν = cν(Rσ ) > 0. This gives at once
the inequality

2
∣
∣〈φ1(u), A

σ+su〉∣∣ ≤ 1

4
‖z(t)‖2

σ+s + c.

Finally, it is straightforward to see that

2
∣
∣〈f,Aσ+su〉∣∣ ≤ 1

4
‖z(t)‖2

σ+s + c.

Multiplying the equation times Aσ+sξ , we are led to the identity

1

2

d

dt

+ ε

ω
(1 − ε)‖A(1+σ+s)/2u‖2 + ω‖A(1+σ+s)/2ξ‖2 + ε

2ω
G

= ε

ω
‖A(σ+s)/2ξ‖2 − ε2

ω2 〈A(σ+s)/2u,A(σ+s)/2ξ〉 + 〈φ′
1(u)ut , A

σ+su〉. (36)

There holds

− ε2

ω2 〈A(σ+s)/2u,A(σ+s)/2ξ〉 ≤ ε3

4α1ω3 ‖A(1+σ+s)/2u‖2 + ε

ω
‖A(σ+s)/2ξ‖2.

Moreover, since 3(γ−1)
2−s ≤ 6, we deduce from (9) and (35) that

〈φ′
1(u)ut , A

σ+su〉
≤ c

(
1 + ‖u‖γ−1

L3(γ−1)/(2−s)
)‖ut‖L6/(1−2σ)‖Aσ+su‖L6/(1+2σ+2s)

≤ c
(
1 + ‖A1/2u‖γ−1)‖A(1+σ)/2ut‖‖A(1+σ+s)/2u‖

≤ c‖A(1+σ)/2ut‖‖A(1+σ+s)/2u‖
≤ c‖A(1+σ)/2ut‖ + c‖A(1+σ)/2ut‖
.

By virtue of the above inequalities, the right-hand side of (36) is less than or equal to

ε3

4α1ω3 ‖A(1+σ+s)/2u‖2 + 2ε

ω
‖A(σ+s)/2ξ‖2 + h
+ h,

having set
h(t) = c‖A(1+σ)/2ut (t)‖.

It is then clear that, fixing ε0 small enough, we find the differential inequality

d

dt

+ ε

ω

+ ω‖A(1+σ+s)/2ξ‖2 ≤ h
+ h+ k0ε

ω
, (37)

that holds for all ε ∈ [0, 2ε0]. From (34) and the Hölder inequality,

ω

∫ t

τ

h(y)dy ≤ c
(
1 + (t − τ)µ

)
, ∀t ≥ τ, τ ∈ R

+, (38)

with µ = µσ+1
2 < 1. So we are in the hypotheses of Lemma 2. Setting ε = 2ε0, and

using (35), we obtain

‖z(t)‖2
σ+s ≤ c

(
1 + ‖z0‖2

σ+s
)
e−

ε0
ω + ρ, ∀t ∈ R

+, (39)
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where, recalling (4), ρ is given by

ρ = ce
ε0
ω

ω(1 − e−
ε0
ω )

≤ c as ω ≥ ω0.

Hence (33) holds for σ +s. Actually, (39) says a little bit more, since the desired result is
‖z(t)‖σ+s ≤ Kσ+s(Rσ+s), whereas the constant ρ depends only on Rσ . This allows us,
for instance, to prove the existence of bounded absorbing sets for S(t) on the phase-space
Hσ , for all σ ∈ [0, 1]. Finally, setting ε = 0 in (37), and using the bound on ‖z(t)‖σ+s ,
which in turn furnishes a bound on 
, we get

d

dt

+ ω‖A(1+σ+s)/2ut‖2 ≤ c̃h,

for some c̃ = c̃(Rσ+s). Integration on (τ, t), on account of (38), entails (34) for σ + s.

