Università Cattolica del Sacro Cuore

Sede di Brescia

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

CORSO DI ISTITUZIONI DI ALGEBRA SUPERIORE I

PROF. CLARA FRANCHI
ESERCIZI SVOLTI
RACCOLTI DA ELENA ROSSI

Anno Accademico 2009-2010

Esercizi

1. Si determinino il polinomio minimo di $\sqrt[3]{5}$ su \mathbb{Q} , il grado dell'estensione $\mathbb{Q}(\sqrt[3]{5})$: \mathbb{Q} e una sua base.

Svolgimento.

Il polinomio x^3-5 ha come radici $\sqrt[3]{5}$, $\omega\sqrt[3]{5}$, $\omega^2\sqrt[3]{5}$ con $\omega=e^{\frac{2}{3}\pi i}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$. Il polinomio minimo di $\sqrt[3]{5}$ è proprio x^3-5 : infatti è monico, irriducibile in $\mathbb{Q}[x]$ per il Criterio di Eisenstein, con p=5, e ammette $\sqrt[3]{5}$ come radice.

Per il Teorema di Struttura delle estensioni semplici:

$$|\mathbb{Q}(\sqrt[3]{5}) : \mathbb{Q}| = \deg(x^3 - 5) = 3$$

e quindi $\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}$ è un'estensione algebrica di grado 3.

Una sua base è : $\mathcal{B} = \{1, \sqrt[3]{5}, \sqrt[3]{25}\}$

e
$$\mathbb{Q}(\sqrt[3]{5}) = \{a + b\sqrt[3]{5} + c\sqrt[3]{25} | a, b, c \in \mathbb{Q}\}.$$

2. Dimostrare che $\mathbb{Q}(1+\sqrt{3})=\mathbb{Q}(\sqrt{3})$

Svolgimento.

Si ha che $1 + \sqrt{3} \in \mathbb{Q}(\sqrt{3})$ perchè $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} | a, b \in \mathbb{Q}\}.$

Inoltre $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3})$. Ne segue: $\mathbb{Q}(1+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{3})$.

Viceversa $\sqrt{3} = (1 + \sqrt{3}) - 1 \in \mathbb{Q}(1 + \sqrt{3})$ e $\mathbb{Q} \subseteq \mathbb{Q}(1 + \sqrt{3})$.

Allora
$$\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{Q}(1+\sqrt{3})$$
.

Osservazione: per ogni $\alpha \in \mathbb{Q}$, $\mathbb{Q}(\alpha) = \mathbb{Q}$: infatti $\mathbb{Q}(\alpha)$ è il piú piccolo campo contenente \mathbb{Q} ed α , e quindi è \mathbb{Q} .

3. Provare che $\mathbb{Q}(\sqrt{6}, \sqrt{7}) = \mathbb{Q}(\sqrt{6} - \sqrt{7})$

Svolgimento.

 (\supseteq) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{6}, \sqrt{7})$. Inoltre $\sqrt{6} - \sqrt{7} \in \mathbb{Q}(\sqrt{6}, \sqrt{7})$ perchè è ottenuto da due elementi di $\mathbb{Q}(\sqrt{6}, \sqrt{7})$ mediante un'operazione di campo.

Allora $\mathbb{Q}(\sqrt{6} - \sqrt{7}) \subseteq \mathbb{Q}(\sqrt{6}, \sqrt{7}).$

 (\subseteq) Sia $u := \sqrt{6} - \sqrt{7}$. Allora: $u + \sqrt{7} = \sqrt{6}$. Eleviamo al quadrato:

$$(u+\sqrt{7})^2 = (\sqrt{6})^2 \Longrightarrow u^2 + 2u\sqrt{7} + 7 = 6 \Longrightarrow$$
$$-u^2 - 1$$

$$2u\sqrt{7} = -u^2 - 1 \Longrightarrow \sqrt{7} = \frac{-u^2 - 1}{2u} \in \mathbb{Q}(u) = \mathbb{Q}(\sqrt{6} - \sqrt{7}).$$
Allors si ha ancho $\sqrt{6} = u + \sqrt{7} \in \mathbb{Q}(u)$. Ovviamento $\mathbb{Q} \subset \mathbb{Q}(u)$

Allora si ha anche $\sqrt{6} = u + \sqrt{7} \in \mathbb{Q}(u)$. Ovviamente $\mathbb{Q} \subseteq \mathbb{Q}(u)$. Quindi $\mathbb{Q}(\sqrt{6}, \sqrt{7}) \subseteq \mathbb{Q}(\sqrt{6} - \sqrt{7})$.

4. Determinare il grado di $\mathbb{Q}(\sqrt[3]{2},i):\mathbb{Q}$ e il polinomio minimo di $\sqrt[3]{2}+i$ su \mathbb{Q} . Dimostrare che $\mathbb{Q}(\sqrt[3]{2},i)=\mathbb{Q}(\sqrt[3]{2}+i)$.

Svolgimento.

Per la formula dei gradi:

$$|\mathbb{Q}(\sqrt[3]{2},i):\mathbb{Q}| = |\mathbb{Q}(\sqrt[3]{2},i):\mathbb{Q}(\sqrt[3]{2})||\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}|$$

$$\mathbb{Q}(\sqrt[3]{2},i)$$

$$\mathbb{Q}(\sqrt[3]{2},i)$$

- $|\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}|=3$ perchè min $\mathbb{Q},\sqrt[3]{2}(x)=x^3-2$ (il polinomio è irriducibile per il Criterio di Eisenstein e ammette $\sqrt[3]{2}$ come radice).
- $|\mathbb{Q}(\sqrt[3]{2},i):\mathbb{Q}(\sqrt[3]{2})|=?$

Cerchiamo il polinomio minimo min $_{\mathbb{Q}(\sqrt[3]{2}),i}(x)$.

Sicuramente x^2+1 è irriducibile in $\mathbb{Q}[x]$. Esso è irriducibile anche in $\mathbb{Q}(\sqrt[3]{2})[x]$: infatti, se non lo fosse, sarebbe il prodotto di due fattori di primo grado, cioè

$$x^{2} + 1 = (x - x_{1})(x - x_{2}) = (x - i)(x + i)$$

da cui seguirebbe $i \in \mathbb{Q}(\sqrt[3]{2})$, il che è assurdo perchè $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$.

Allora min $\mathbb{Q}(\sqrt[3]{2})_{,i}(x) = x^2 + 1$ e quindi $|\mathbb{Q}(\sqrt[3]{2},i) : \mathbb{Q}(\sqrt[3]{2})| = 2$.

Ne segue $|\mathbb{Q}(\sqrt[3]{2}, i) : \mathbb{Q}| = 3 \cdot 2 = 6.$

Proviamo che $\mathbb{Q}(\sqrt[3]{2},i) = \mathbb{Q}(\sqrt[3]{2}+i)$

(\supseteq) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}, i)$. Inoltre $\sqrt[3]{2} + i \in \mathbb{Q}(\sqrt[3]{2}, i)$ perchè è ottenuto da due elementi di $\mathbb{Q}(\sqrt[3]{2}, i)$ mediante un'operazione di campo.

Allora $\mathbb{Q}(\sqrt[3]{2}+i) \subseteq \mathbb{Q}(\sqrt[3]{2},i)$.

(\subseteq) Sia $u := \sqrt[3]{2} + i$. Allora: $u - i = \sqrt[3]{2}$. Eleviamo al cubo:

$$(u-i)^3 = (\sqrt[3]{2})^3 \Longrightarrow u^3 - 3u^2i - 3u + i = 2 \Longrightarrow$$

$$i(3u^2 - 1) = u^3 - 3u - 2 \Longrightarrow i = \frac{u^3 - 3u - 2}{3u^2 - 1} \in \mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{2} + i).$$

Allora si ha anche $\sqrt[3]{2} = u - i \in \mathbb{Q}(u)$. Ovviamente $\mathbb{Q} \subseteq \mathbb{Q}(u)$. Quindi $\mathbb{Q}(\sqrt[3]{2}, i) \subseteq \mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{2} + i)$.