Case 2. σ ≥ 1
2 . Exploiting Case 1, we readily learn that the theorem holds for all σ ∈

[ 1
2 , σ̃ ], for some σ̃ > 1

2 . Hence, if σ ≥ σ̃ , in particular we get that ‖A(1+σ̃ )/2u(t)‖ ≤ c,
and the continuous embedding D(A(1+σ̃ )/2) ↪→ L∞(�) bears the uniform bound

sup
t∈R+

‖u(t)‖L∞ ≤ c. (40)

The proof then goes exactly as in the previous case, with the difference that now the esti-
mates are almost immediate, due to the control (40). The details are left to the reader. ��
Lemma 6. Let σ ∈ [0, 1) be given, and set

s = s(σ ) = min
{ 1

4 ,
5−γ

2 , 1 − σ
}
. (41)

Given any Rσ ≥ 0, there exists Rσ+s = Rσ+s(Rσ ) such that, if ‖z0‖σ ≤ Rσ , it follows
that

‖zc(t)‖σ+s ≤ Rσ+s , ∀t ∈ R
+.

Proof. The argument is very similar to the one used in the previous proof. Therefore we
will just detail those passages in which significant differences occur. As before, let the
generic constant c ≥ 0 depend on Rσ . Also, by virtue of Lemma 5, we have the uniform
bounds (33)–(34). The energy functional considered here is


c(t) = (1 − ε)‖A(1+σ+s)/2w(t)‖2 + ‖A(σ+s)/2ξc(t)‖2 + Gc(t)+ k0,

for some ε > 0 and k0 = k0(Rσ ) ≥ 0, with ξc = wt + ε
ω
w, and

Gc(t) = 2〈φ1(u(t)), A
σ+sw(t)〉 − 2〈f,Aσ+sw(t)〉.

Again, for k0 large enough and ε small enough, we have

1

2
‖zc(t)‖2

σ+s ≤ 
c(t) ≤ 2‖zc(t)‖2
σ+s + c.

Indeed,
2
∣
∣〈φ1(u), A

σ+sw〉∣∣ ≤ c
(
1 + ‖u‖γ

L6γ /(5−2σ−2s)

)‖A(1+σ+s)/2w‖.
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If σ < 1
2 , on account of the inequality

6γ

5 − 2σ − 2s
≤ 6

1 − 2σ
,

we get
‖u‖γ

L6γ /(5−2σ−2s) ≤ ‖A(1+σ)/2u‖γ ≤ c.

If σ ≥ 1
2 , we still get the inequality

‖u‖γ
L6γ /(5−2σ−2s) ≤ c,

by means of the continuous embedding

D(A(1+σ)/2) ↪→ Lp(�), ∀p ≥ 1.

In either case, we can conclude that

2
∣
∣〈φ1(u), A

σ+sw〉∣∣ ≤ 1

4
‖zc(t)‖2

σ+s + c.

Multiplying (23) timesAσ+sξc, and repeating the former passages, we obtain the differ-
ential inequality

d

dt

c + ε

ω

c ≤ h
c + h+ k0ε

ω
,

for some ε > 0 small enough, where h fulfills (38). An application of Lemma 2 leads to
the desired conclusion, since in this case (cf. (39)), 
c(0) ≤ c. ��

We will complete our task exploiting the transitivity property of exponential attraction
[9, Theorem 5.1], that we recall below for the reader’s convenience.

Lemma 7. Let K1,K2,K3 be subsets of H0 such that

distH0(S(t)K1,K2) ≤ L1e
−ϑ1t , distH0(S(t)K2,K3) ≤ L2e

−ϑ2t ,

for some ϑ1, ϑ2 > 0 and L1, L2 ≥ 0. Assume also that for all z1, z2 ∈ ⋃
t≥0 S(t)Kj

(j = 1, 2, 3) there holds

‖S(t)z1 − S(t)z2‖0 ≤ L0e
ϑ0t‖z1 − z2‖0,

for some ϑ0 ≥ 0 and some L0 ≥ 0. Then it follows that

distH0(S(t)K1,K3) ≤ Le−ϑt ,

where ϑ = ϑ1ϑ2
ϑ0+ϑ1+ϑ2

and L = L0L1 + L2.