Sappiamo che deg (min $\mathbb{Q}, \sqrt[3]{2}+i(x)$) = $|\mathbb{Q}(\sqrt[3]{2}+1) : \mathbb{Q}| = 6$. Sia $u := \sqrt[3]{2}+i$. Per quanto visto prima abbiamo $u^3 - 3u - 2 = (3u^2 - 1)i$. Eleviamo al quadrato:

$$u^6 + 9u^2 + 4 - 6u^4 - 4u^3 + 12u = -(9u^4 - 6u^2 + 1)$$

$$u^6 + 3u^4 - 4u^3 + 3u^2 + 12u + 5 = 0$$

Poniamo $p(x) = x^6 + 3x^4 - 4x^3 + 3x^2 + 12x + 5$, allora p(u) = 0.

Il polinomio minimo è monico, divide p(x) ed ha grado 6: allora $p(x) = \min_{\mathbb{Q}, \sqrt[3]{2} + i}(x)$.

5. Provare che $\sqrt{2} \notin \mathbb{Q}(\sqrt[3]{2})$.

Svolgimento.

 $|\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}|=3$ perchè $\min_{\mathbb{Q},\sqrt[3]{2}}(x)=x^3-2$.

 $|\mathbb{Q}(\sqrt{2}:\mathbb{Q})=2$ perchè $\min_{\mathbb{Q},\sqrt{2}}(x)=x^2-2.$

Se fosse $\sqrt{2} \in \mathbb{Q}(\sqrt[3]{2})$ si dovrebbe avere $|\mathbb{Q}(\sqrt{2}) : \mathbb{Q}| ||\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}||$ assurdo. \square

- **6.** Siano $K \leq L \leq M$ e $[M:K] < \infty$. Mostrare che:
 - 1. se $|M:K| = |L:K| \Rightarrow M = L;$

2. se $|M:L| = |M:K| \Rightarrow L = K$.

Svolgimento.

Per la formula dei gradi: |M:K| = |M:L||L:K|

1. Se |M:K|=|L:K|, semplificando abbiamo |M:L|=1. Allora $\exists v \in M, v \neq 0$ tale che $\{v\}$ è base per M su L. Quindi M=Lv. Dato che M è un campo, v è invertibile e $L=Mv^{-1}$. Quindi L è un ideale non nullo di M. Poichè gli ideali di un campo sono solo $\{0_M\}$ e M si ha che L=M.

- 2. Se |M:L|=|M:K|, semplificando abbiamo $|L:K|=1 \Longrightarrow L=K$.
- 7. Siano $K \leq L_1, L_2 \leq M$. Supponiamo $|L_i:K| = n_i, i = 1, 2$. Provare che:
 - 1. $|L_1 \cap L_2 : K|$ divide $(n_1, n_2) = d$.
 - 2. $|\langle L_1, L_2 \rangle : L_i| \le n_i \text{ con } i \ne j.$
 - 3. se $(n_1, n_2) = 1$, allora $L_1 \cap L_2 = K$ e $| < L_1, L_2 >: K | = n_1 n_2$.

Svolgimento.

1. Poniamo $|L_1 \cap L_2 : K| = m$.

$$|L_1:K|=|L_1:L_1\cap L_2||L_1\cap L_2:K|\Longrightarrow m|n_1$$

$$|L_2:K|=|L_2:L_1\cap L_2||L_1\cap L_2:K|\Longrightarrow m|n_2$$

Per la definizione di MCD: $m|n_1 \in m|n_2 \Longrightarrow m|d$.

2. Vogliamo dimostrare che $|< L_1, L_2>: L_1| \le n_2$. Poniamo $R=< L_1, L_2>$. Poichè $|L_2:K|=n_2$ si ha che $L_2=K(\alpha_1,\ldots,\alpha_r)$ per qualche $\alpha_i\in L_2$, $i=1,\ldots,r$. Allora $R=L_1(\alpha_1,\ldots,\alpha_r)$ (R è il piú piccolo campo contenente L_1 e L_2 .)

Procediamo per induzione su r.

Se r = 1: $L_2 = K(\alpha_1)$ e $R = L_1(\alpha_1)$. Si ha che $|R : L_1| = \deg(\min_{L_1,\alpha_1}(x))$, $|L_2 : K| = \deg(\min_{K,\alpha_1}(x))$. Sappiamo che min K_1 è un polinomio a coefficienti in $K \subseteq L_1$ che si annulla in K_1 . Allora min K_1 e quindi K_1 deg K_1 e quindi K_2 deg K_1 e quindi K_2 deg K_1 e quindi K_2 e quindi K_1 e quindi K_2 e quindi K_1 e quindi K_2 e quindi K_2 e quindi K_3 e quindi K_4 e q

Sia ora r>1. L'ipotesi induttiva è : $|L_1(\alpha_1,\ldots,\alpha_{r-1}):L_1|\leq |K(\alpha_1,\ldots,\alpha_{r-1}):K|$

Si ha che $R = L_1(\alpha_1, \ldots, \alpha_r) = L_1(\alpha_1, \ldots, \alpha_{r-1})(\alpha_r)$. Ripetendo il ragionamento fatto si ha deg (min $L_1(\alpha_1, \ldots, \alpha_{r-1}), \alpha_r(x)$) \leq deg (min $K(\alpha_1, \ldots, \alpha_{r-1}), \alpha_r(x)$). Per la formula dei gradi si ha:

$$|R: L_{1}| = |L_{1}(\alpha_{1}, \dots, \alpha_{r}) : L_{1}(\alpha_{1}, \dots, \alpha_{r-1})||L_{1}(\alpha_{1}, \dots, \alpha_{r-1}) : L_{1}| \leq$$

$$\leq \deg(\min_{L_{1}(\alpha_{1}, \dots, \alpha_{r-1}), \alpha_{r}}(x))|K(\alpha_{1}, \dots, \alpha_{r-1}) : K| \leq$$

$$\leq \deg(\min_{K(\alpha_{1}, \dots, \alpha_{r-1}), \alpha_{r}}(x))|K(\alpha_{1}, \dots, \alpha_{r-1}) : K| =$$

$$= |K(\alpha_{1}, \dots, \alpha_{r}) : K(\alpha_{1}, \dots, \alpha_{r-1})||K(\alpha_{1}, \dots, \alpha_{r-1}) : K| =$$

$$= |K(\alpha_{1}, \dots, \alpha_{r}) : K| = |L_{2} : K| = n_{2}.$$

- 3. Per il punto (1) : $|L_1 \cap L_2 : K| | (n_1, n_2) = 1 \Longrightarrow L_1 \cap L_2 = K$. $x = | < L_1, L_2 >: K| = | < L_1, L_2 >: L_i | |L_i : K|$ e quindi $n_i | x$ per i = 1, 2. $\text{MCD}(n_1, n_2) = 1 \Longrightarrow n_1 n_2 | x \Longrightarrow x \ge n_1 n_2$. Inoltre per il punto (2) abbiamo che: $x = | < L_1, L_2 >: K | = | < L_1, L_2 >: L_2 | |L_2 : K | \le n_1 n_2$ Allora $x = n_1 n_2$.
- 8. Sia L:K un'estensione, |L:K|=p primo. Dimostrare che se H è un campo intermedio tra K e L $(K\leq H\leq L)$ allora o H=K o H=L.

Svolgimento.

$$p = |L:K| = |L:H||H:K| = ab$$

Poichè $p \in \mathbb{Z}$ è primo i suoi unici divisori positivi sono 1 e p. Quindi si ha:

$$a = 1 \Longrightarrow |L:H| = 1 \Longrightarrow H = L$$

oppure

$$b = 1 \Longrightarrow |H:K| = 1 \Longrightarrow H = K.$$

9. Sia $\alpha \in \mathbb{C}$ tale che min $\mathbb{Q}, \alpha(x) = x^2 + x + 1$. Mostrare che $\alpha^2 - 1 \neq 0$. Scrivere l'elemento $\frac{\alpha^2 + 1}{\alpha^2 - 1} \in \mathbb{Q}(\alpha)$ nella forma $a + b\alpha$, con $a, b \in \mathbb{Q}$.

Svolgimento.

Si ha che $\alpha^2 + \alpha + 1 = 0$. Se per assurdo fosse $\alpha^2 - 1 = 0 \Longrightarrow \alpha^2 = 1 \Longrightarrow \alpha = \pm 1$ Allora si avrebbe

$$\alpha^2 + \alpha + 1 = \begin{cases} 3 & \text{se } \alpha = +1 \\ 1 & \text{se } \alpha = -1 \end{cases} \implies \neq 0.$$

Quindi necessariamente $\alpha^2 - 1 \neq 0$.