We have now all the tools to proceed to the proof of the theorem.

Proof of Theorem 5. With reference to (41), notice that, starting with σ = 0, we find a
strictly increasing finite sequence of numbers {σj }nj=0, with n = n(γ ), such that

σ0 = 0, σj+1 = σj + s(σj ), σn = 1.

Choosing R0 as in Theorem 3, let us define for j = 0, . . . , n

Bσj = {
z0 ∈ Hσj : ‖z0‖σj ≤ Rσj

}
,
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where Rσj = Rσj (Rσj−1) are given by Lemma 6. After Remark 7 and Lemma 6, we
learn at once that

distH0(S(t)Bσj−1 ,Bσj ) ≤ Mje
− ν0
ω
t , ∀j = 1, . . . , n,

where
Mj = M0

(
α
σj−1/2
1 Rσj−1

)
.

Taking then into account Corollary 1 and (13), by successive applications of Lemma 7,
we obtain the estimate

distH0(S(t)B0,B1) ≤ Me−
ν
ω
t ,

for some M ≥ 0 and ν > 0. ��
Solutions departing from B1 satisfy an extra regularity, which shall be needed in the

sequel.

Lemma 8. There exists C ≥ 0 such that

sup
z0∈B1

‖zt (t)‖0 ≤ C, ∀t ≥ 1.

Proof. Let z0 = (u0, u1) ∈ B1 and consider the linear nonhomogeneous problem





ψtt + ωAψt + Aψ = −φ′
1(u)ut ,

ψ(0) = u1,

ψt (0) = −ωAu1 − Au0 − φ1(u0)+ f,

obtained by differentiation of Problem P with respect to time. By Lemma 5 (for σ = 1)
we have

sup
z0∈B1

sup
t∈R+

‖z(t)‖1 < ∞. (42)

Consequently, the continuous embeddingH 2(�) ↪→ C(�) provides the uniform bound

sup
z0∈B1

sup
t∈R+

‖φ′(u(t))ut‖ < ∞.

Thus, by standard arguments, for every T > 0 the above problem admits a unique
solution

ψ ∈ C([0, T ], L2(�)),

with
ψt ∈ C([0, T ], H−1(�)) ∩ L2([0, T ], L2(�)).

By comparison, ψ(t) = ut (t) for every t ≥ 0, so, in particular, ψ ∈ C(R+, H 1
0 (�)).

Taking the product with ψt , we get

d

dt

[
‖ψt‖2 + ‖A1/2ψ‖2

]
≤ c.

Integrating the above inequality on (r, t + 1), for some fixed r ∈ [t, t + 1], and inte-
grating the resulting inequality with respect to r on (t, t + 1), the proof follows. Notice
that this procedure is a simplified version of the uniform Gronwall lemma [15, Lemma
III.1.1]. ��
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Remark 8. Of course it is a natural question to ask why this approach fails to handle the
critical case. In fact, the bootstrap procedure works as well for the critical case (clearly,
it is a little bit more complicated, and an additional control on the second derivative of
φ0 is required), provided that we start from σ > 0. The missing passage is exactly from
σ = 0 to σ = s. This means that, if we were able to prove that the attractor is bounded
in some Hσ , for σ > 0 no matter how small, we would obtain all the results of this paper
for the critical case as well. Unfortunately, it seems a really hard task to exhibit such a
regularity for the attractor when φ is critical. In fact, it is quite possible that there is not
such a regularity.

7. Exponential Attractors for the Subcritical Case

As remarked by many authors, the universal attractor may not be for practical purposes
(e.g., to get numerical results) a satisfactory object to describe the longterm dynamics.
Indeed, in spite of its nice features, it is not possible in general to exhibit an actual con-
trol of the convergence rate of the trajectories to the attractor. In order to overcome the
problem of quantitative control of the time needed to stabilize the system, Eden, Foias,
Nicolaenko and Temam (cf. [5, 6]) introduced the notion of exponential attractor. This
is a compact invariant (but not fully invariant) subset of the phase-space of finite fractal
dimension that attracts a bounded ball of initial data exponentially fast. However, before
the results of [9], it was not clear if, for hyperbolic systems, the exponential attractor
had a basin of attraction coinciding with the whole phase-space. Clearly, this was quite a
significant limitation. Nonetheless, after [9], we now know that it is possible to remove
this obstacle, and this justifies the following generalization of the definition given in [5,
6].

Definition 1. A compact set E ⊂ H0 is called an exponential attractor or inertial set
for the semigroup S(t) if the following conditions hold:

(i) E is invariant of S(t), that is, S(t)E ⊂ E for every t ≥ 0;
(ii) dimF E < ∞, that is, E has finite fractal dimension;

(iii) there exist an increasing function J : R
+ → R

+ and κ > 0 such that, for any set
B ⊂ H0 with supz0∈B ‖z0‖0 ≤ R there holds

distH0(S(t)B, E) ≤ J (R)e−κt .

We remark that, contrary to the universal attractor, the exponential attractor is not
unique. As a matter of fact, if there is one, then there are infinitely many of them.

It is apparent that if there is an exponential attractor E , then in particular the semi-
group possesses a compact attracting set, and thus it has a universal attractor A ⊂ E of
finite fractal dimension, being dimF A ≤ dimF E .

Our main result is

Theorem 6. The semigroup S(t) acting on H0 possesses an exponential attractor E =
E(ω). Moreover,

(i) E is a bounded subset of H1, and the bound is independent of ω ≥ ω0;
(ii) the rate of exponential attraction κ is proportional to 1

ω
;

(iii) J (R) is independent of ω ≥ ω0;
(iv) sup

ω≥ω0

[
dimF E(ω)] < ∞.
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Corollary 4. The universal attractor A of the semigroup S(t) has finite fractal dimen-
sion, and

sup
ω≥ω0

[
dimF A(ω)] < ∞.

In order to prove Theorem 6, we shall use the following sufficient condition (cf. [8,
Prop. 1] and [6, p.33]):

Lemma 9. Let X ⊂ H0 be a compact invariant subset. Assume that there exists a time
t∗ > 0 such that the following hold:

(i) the map
(t, z0) �→ S(t)z0 : [0, t∗] × X → X

is Lipschitz continuous (with the metric inherited from H0);
(ii) the map S(t∗) : X → X admits a decomposition of the form

S(t∗) = S0 + S1, S0 : X → H0, S1 : X → H1,

where S0 and S1 satisfy the conditions

‖S0(z1)− S0(z2)‖0 ≤ 1

8
‖z1 − z2‖0, ∀z1, z2 ∈ X ,

and
‖S1(z1)− S1(z2)‖1 ≤ C∗‖z1 − z2‖0, ∀z1, z2 ∈ X ,

for some C∗ > 0.

Then there exist an invariant compact set E ⊂ X such that

distH0(S(t)X , E) ≤ J0e
− log 2

t∗ t
, (43)

where

J0 = 2L∗ sup
z0∈X

‖z0‖0 e
log 2
t∗ , (44)

and L∗ is the Lipschitz constant of the map S(t∗) : X → X . Moreover,

dimF E ≤ 1 + logN∗
log 2

, (45)

where N∗ is the minimum number of 1
8C∗ -balls of H0 necessary to cover the unit ball of

H1.

In fact, [8, Prop. 1] allows to build an exponential attractor E that attracts X with
an arbitrarily large attraction rate, paying the price of increasing dimF E . However, we
will be interested to attract arbitrary bounded subsets of H0. This translates into an
upper bound on the attraction rate, that depends on the velocity at which X attracts the
absorbing set B0.