 $\mathbb{Q}(\alpha)$ è un'est ensione semplice e $|\mathbb{Q}(\alpha):\mathbb{Q}|=2,$ base $\{1,\alpha\}.$ $\alpha^2=-\alpha-1$

$$\frac{\alpha^2 + 1}{\alpha^2 - 1} = \frac{-\alpha - 1 + 1}{-\alpha - 1 - 1} = \frac{-\alpha}{-\alpha - 2} = \alpha(\alpha + 2)^{-1}$$

Per calcolare $(\alpha+2)^{-1}$ dividiamo x^2+x+1 per x+2: otteniamo

$$x^{2} + x + 1 = (x + 2)(x - 1) + 3.$$

Sostituiamo α : $0 = (\alpha + 2)(\alpha - 1) + 3 \implies -3 = (\alpha + 2)(\alpha - 1)$

Dividiamo per -3:

$$\frac{(\alpha+2)(\alpha-1)}{-3} = 1$$
 \Rightarrow $(\alpha+2)^{-1} = \frac{(1-\alpha)}{3}$

Allora otteniamo:

$$\frac{\alpha^2 + 1}{\alpha^2 - 1} = \alpha(\alpha + 2)^{-1} = \alpha \frac{(1 - \alpha)}{3} = \frac{(\alpha - \alpha^2)}{3} = \frac{(\alpha + \alpha + 1)}{3} = \frac{1}{3} + \frac{2}{3}\alpha.$$

- **10.** Sia $u = 2i + \sqrt[3]{5} \in \mathbb{C}$.
 - 1. Si verifichi che $i \in \mathbb{Q}(u)$ e si concluda che $\mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{5}, i)$.
 - 2. Calcolare $|\mathbb{Q}(u):\mathbb{Q}|$, $|\mathbb{Q}(u):\mathbb{Q}(\sqrt[3]{5})|$, $|\mathbb{Q}(u):\mathbb{Q}(i)|$.
 - 3. Determinare i polinomi minimi min $\mathbb{Q}(\sqrt[3]{5}), u(x)$ e min $\mathbb{Q}(i), u(x)$.

Svolgimento.

1.
$$u = 2i + \sqrt[3]{5}$$
 $\Rightarrow u - 2i = \sqrt[3]{5}$ $\Rightarrow (u - 2i)^3 = 5$
 $\Rightarrow u^3 - 6iu^2 - 12u + 8i = 5$ $\Rightarrow i(8 - 6u^2) = 5 + 12u - u^3$ \Rightarrow
 $i = \frac{5 + 12u - u^3}{8 - 6u^2} \in \mathbb{Q}.$

$$\sqrt[3]{5} = u - 2i \in \mathbb{Q}(u)$$
. Quindi $\mathbb{Q}(\sqrt[3]{5}, i) \subseteq \mathbb{Q}(u)$. Viceversa $\mathbb{Q}(u) \subseteq \mathbb{Q}(\sqrt[3]{5}, i)$ perchè $u \in \mathbb{Q}(\sqrt[3]{5}, i)$. Dunque $\mathbb{Q}(\sqrt[3]{5}, i) = \mathbb{Q}(u)$.

- 2. Poichè min $_{\mathbb{Q},\sqrt[3]{5}}(x)=x^3-5$, si ha che $|\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}|=3$. Poichè min $_{\mathbb{Q},i}(x)=x^2+1$, si ha che $|\mathbb{Q}(i):\mathbb{Q}|=2$. Poichè $\mathrm{MCD}(2,3)=1$ per l'esercizio (7.3) si ha che $\mathbb{Q}(\sqrt[3]{5})\cap\mathbb{Q}(i)=\mathbb{Q}$ e, poichè $\mathbb{Q}(u)=\mathbb{Q}(\sqrt[3]{5},i)$, $|\mathbb{Q}(u):\mathbb{Q}|=6$.
- 3. $u=2i+\sqrt[3]{5} \Rightarrow u-\sqrt[3]{5}=2i \Rightarrow (u-\sqrt[3]{5})^2=-4 \Rightarrow$ $u^2-2u\sqrt[3]{5}+\sqrt[3]{25}=-4$ Sia $p(x)=x^2-2x\sqrt[3]{5}+\sqrt[3]{25}+4$: $p(x)\in\mathbb{Q}(\sqrt[3]{5})[x]$, è monico e si annulla in u. Per la formula dei gradi si ha che $|\mathbb{Q}(u):\mathbb{Q}(\sqrt[3]{5})|=2=\deg(\min_{\mathbb{Q}(\sqrt[3]{5}),u}(x))$. Quindi p(x) è irriducibile in $\mathbb{Q}(\sqrt[3]{5})[x]$. Allora:

$$\min_{\mathbb{Q}(\sqrt[3]{5}),u}(x) = p(x) = x^2 - 2x\sqrt[3]{5} + \sqrt[3]{25} + 4.$$

Dal punto 1. sappiamo che $u^3 - 6iu^2 - 12u + 8i = 5$. Sia

$$p(x) = x^3 - 6ix^2 - 12x + 8i - 5.$$

 $p(x) \in \mathbb{Q}(i)$, è monico e si annulla in u. Per la formula dei gradi si ha che $3 = |\mathbb{Q}(u): \mathbb{Q}(i)| = \deg (\min_{\mathbb{Q}(i),u}(x))$ e quindi p(x) è irriducibile in $\mathbb{Q}(i)[x]$. Allora:

$$\min_{\mathbb{Q}(i),u} = p(x) = x^3 - 6ix^2 - 12x + 8i - 5.$$

11. Calcolare min $\mathbb{Q},\sqrt{2}+\sqrt{5}(x)$.

Svolgimento.

Sia
$$u = \sqrt{2} + \sqrt{5}$$
 $\Rightarrow u^2 = (\sqrt{2} + \sqrt{5})^2 = 2 + 5 + 2\sqrt{10}$ \Rightarrow $u^2 - 7 = 2\sqrt{10}$ $\Rightarrow u^4 - 14u^2 + 49 = 40$ $\Rightarrow u^4 - 14u^2 + 9 = 0$

Poniamo

$$p(x) = x^4 - 14x^2 + 9$$

 $p(x) \in \mathbb{Q}[x]$, è monico e si annulla su $u = \sqrt{2} + \sqrt{5}$. Verifichiamo che p(x) non ha radici in \mathbb{Q} e quindi non ha fattori di primo grado.

Poniamo $t = x^2$. Allora $t_{1,2} = 7 \pm \sqrt{40} = 7 \pm 2\sqrt{10}$.

Quindi
$$x_{1,2,3,4} = \pm \sqrt{7 \pm 2\sqrt{10}} \notin \mathbb{Q}$$
.

Verifichiamo che p(x) non è decomponibile in fattori di secondo grado. Siano $a, b, c, d \in \mathbb{Q}$ tali che:

$$x^{4} - 14x^{2} + 9 = (x^{2} + ax + b)(x^{2} + cx + d) =$$

$$= x^{4} + (a + c)x^{3} + (b + ac + d)x^{2} + (ad + bc)x + bd$$

$$\begin{cases} a + c = 0 \\ b + ac + d = -14 \\ ad + bc = 0 \\ bd = 9 \end{cases} \Rightarrow \begin{cases} c = -a \\ b + d - a^{2} = 14 \\ a(d - b) = 0 \\ bd = 9 \end{cases}$$

Per il Lemma di Gauss, un polinomio monico a coefficienti interi è irriducibile in $\mathbb{Q}[x]$ se e solo se lo è in $\mathbb{Z}[x]$. Quindi possiamo assumere che $a, b, c, d \in \mathbb{Z}$. Allora:

• se a = 0, abbiamo

$$\begin{cases} c = 0 \\ b + d = -14 \\ bd = 9 \end{cases} \Rightarrow \begin{aligned} d = -b - 14 \\ b^2 + 14b + 9 = 0 \end{aligned}$$

Quindi $b_{1,2} = -7 \pm \sqrt{40} \notin \mathbb{Z}$: contraddizione.

• se b-d=0, abbiamo

$$\begin{cases} b = d \\ c = -a \\ b^2 = 9 \\ 2b - a^2 = -14 \end{cases} \Rightarrow \begin{cases} b = \pm 3 \\ d = \pm 3 \\ a^2 = 14 + 2b = \begin{cases} 14 + 6 = 20 & \text{se } b = 3 \\ 14 - 6 = 8 & \text{se } b = -3 \end{cases}$$

Quindi $a \notin \mathbb{Z}$: contraddizione.