We remark that the original technique to find exponential attractors (cf. [5, 6]) is
quite different. Indeed, it relies on the proof that the semigroup S(t) satisfies the so-
called squeezing property on X . Besides, it works in Hilbert spaces only, since it makes
use of orthogonal projections. On the contrary, this alternative approach is applicable in
Banach spaces as well. In a Hilbert space setting, like in our case, the choice of which
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procedure to follow is just a matter of taste. Note that, to get precise numerical calcu-
lations, one has to know the number N∗, that, in general, is quite difficult to compute.
Similarly, the other method requires the explicit knowledge of the eigenvalues {αn} of
A. In fact, this is actually the same problem.

We define

X =
⋃

τ≥1

S(τ)B1

H0

.

Let us establish some properties of this set.

– X is a compact set in H0, bounded in H1, due to Lemma 5.
– X is invariant, for, from the continuity of S(t), we have

S(t)X ⊂
⋃

τ≥1

S(t + τ)B1

H0 ⊂ X .

– There holds

distH0(S(t)B0,X ) ≤ Me−
ν
ω
t , ∀t ∈ R

+, (46)

for some M ≥ 0 and some ν > 0. Indeed, it is apparent that

distH0(S(t)B1,X ) = 0, ∀t ≥ 1.

Hence (46) follows from Lemma 7, in view of Theorem 5, Lemma 5, and (13).
– There is C ≥ 0 such that

sup
z0∈X

‖zt (t)‖2
0 ≤ C, ∀t ≥ 0.

This is a direct consequence of Lemma 8.

Therefore such a set X is a promising candidate for our purposes. Indeed, we have
the following two lemmas.

Lemma 10. For every T > 0, the mapping (t, z0) �→ S(t)z0 is Lipschitz continuous on
[0, T ] × X .

Proof. For z1, z2 ∈ X and t1, t2 ∈ [0, T ] we have

‖S(t1)z1 − S(t2)z2‖0 ≤ ‖S(t1)z1 − S(t1)z2‖0 + ‖S(t1)z2 − S(t2)z2‖0.

The first term of the above inequality is handled by estimate (13). Concerning the second
one,

‖z(t1)− z(t2)‖0 ≤
∣
∣
∣
∣

∫ t2

t1

‖zt (y)‖0dy

∣
∣
∣
∣ ≤ C|t1 − t2|.

Hence
‖S(t1)z1 − S(t2)z2‖0 ≤ L

[|t1 − t2| + ‖z1 − z2‖0
]
,

for some L = L(T ) ≥ 0. ��
Lemma 11. Assumption (ii) of Lemma 9 holds true.



On the Strongly Damped Wave Equation 531

Proof. The constant c ≥ 0 of this proof will depend on X (which, however, is a fixed
set). For z0 ∈ X , let us denote by S0(t)z0 the solution at time t of the linear homoge-
neous problem associated to Problem P , and let S1(t)z0 = S(t)z0 −S0(t)z0. Given two
solutions

z1 = (u1, u1
t ) and z2 = (u2, u2

t ),

originating from z1, z2 ∈ X , respectively, set z̄ = z1 − z2 = (ū, ūt ). Let us decompose
z̄ into the sum

z̄ = z̄d + z̄c = (v̄, v̄t )+ (w̄, w̄t ),

where
{
v̄t t + ωAv̄t + Av̄ = 0,
z̄d (0) = z1 − z2,

(47)

and
{
w̄tt + ωAw̄t + Aw̄ = −φ1(u

1)+ φ1(u
2),

z̄c(0) = 0.
(48)

It is apparent that z̄d (t) = S0(t)z1 − S0(t)z2 and z̄c(t) = S1(t)z1 − S1(t)z2. By (47) we
get (cf. Remark 7),

‖z̄d (t)‖0 ≤ c‖z1 − z2‖0e
− ν0
ω
t ,

for some c > 1. Hence, setting

t∗ = ω

ν0
log 8c, (49)

we have

‖z̄d (t∗)‖0 ≤ 1

8
‖z1 − z2‖0. (50)

For all trajectories departing from X , the first component is (uniformly) bounded almost
everywhere. Therefore the product of (48) and Aw̄t bears

d

dt
‖z̄c‖2

1 + 2ω‖Aw̄t‖2 ≤ 2‖φ1(u
1)− φ1(u

2)‖‖Aw̄t‖ ≤ c

ω
‖ū‖2 + 2ω‖Aw̄t‖2.