Allora p(x) è irriducibile in $\mathbb{Q}[x]$: è il polinomio minimo

$$\min_{\mathbb{Q},\sqrt{2}+\sqrt{5}}(x) = x^4 - 14x^2 + 9.$$

Osservazione: le radici del polinomio $x^4 - 14x^2 + 9$ sono

$$\pm(\sqrt{2}\pm\sqrt{5}) = \pm\sqrt{7\pm2\sqrt{10}}$$

Infatti: $7 \pm 2\sqrt{10} = 2 + 5 \pm 2\sqrt{10} = (\sqrt{2} \pm \sqrt{5})^2$

12. Scrivere gli elementi di $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q})$.

Svolgimento.

Per l'esercizio precedente sappiamo che

$$\min_{\mathbb{Q},\sqrt{2}+\sqrt{5}}(x) = x^4 - 14x^2 + 9$$

e le sue radici sono $\pm(\sqrt{2}\pm\sqrt{5})$.

Una base di $\mathbb{Q}(\sqrt{2} + \sqrt{5}) : \mathbb{Q}$ come \mathbb{Q} -spazio vettoriale è :

$$1, \sqrt{2} + \sqrt{5}, (\sqrt{2} + \sqrt{5})^2, (\sqrt{2} + \sqrt{5})^3$$

Quindi

$$\mathbb{Q}(\sqrt{2} + \sqrt{5}) = \{a + b(\sqrt{2} + \sqrt{5}) + c(\sqrt{2} + \sqrt{5})^2 + d(\sqrt{2} + \sqrt{5})^3 | a, b, c, d \in \mathbb{Q}\}$$

Gli elementi di Gal $(\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q})$ sono completamente determinati dall'azione sugli elementi della base. Allora sia $\sigma \in \text{Gal}(\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q})$:

$$\begin{split} &\sigma(1) = 1 \\ &\sigma(\sqrt{2} + \sqrt{5}) = \text{radice di } x^4 - 14x^2 + 9 \\ &\sigma((\sqrt{2} + \sqrt{5})^2) = [\sigma(\sqrt{2} + \sqrt{5})]^2 \\ &\sigma((\sqrt{2} + \sqrt{5})^3) = [\sigma(\sqrt{2} + \sqrt{5})]^3 \end{split}$$

Allora σ è completamente determinato da $\sigma(\sqrt{2} + \sqrt{5})$. Nel nostro caso, tutte le scelte per $\sigma(\sqrt{2} + \sqrt{5})$ nell'insieme delle radici del polinomio minimo $x^4 - 14x^2 + 9$ vanno bene. ¹

Allora:

$$\sigma_{1}(\sqrt{2} + \sqrt{5}) = \sqrt{2} + \sqrt{5} \implies \sigma_{1} = \operatorname{Id}_{Q(\sqrt{2} + \sqrt{5})}$$

$$\sigma_{2}(\sqrt{2} + \sqrt{5}) = -(\sqrt{2} + \sqrt{5})$$

$$\sigma_{3}(\sqrt{2} + \sqrt{5}) = \sqrt{2} - \sqrt{5}$$

$$\sigma_{4}(\sqrt{2} + \sqrt{5}) = -\sqrt{2} + \sqrt{5}.$$

13. Riferendosi all'esercizio precedente (12), scrivere la matrice di σ_3 rispetto alla base $\{1, u, u^2, u^3\}$, con $u = \sqrt{2} + \sqrt{5}$.

Svolgimento.

La matrice ha sulle colonne le immagini degli elementi della base, scritte rispetto alla base fissata:

$$(\sigma_3(1) | \sigma_3(\sqrt{2} + \sqrt{5}) | \sigma_3((\sqrt{2} + \sqrt{5})^2) | \sigma_3((\sqrt{2} + \sqrt{5})^3)) \in Mat_4(\mathbb{Q})$$

Ovviamente $\sigma_3(1) = 1$.

Per come è stata definita σ_3 : $\sigma_3(\sqrt{2}+\sqrt{5})=\sqrt{2}-\sqrt{5}$

$$\sqrt{2} - \sqrt{5} = a + b(\sqrt{2} + \sqrt{5}) + c(\sqrt{2} + \sqrt{5})^2 + d(\sqrt{2} + \sqrt{5})^3 =$$

$$= a + b(\sqrt{2} + \sqrt{5}) + c(7 + 2\sqrt{10}) + d(17\sqrt{2} + 11\sqrt{5}) =$$

$$= (a + 7c) + (b + 11d)\sqrt{2} + (b + 11d)\sqrt{5} + 2c\sqrt{10}$$

$$\begin{cases} a+7c=0 \\ b+17d=1 \\ b+11d=-1 \\ 2c=0 \end{cases} \implies \begin{cases} c=0 \\ a=0 \\ b=1-17d \\ 1-17d+11d+1=0 \end{cases} \implies \begin{cases} a=0 \\ b=-\frac{14}{3} \\ c=0 \\ d=\frac{1}{3} \end{cases}$$

¹Se non stessimo considerando il polinomio minimo, ma, ad esempio, $(x^2 - 2)(x^2 + 1)$, potremmo mandare $\sqrt{2}$ solo in $\pm \sqrt{2}$.

Allora:

$$\sigma_3(\sqrt{2} + \sqrt{5}) = -\frac{14}{3}(\sqrt{2} + \sqrt{5}) + \frac{1}{3}(\sqrt{2} + \sqrt{5})^3$$

Consideriamo: $\sigma_3((\sqrt{2} + \sqrt{5})^2) = (\sqrt{2} - \sqrt{5})^2 = 7 - 2\sqrt{10}$

$$\begin{cases} a + 7c = 7 \\ b + 17d = 0 \\ b + 11d = 0 \\ 2c = -2 \end{cases} \implies \begin{cases} c = -1 \\ a = 14 \\ b = -11d \\ 6d = 0 \end{cases} \implies \begin{cases} a = 14 \\ b = 0 \\ c = -1 \\ d = 0 \end{cases}$$

Allora:

$$\sigma_3((\sqrt{2}+\sqrt{5})^2) = 14 - (\sqrt{2}+\sqrt{5})^2$$

Consideriamo: $\sigma_3((\sqrt{2} + \sqrt{5})^3) = (\sqrt{2} - \sqrt{5})^3 = 17\sqrt{2} - 11\sqrt{5}$

$$\begin{cases} a+7c=0 \\ b+17d=17 \\ b+11d=-11 \\ 2c=0 \end{cases} \implies \begin{cases} c=0 \\ a=0 \\ b=-11-11d \\ -11-11d+17d=17 \end{cases} \implies \begin{cases} a=0 \\ b=-\frac{187}{3} \\ c=0 \\ d=\frac{14}{3} \end{cases}$$

Allora:

$$\sigma_3((\sqrt{2}+\sqrt{5})^3) = -\frac{187}{3}(\sqrt{2}+\sqrt{5}) + \frac{14}{3}\sqrt{2}+\sqrt{5})^3$$

Quindi:

$$\begin{pmatrix}
1 & 0 & 14 & 0 \\
0 & -\frac{14}{3} & 0 & -\frac{187}{3} \\
0 & 0 & -1 & 0 \\
0 & \frac{1}{3} & 0 & \frac{14}{3}
\end{pmatrix}$$

- 14. Sia $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.
 - 1. Determinare min $\mathbb{Q}_{,\alpha}(x)$ e min $\mathbb{Q}(\sqrt{2})_{,\alpha}(x)$.
 - 2. Scrivere una \mathbb{Q} -base per $\mathbb{Q}(\alpha)$.
 - 3. Dire se $\mathbb{Q}(\alpha)$ è estensione di Galois di \mathbb{Q} .
 - 4. Descrivere gli elementi del gruppo Gal $(\mathbb{Q}(\alpha) : \mathbb{Q})$ e verificare che Gal $(\mathbb{Q}(\alpha) : \mathbb{Q})$ è ciclico.

Svolgimento.

1.
$$\alpha = \sqrt{2 + \sqrt{2}}$$
 \implies $\alpha^2 = 2 + \sqrt{2}$ \implies $\alpha^2 - 2 = \sqrt{2}$ \implies $(\alpha^2 - 2)^2 = 2$ \implies $\alpha^4 - 4\alpha^2 + 4 = 2$ \implies $\alpha^4 - 4\alpha^2 + 2 = 0$

 $p(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$ è monico e si annulla su α . Per il criterio di Eisenstein (con p=2) p(x) è irriducibile su \mathbb{Q} .

Allora min $_{\mathbb{Q},\alpha}(x) = x^4 - 4x^2 + 2$.

Per determinare min $\mathbb{Q}(\sqrt{2}),\alpha(x)$ guardiamo ai passaggi effettuati per trovare p(x). In particolare sappiamo che $\alpha^2 - 2 = \sqrt{2}$.

Il polinomio $x^2-2-\sqrt{2}$ appartiene a $\mathbb{Q}(\sqrt{2})[x]$, è monico e si annulla su α . Inoltre sappiamo che

$$4 = \deg \left(\min_{\mathbb{Q}, \alpha} (x) \right) = |\mathbb{Q}(\alpha) : \mathbb{Q}| = |\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})||\mathbb{Q}(\sqrt{2}) : \mathbb{Q}|$$

e
$$|\mathbb{Q}(\sqrt{2}):\mathbb{Q}|=2$$
. Quindi $2=|\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt{2})|=\deg(\min_{\mathbb{Q}(\sqrt{2}),\alpha}(x))$, Pertanto $\min_{\mathbb{Q}(\sqrt{2}),\alpha}(x)=x^2-2-\sqrt{2}$.

2. Per il punto precedente sappiamo che

$$|\mathbb{Q}(\alpha):\mathbb{Q}|=4$$

Quindi una \mathbb{Q} - base per $\mathbb{Q}(\alpha)$ è $\mathcal{B} = \{1, \alpha, \alpha^2, \alpha^3\}$.

3. Sappiamo che $\mathbb{Q}(\alpha)$ è estensione di Galois di \mathbb{Q} se e solo se $\mathbb{Q}(\alpha)$ è campo di spezzamento di un polinomio separabile.

Sia $f(x) = x^4 - 4x^2 + 2$. $\mathbb{Q}(\alpha)$ è l'estensione che otteniamo aggiungendo a \mathbb{Q} una radice del polinoio f. $\mathbb{Q}(\alpha)$ è campo di spezzamento di f se tutte le radici di f sono contenute in $\mathbb{Q}(\alpha)$.

Radici di
$$f$$
: $\pm \sqrt{2 \pm \sqrt{2}}$

Allora si ha che:

$$\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{Q}(\alpha)$$
$$-\alpha = -\sqrt{2 + \sqrt{2}} \in \mathbb{Q}(\alpha)$$

Consideriamo ora $\sqrt{2-\sqrt{2}}$:

$$\sqrt{2 - \sqrt{2}} = \frac{\sqrt{2 - \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}{\sqrt{2 + \sqrt{2}}} = \frac{\sqrt{4 - 2}}{\sqrt{2 + \sqrt{2}}} = \frac{\sqrt{2}}{\alpha} = \frac{\alpha^2 - 2}{\alpha}$$

Allora $\sqrt{2-\sqrt{2}}=\frac{\alpha^2-2}{\alpha}\in\mathbb{Q}(\alpha)$, e quindi anche $-\sqrt{2-\sqrt{2}}\in\mathbb{Q}(\alpha)$.

Poichè tutte le radici di f stanno in $\in \mathbb{Q}(\alpha)$, questo è il campo di spezzamento del polinomio f su \mathbb{Q} .

Infine f è separabile, perchè è irriducibile su $\mathbb Q$ e tutte le sue radici sono distinte.

Si conclude che $\in \mathbb{Q}(\alpha)$ è estensione di Galois di \mathbb{Q} .

4. Poichè $\mathbb{Q}(\alpha)$: \mathbb{Q} è di Galois si ha che:

$$|\operatorname{Gal}(\mathbb{Q}(\alpha):\mathbb{Q})| = |\mathbb{Q}(\alpha):\mathbb{Q}| = 4$$

Gli elementi di Gal $(\mathbb{Q}(\alpha) : \mathbb{Q})$ sono univocamente determinati dalla loro azione su α e sono:

$$\sigma_1 : \alpha \mapsto \alpha \implies \sigma_1 = \operatorname{Id}_{\mathbb{Q}(\alpha)}$$

$$\sigma_2 : \alpha \mapsto -\alpha$$

$$\sigma_3 : \alpha \mapsto \sqrt{2 - \sqrt{2}} = \frac{\alpha^2 - 2}{\alpha}$$

$$\sigma_4 : \alpha \mapsto -\sqrt{2 - \sqrt{2}} = \frac{2 - \alpha^2}{\alpha}$$

Per verificare che Gal ($\mathbb{Q}(\alpha) : \mathbb{Q}$) è ciclico, cerchiamone un generatore, ossia un σ_i di periodo 4.

 $\sigma_1 = \mathrm{Id}_{\mathbb{Q}(\alpha)}$ ha periodo 1.

 σ_2 ha periodo 2, infatti:

$$\sigma_2^2(\alpha) = \sigma_2(\sigma_2(\alpha)) = \sigma_2(-\alpha) = -\sigma_2(\alpha) = -(-\alpha) = \alpha$$

 σ_3 ha periodo 4, infatti:

$$\sigma_3^2(\alpha) = \sigma_3(\sigma_3(\alpha)) = \sigma_3\left(\frac{\alpha^2 - 2}{\alpha}\right) = \frac{\sigma_3(\alpha)^2 - 2}{\sigma_3(\alpha)} = \frac{\left(\frac{\alpha^2 - 2}{\alpha}\right)^2 - 2}{\frac{\alpha^2 - 2}{\alpha}} = \frac{\frac{2 - 2\alpha^2}{\alpha^2}}{\frac{\alpha^2 - 2}{\alpha}} = \frac{2 - 2\alpha^2}{\alpha(\alpha^2 - 2)} = \frac{2 - 2(2 + \sqrt{2})}{\sqrt{2}\sqrt{2 + \sqrt{2}}} = \frac{-2 - 2\sqrt{2}}{\sqrt{2}\sqrt{2 + \sqrt{2}}} = \frac{-2 - 2\sqrt{2}}{\sqrt{2}\sqrt{2 + \sqrt{2}}} = \frac{-2(\sqrt{2} + 1)}{\sqrt{2}\sqrt{2 + \sqrt{2}}} = -\frac{\sqrt{2} + 2}{\sqrt{2}\sqrt{2 + \sqrt{2}}} = -\alpha$$

Quindi $\sigma_3^2 = \sigma_2$.

Invece:

$$\sigma_3^4(\alpha) = \sigma_3^2(\sigma_3^2(\alpha)) = \sigma_2(\sigma_2(\alpha)) = \sigma_2^2(\alpha) = \alpha$$

Possiamo concludere che Gal $(\mathbb{Q}(\alpha) : \mathbb{Q}) = \langle \sigma_3 \rangle$, e quindi Gal $(\mathbb{Q}(\alpha) : \mathbb{Q})$ è ciclico.

15. Calcolare il campo di spezzamento Σ di

$$f = (x^2 - 3)(x^2 + 2) \in \mathbb{Q}[x].$$

Calcolare $|\Sigma : \mathbb{Q}|$ e deteminare $\operatorname{Gal}(\Sigma : \mathbb{Q})$.

Svolgimento.

Le radici di f sono: $\pm \sqrt{3}$, $\pm i\sqrt{2}$.

$$\Sigma = \mathbb{Q}(\sqrt{3}, -\sqrt{3}, i\sqrt{2}, -i\sqrt{2}) = \mathbb{Q}(\sqrt{3}, i\sqrt{2})$$

$$|\Sigma:\mathbb{Q}|=|\Sigma:\mathbb{Q}(\sqrt{3})||\mathbb{Q}(\sqrt{3}):\mathbb{Q}|$$

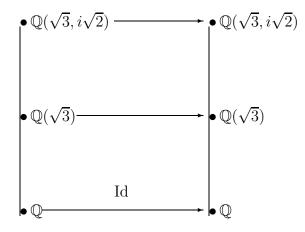
 $\Sigma: \mathbb{Q}(\sqrt{3})$ è un'estensione semplice ottenuta aggiungendo $i\sqrt{2}$. Ha grado 2 (perchè $\min_{\mathbb{Q}(\sqrt{3}), i\sqrt{2}}(x) = x^2 + 2$).