From (13),

‖ū(t)‖ ≤ ‖z̄(t)‖0 ≤ e
K
ω
t‖z1 − z2‖0, ∀t ∈ R

+,
thus we obtain the inequality

d

dt
‖z̄c(t)‖2

1 ≤ c

ω
e

2K
ω
t‖z1 − z2‖2

0,

and an integration on (0, t∗) yields

‖z̄c(t∗)‖2
1 ≤ C∗‖z1 − z2‖2

0, (51)

with
C∗ = c

2K
e

2K
ω
t∗ .

Notice that, in light of (49), C∗ is independent of ω ≥ ω0. Collecting (50)-(51), and
setting S0 = S0(t∗) and S1 = S1(t∗), we meet the thesis. ��
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Proof of Theorem 6. Thanks to Lemma 10 and Lemma 11, we can apply Lemma 9, so
getting a compact invariant set E ⊂ X satisfying (43)–(45). In particular, due to (13)
and (49), we may rewrite (43) as

distH0(S(t)X , E) ≤ J0e
− κ0
ω
t , ∀t ∈ R

+, (52)

for some J0 ≥ 0 and κ0 > 0, both independent ofω ≥ ω0. In addition,N∗ is independent
of ω ≥ ω0, for so is C∗. This implies assertion (iv) of the theorem. In order to complete
the proof, we are left to show that E attracts (exponentially fast) all finite subsets of the
whole phase-space H0. Thus, let B ⊂ H0 be a bounded set, and callR = supz0∈B ‖z0‖0.
By Theorem 3 (cf. (21)),

S(t)B ⊂ B0, ∀t ≥ ωt0,

for some t0 depending (increasingly) only on R. Hence, by (46),

distH0(S(t)B,X ) ≤ Meνt0e−
ν
ω
t , ∀t ≥ ωt0.

On the other hand, by Corollary 1, we easily get that

distH0(S(t)B,X ) ≤ k, ∀t ∈ R
+,

for some k ≥ 0 depending (increasingly) only on R. Collecting the two above inequali-
ties, we have

distH0(S(t)B,X ) ≤ (
k +Meνt0

)
e−

ν
ω
t , ∀t ∈ R

+. (53)

Applying once more Lemma 7, from (13), (52)–(53) and Lemma 5, we conclude that

distH0(S(t)B, E) ≤ Je−
κ
ω
t , ∀t ∈ R

+,

where J = J (R) is an increasing function of R, and κ > 0. Observe that both J and κ
are independent of ω ≥ ω0. ��
Remark 9. We want to spend a few words to say what happens when ω → 0. All the
results clearly hold (ω0 can be chosen arbitrarily small), but there will be dependencies
on ω. For instance, the set B1 (and, consequently, A and E) is bounded in H1 with a
bound that blows up as ω → 0. Precisely, the bound is proportional to ω−2n, where
n = n(γ ) is the number of steps required in the proof of Theorem 5. Analogously, the
exponential convergence rate tends to infinity as ω → 0, as well as the upper bound for
dimF E .

Remark 10. Let us conclude the paper with a consideration. We have seen that the frac-
tal dimension of the exponential attractor (and thus of the attractor) remains bounded
as ω → ∞. Clearly, our estimates provide just upper bounds. Nonetheless it seems
reasonable that dimF E tends to infinity as ω → 0. Then, as ω gets bigger, the fractal
dimension decreases (at least, its upper bound) until it stabilizes. Still, the exponential
convergence rate gives some information, namely, things start to get worse as soon as
ω is too large. So our analysis seems to suggest, contrary to what is maintained in [17],
that dimF E is not a decreasing function of ω, but attains a minimum at some ω∗.
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