 $\mathbb{Q}(\sqrt{3}):\mathbb{Q}$ è un'estensione semplice di grado 2 (perchè $\min_{\mathbb{Q},\sqrt{3}}(x)=x^2-3$).

Allora: $|\Sigma : \mathbb{Q}| = 4$.

 Σ è un'estensione di Galois, perchè è campo di spezzamento di un polinomio separabile. Allora: $|\operatorname{Gal}(\Sigma:\mathbb{Q})| = |\Sigma:\mathbb{Q}| = 4$.

Per determinare gli elementi di Gal $(\Sigma:\mathbb{Q})$ procediamo un passo alla volta.



Osserviamo che i σ_i sono completamente determinati dalla loro azione su $\sqrt{3}$ e $i\sqrt{2}$. Possiamo estendere l'identitá di $\mathbb Q$ ad un automorfismo di $\mathbb Q(\sqrt{3})$ in due modi diversi, mandando $\sqrt{3}$ in una delle radici di $\min_{\mathbb{Q},\sqrt{3}}(x) = x^2 - 3$:

$$\tilde{\sigma_1} : \begin{cases} \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{3}) \\ \sqrt{3} \mapsto \sqrt{3} \end{cases} \quad \text{cioè } \tilde{\sigma_1} = \operatorname{Id}_{\mathbb{Q}(\sqrt{3})}$$

$$\tilde{\sigma_2} : \begin{cases} \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{3}) \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases} \quad \text{e } \tilde{\sigma_2}|_{\mathbb{Q}} = \operatorname{Id}_{\mathbb{Q}}$$

e

$$\tilde{\sigma_2}: \begin{cases} \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{3}) \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$
 e $\tilde{\sigma_2}|_{\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$

Ora possiamo estendere ognuno dei $\tilde{\sigma}_i$ ad un automorfismo di $\mathbb{Q}(\sqrt{3}, i\sqrt{2})$ in due modi diversi, mandando $i\sqrt{2}$ in una delle radici di $\min_{\mathbb{Q}(\sqrt{3}),i\sqrt{2}}(x)=x^2+2$. Otteniamo in tutto quattro \mathbb{Q} -automorfismi di $\mathbb{Q}(\sqrt{3}, i\sqrt{2})$, cioè :

$$\sigma_{1}: \begin{cases} \sqrt{3} \mapsto \sqrt{3} \\ i\sqrt{2} \mapsto i\sqrt{2} \end{cases} \qquad \sigma_{2}: \begin{cases} \sqrt{3} \mapsto -\sqrt{3} \\ i\sqrt{2} \mapsto i\sqrt{2} \end{cases}$$

$$\sigma_{3}: \begin{cases} \sqrt{3} \mapsto \sqrt{3} \\ i\sqrt{2} \mapsto -i\sqrt{2} \end{cases} \qquad \sigma_{4}: \begin{cases} \sqrt{3} \mapsto -\sqrt{3} \\ i\sqrt{2} \mapsto -i\sqrt{2} \end{cases}$$

Una base di Σ su \mathbb{Q} è data dal prodotto degli elementi di una base di $\mathbb{Q}(\sqrt{3})$ su \mathbb{Q} , cioè $\mathcal{B}_1 = \{1, \sqrt{3}\}$, per gli elementi di una base di Σ su $\mathbb{Q}(\sqrt{3})$, cioè $\mathcal{B}_2 = \{1, i\sqrt{2}\}^2$. Quindi una base è:

$$\mathcal{B} = \{1, \sqrt{3}, i\sqrt{2}, i\sqrt{6}\}.$$

Ogni elemento di Gal $(\Sigma : \mathbb{Q})$ è completamente determinato dalla sua azione sugli elementi della base e, poichè si tratta di automorfismi di campo, se $\sigma \in \operatorname{Gal}(\Sigma : \mathbb{Q})$

²Vedi la dimostrazione del teorema sulla formula dei gradi.

si ha che

$$\sigma(i\sqrt{6}) = \sigma(\sqrt{3} \cdot i\sqrt{2}) = \sigma(\sqrt{3}) \cdot \sigma(i\sqrt{2}).$$

Quindi gli automorfismi σ_i sono completamente determinati dalla loro azione su $\sqrt{3}$ e $i\sqrt{2}$.

Sappiamo che Gal $(\Sigma : \mathbb{Q})$ ha ordine 4. Allora puó essere:

$$\operatorname{Gal}(\Sigma:\mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$$
 oppure $\operatorname{Gal}(\Sigma:\mathbb{Q}) \cong \mathbb{Z}_4$

Nel primo caso tutti gli elementi dovrebbero avere periodo 2, eccetto l'unitá, nel secondo caso il gruppo è ciclico.

Si vede che $\sigma_2^2 = \operatorname{Id}_{\Sigma}$, $\sigma_3^2 = \operatorname{Id}_{\Sigma}$, $\sigma_4^2 = \operatorname{Id}_{\Sigma}$ e quindi tutti gli elementi non identici del gruppo di Galois hanno periodo 2. Pertanto $\operatorname{Gal}(\Sigma : \mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Sappiamo che, se $R = \{\pm\sqrt{3}, \pm i\sqrt{2}\}$, allora $\operatorname{Gal}(\Sigma : \mathbb{Q})$ è isomorfo ad un sottogruppo di $\operatorname{Sym}(R) = \operatorname{S}_4$ e quindi possiamo scrivere i suoi elementi come permutazioni di R. Abbiamo:

$$\begin{split} &\sigma_1 = \operatorname{Id} \\ &\sigma_2 = (\sqrt{3}, \, -\sqrt{3}) \\ &\sigma_3 = (i\sqrt{2}, \, -i\sqrt{2}) \\ &\sigma_4 = (\sqrt{3}, \, -\sqrt{3})(i\sqrt{2}, \, -i\sqrt{2}) \end{split}$$

- **16.** Sia $f(x) = x^3 2 \in \mathbb{Q}[x]$.
 - 1. Determinare il campo di spezzamento Σ di f su \mathbb{Q} e $|\Sigma:\mathbb{Q}|$.
 - 2. Scrivere gli elementi di Gal $(\Sigma : \mathbb{Q})$ come permutazioni delle radici di f e dire se il gruppo è transitivo.

3. Descrivere i sottocampi di Σ , specificando quali sono estensione normale di \mathbb{Q} .

Svolgimento.

- 1. Le radici di f sono: $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$, $\omega^2\sqrt[3]{2}$ con $\omega = e^{\frac{2\pi}{3}i}$. $\Sigma = \mathbb{Q}(\sqrt[3]{2}, \,\omega\sqrt[3]{2}, \,\omega^2\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \,\omega).$ $|\Sigma:\mathbb{Q}| = 2 \cdot 3 = 6$
- 2. $\Sigma: \mathbb{Q}$ è estensione di Galois perchè Σ è campo di spezzamento di f separabile. Quindi $|\operatorname{Gal}(\Sigma:\mathbb{Q})| = |\Sigma:\mathbb{Q}| = 6$.

Sappiamo che $\operatorname{Gal}(\Sigma:\mathbb{Q})$ è isomorfo ad un sottogruppo di S_3 e poichè $|S_3|=6$ si ha che $\operatorname{Gal}(\Sigma:\mathbb{Q})\cong S_3$.

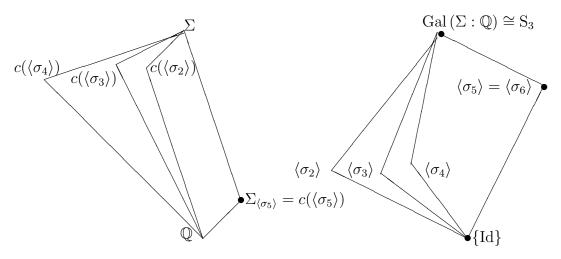
$$\sigma_1 = \operatorname{Id} \qquad \qquad \sigma_4 = (\omega \sqrt[3]{2}, \ \omega^2 \sqrt[3]{2})$$

$$\sigma_2 = (\sqrt[3]{2}, \ \omega \sqrt[3]{2}) \qquad \qquad \sigma_5 = (\sqrt[3]{2}, \ \omega^3 \sqrt[3]{2}, \ \omega^2 \sqrt[3]{2})$$

$$\sigma_3 = (\sqrt[3]{2}, \ \omega^2 \sqrt[3]{2}) \qquad \qquad \sigma_6 = (\sqrt[3]{2}, \ \omega^2 \sqrt[3]{2}, \ \omega \sqrt[3]{2}) = \sigma_5^2$$

 $\operatorname{Gal}\left(\Sigma:\mathbb{Q}\right)$ è transitivo perchè S_{3} è transitivo.

3. Applichiamo il teorema di corrispondenza di Galois:



$$\langle \sigma_2 \rangle = \{ \mathrm{Id}, \, \sigma_2 \} \qquad \langle \sigma_3 \rangle = \{ \mathrm{Id}, \, \sigma_3 \}$$

$$\langle \sigma_4 \rangle = \{ \mathrm{Id}, \, \sigma_4 \} \qquad \langle \sigma_5 \rangle = \{ \mathrm{Id}, \, \sigma_5, \, \sigma_6 \} = \langle \sigma_6 \rangle$$

L'unico sottogruppo normale di Gal $(\Sigma : \mathbb{Q})$ è $\langle \sigma_5 \rangle$.

Ad ogni sottogruppo corrisponde un sottocampo. L'unico campo che è estensione normale di \mathbb{Q} è $c(\langle \sigma_5 \rangle)$.

$$\Sigma = \mathbb{Q}(\sqrt[3]{2}, \omega)$$

• $c(\langle \sigma_2 \rangle) = \Sigma_{\langle \sigma_2 \rangle} \stackrel{\text{def}}{=} \{ \alpha \in \Sigma \mid \alpha^{\sigma} = \alpha, \ \forall \sigma \in \langle \sigma_2 \rangle \} = \{ \alpha \in \Sigma \mid \alpha^{\sigma_2} = \alpha \}$ Sicuramente $\omega^2 \sqrt[3]{2} \in c(\langle \sigma_2 \rangle)$ e $\mathbb{Q} \subseteq c(\langle \sigma_2 \rangle)$, quindi $\mathbb{Q}(\omega^2 \sqrt[3]{2}) \subseteq c(\langle \sigma_2 \rangle)$. Per quanto riguarda i gradi:

$$|c(\langle \sigma_2 \rangle) : \mathbb{Q}| = 3$$

$$|\mathbb{Q}(\omega^2 \sqrt[3]{2}) : \mathbb{Q}| = 3$$

$$\Longrightarrow \mathbb{Q}(\omega^2 \sqrt[3]{2}) = c(\langle \sigma_2 \rangle)$$

- $c(\langle \sigma_3 \rangle) = \Sigma_{\langle \sigma_3 \rangle} = \{ \alpha \in \Sigma \mid \alpha^{\sigma_3} = \alpha \}$ $\mathbb{Q}(\omega\sqrt[3]{2}) \subseteq c(\langle \sigma_3 \rangle)$ e poichè sono entrambe estensioni di grado 3 su \mathbb{Q} , ne segue che $\mathbb{Q}(\omega\sqrt[3]{2}) = c(\langle \sigma_3 \rangle)$.
- Allo stesso modo si ha che $c(\langle \sigma_4 \rangle) = \mathbb{Q}(\sqrt[3]{2}).$
- $c(\langle \sigma_5 \rangle) = \Sigma_{\langle \sigma_5 \rangle} = \{ \alpha \in \Sigma \mid \alpha^{\sigma} = \alpha, \ \forall \sigma \in \langle \sigma_5 \rangle \} = \{ \alpha \in \Sigma \mid \alpha^{\sigma_5} = \alpha \}$ (Tutti gli elementi fissati da σ_5 sono fissati anche da σ_5^2)

$$\omega^{\sigma_5} = \left(\frac{\omega\sqrt[3]{2}}{\sqrt[3]{2}}\right)^{\sigma_5} = \frac{\omega^2\sqrt[3]{2}}{\omega\sqrt[3]{2}} = \omega \quad \Longrightarrow \quad \omega \in c(\langle \sigma_5 \rangle)$$

 $\mathbb{Q}(\omega) \subseteq c(\langle \sigma_5 \rangle)$ e le estensioni hanno entrambe grado 2 su \mathbb{Q} , quindi $\mathbb{Q}(\omega) = c(\langle \sigma_5 \rangle)$.

- **17.** Sia $f(x) = x^4 2x^2 15 \in \mathbb{Q}[x]$.
 - 1. Determinare Σ e $|\Sigma : \mathbb{Q}|$.
 - 2. Dire a quale gruppo è isomorfo $\operatorname{Gal}\left(\Sigma:\mathbb{Q}\right).$
 - 3. Descrivere i sottocampi di Σ .

Svolgimento.

1.
$$f(x) = (x^2 - 5)(x^2 + 3)$$

Le radici di f sono: $\pm \sqrt{5}$, $\pm i\sqrt{3}$.

$$\Sigma = \mathbb{Q}(\sqrt{5}, i\sqrt{3}).$$

$$\min_{\mathbb{Q}(\sqrt{5}), i\sqrt{3}}(x) = x^2 + 3 \qquad \min_{\mathbb{Q}, \sqrt{5}}(x) = x^2 - 5.$$
$$|\Sigma : \mathbb{Q}| = |\mathbb{Q}(\sqrt{5}, i\sqrt{3}) : \mathbb{Q}(\sqrt{5})||\mathbb{Q}(\sqrt{5}.\mathbb{Q})| = 4$$

2. Gli elementi di Gal $(\Sigma : \mathbb{Q})$ sono:

$$\sigma_{1}: \begin{cases} \sqrt{5} \mapsto \sqrt{5} \\ i\sqrt{3} \mapsto i\sqrt{3} \end{cases} \qquad \sigma_{2}: \begin{cases} \sqrt{5} \mapsto -\sqrt{5} \\ i\sqrt{3} \mapsto i\sqrt{3} \end{cases}$$

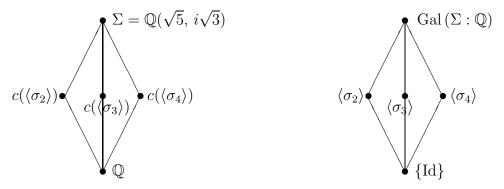
$$\sigma_{3}: \begin{cases} \sqrt{5} \mapsto -\sqrt{5} \\ i\sqrt{3} \mapsto -i\sqrt{3} \end{cases} \qquad \sigma_{4}: \begin{cases} \sqrt{5} \mapsto \sqrt{5} \\ i\sqrt{3} \mapsto -i\sqrt{3} \end{cases}$$

 Σ è estensione di Galois di \mathbb{Q} , quindi $|\operatorname{Gal}(\Sigma:\mathbb{Q})| = |\Sigma:\mathbb{Q}| = 4$. Allora puó essere:

$$\operatorname{Gal}(\Sigma:\mathbb{Q})\cong\mathbb{Z}_2\oplus\mathbb{Z}_2$$
 oppure $\operatorname{Gal}(\Sigma:\mathbb{Q})\cong\mathbb{Z}_4$

Si vede che $\sigma_2^2 = \operatorname{Id}_{\Sigma}$, $\sigma_3^2 = \operatorname{Id}_{\Sigma}$, $\sigma_4^2 = \operatorname{Id}_{\Sigma}$ e quindi ogni elemento non identico ha periodo 2. Allora $\operatorname{Gal}(\Sigma : \mathbb{Q}) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

3. Applichiamo il teorema di corrispondenza di Galois:



 $Gal(\Sigma : \mathbb{Q})$ è un gruppo abeliano (perchè ha ordine $4 = 2^2$), quindi tutti i suoi sottogruppi sono normali. Per il teorema di corrispondenza di Galois, tutte le estensioni intermedie sono normali.

•
$$c(\langle \sigma_2 \rangle) = \mathbb{Q}(i\sqrt{3})$$

• $c(\langle \sigma_3 \rangle) = \mathbb{Q}(i\sqrt{15})$ infatti: $\sigma_3(i\sqrt{15}) = \sigma_3(\sqrt{5} \cdot i\sqrt{3}) = \sigma_3(\sqrt{5})\sigma_3(i\sqrt{3}) = (-\sqrt{5})(-i\sqrt{3}) = i\sqrt{15}$ Allora $i\sqrt{15} \in c(\langle \sigma_3 \rangle), \mathbb{Q} \subseteq c(\langle \sigma_3 \rangle) \implies \mathbb{Q}(i\sqrt{15}) \subseteq c(\langle \sigma_3 \rangle)$ $|c(\langle \sigma_3 \rangle) : \mathbb{Q}| = |\mathbb{Q}(i\sqrt{15}) : \mathbb{Q}| = 2$, quindi $\mathbb{Q}(i\sqrt{15}) = c(\langle \sigma_3 \rangle)$

•
$$c(\langle \sigma_4 \rangle) = \mathbb{Q}(\sqrt{5})$$

18. Sia $p(x) = x^2 + ax + 1 \in \mathbb{Z}_3[x]$. Per quali valori di a il polinomio ha tutte le radici distinte?

Svolgimento.

 $(p(x), p'(x)) \in \mathbb{Z}_3 \iff p(x)$ ha tutte le radici distinte. p'(x) = 2x + a

$$1-a^2=(p(x),p'(x))\iff 1-a^2\neq 0\iff a^2\neq 1\iff a=0$$

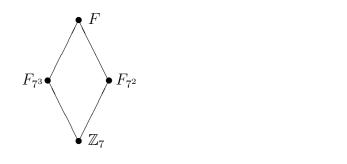
Quindi $p(x)$ ha radici distinte se e solo se $a=0$.

19. Descrivere il reticolo dei sottocampi di F campo di ordine $|F|=7^6$. F possiede un sottocampo di ordine 7^4 ?

Svolgimento.

 $|F|=7^6$ quindi F è un campo di caratteristica 7, il suo sottocampo fondamentale è \mathbb{Z}_7 e $|F:\mathbb{Z}_7|=6$.

F ha uno e un solo sottocampo di ordine 7^m per ogni m divisore di 6. Quindi F non possiede un sottocampo di ordine 4, perchè 4 /6.



20. Calcolare $\Phi_8(x)$ e fattorizzarlo in irriducibili in $\mathbb{Q}[x]$ e $\mathbb{Z}_{41}[x]$. Svolqimento.

$$x^{8} - 1 = \prod_{d|8} \Phi_{d}(x) = \Phi_{1}(x)\Phi_{2}(x)\Phi_{4}(x)\Phi_{8}(x)$$

$$\Phi_{8}(x) = \frac{x^{8} - 1}{\Phi_{1}(x)\Phi_{2}(x)\Phi_{4}(x)} = \frac{(x^{4} - 1)(x^{4} + 1)}{\Phi_{1}(x)\Phi_{2}(x)\Phi_{4}(x)} = \frac{(x^{4} - 1)(x^{4} + 1)}{x^{4} - 1} = x^{4} + 1$$

In $\mathbb{Q}[x]$, $\Phi_8(x)$ è irriducibile per il teorema di Gauss.

In $\mathbb{Z}_{41}[x]$: 41 è un primo, quindi \mathbb{Z}_{41} è un campo. Ci chiediamo se $\Phi_8(x)$ ha una radice in \mathbb{Z}_{41} . Poichè $[0]_{41}$ sicuramente non è una radice di $\Phi_8(x)$, tale radice dovrebbe appartenere a \mathbb{Z}_{41}^* , gruppo moltiplicativo. Inoltre, essendo una radice primitiva ottava dell'unitá, dovrebbe avere periodo moltiplicativo 8.

 \mathbb{Z}_{41}^* è un gruppo ciclico di cardinalitá $|\mathbb{Z}_{41}^*| = 40$, e quindi ha un sottogruppo ciclico di ordine d per ogni d che divide 40. Dal momento che 8|40, \mathbb{Z}_{41}^* ha un sottogruppo ciclico di ordine 8. Tutti gli elementi di periodo 8 stanno in tale sottogruppo di \mathbb{Z}_{41}^* e sono suoi generatori:essi sono radici di $\Phi_8(x)$.

Se
$$|\langle g \rangle| = 8$$
, $|\langle g \rangle| = \{1, g, g^2, g^3, g^4, g^5, g^6, g^7\}$.

I generatori sono le potenze di g coprime con 8, cioè g,g^3,g^5,g^8 : sono $\varphi(8)=\varphi(2^3)=2^2(2-1)=4.$

Allora $\Phi_8(x)$ ha esattamente 4 radici in \mathbb{Z}_{41} , ossia si fattorizza completamente in \mathbb{Z}_{41} .

 $[3]_{41}$ ha periodo moltiplicativo 8 in \mathbb{Z}_{41} , infatti:

$$[3]_{41}^4 = [81]_{41} = [-1]_{41}$$
 quindi $[3]_{41}$ non ha periodo 4,

$$[3]_{41}^{8} = [-1]_{41}^{2} = [1]_{41}$$
 quindi $[3]_{41}$ ha periodo 8.

Gli altri elementi di periodo 8 sono: $[3]_{41}^3 = [27]_{41}$, $[3]_{41}^5 = [38]_{41}$, $[3]_{41}^7 = [14]_{41}$ $\Phi_8(x) = (x - [3]_{41})(x - [27]_{41})(x - [38]_{41})(x - [14]_{41})$ in $\mathbb{Z}_{41}[x]$.

21. Dare una costruzione esplicita del campo F di ordine 9.

Svolgimento.

F è un campo di caratteristica 3, con sottocampo fondamentale \mathbb{Z}_3 .

$$|F:\mathbb{Z}_3|=2$$

$$F = \frac{\mathbb{Z}_3[x]}{\langle p(x) \rangle} \quad \text{con } p(x) \text{ irriducibile in } \mathbb{Z}_3[x] \text{ e di grado } 2$$

 $p(x) = x^2 - a$ è irriducibile in $\mathbb{Z}_3[x]$ se e solo se a non è un quadrato in $\mathbb{Z}_3[x]$ n n^2

1 1

2 1

Allora $a = 2 e p(x) = x^2 - 2$.

$$F = \frac{\mathbb{Z}_3[x]}{\langle x^2 - 2 \rangle} = \mathbb{Z}_3(\alpha)$$
 dove α ha polinomio minimo $x^2 - 2$ su \mathbb{Z}_3

$$F = \mathbb{Z}_3(\alpha) = \{x + y\alpha | x, y \in \mathbb{Z}_3\} = \{0, 1, 2, \alpha, 2\alpha, 1 + \alpha, 2 + \alpha, 1 + 2\alpha, 2 + 2\alpha\}.$$

22. Sia F un campo di ordine 8. Fattorizzare in irriducibili in F[x] i polinomi $\Phi_7(x)$ e $\Phi_3(x)$.

Dedurre che $\Phi_7(x)$ non è irrriducibile in $\mathbb{Z}_2[x]$.

Svolgimento.

• Un elemento di F è radice di $\Phi_7(x)$ se e solo se ha periodo moltiplicativo 7.

 $|F^*| = 7$ e F^* è un gruppo ciclico: i generatori di F^* sono gli elementi di periodo moltiplicativo 7. Poichè 7 è un numero primo, ogni elemento di $F^* \setminus \{1\}$ ha periodo 7 e quindi è uno dei generatori di F^* : sono 6 in tutto.

 $deg(\Phi_7(x)) = \varphi(7) = 6$ quindi $\Phi_7(x)$ si fattorizza completamente in F[x]:

$$\Phi_7(x) = (x - a_1)(x - a_2)(x - a_3)(x - a_4)(x - a_5)(x - a_6)$$

con $F = \{0, 1, a_1, a_2, a_3, a_4, a_5, a_6\}.$

 \bullet Un elemento di F è radice di $\Phi_3(x)$ se e solo se ha periodo moltiplicativo 3.

 $|F^*|=7$ e F^* è un gruppo ciclico. Per il teorema di Lagrange, se c'è un elemento di periodo 3 allora $3|F^*|=7$: assurdo. Allora non ci sono elementi di periodo

moltiplicativo 3 in F^* , quindi $\Phi_3(x)$ non ha radici in F e così è irriducibile in F[x].

• \mathbb{Z}_2 è il sottocampo primo di F. Supponiamo che $\Phi_7(x)$ sia irriducibile in $\mathbb{Z}_2[x]$. In F troviamo una radice a_1 di $\Phi_7(x)$. Allora:

$$\min_{\mathbb{Z}_2, a_1}(x) = \Phi_7(x)$$

Il teorema sulle estensioni semplici dice che: $|\mathbb{Z}_2(a_1):\mathbb{Z}_2| = \deg(\Phi_7(x)) = 6$. Così $6 = |\mathbb{Z}_2(a_1):\mathbb{Z}_2| |F:\mathbb{Z}_2| = 3$: assurdo.

- **23.** Dimostrare che se F è un campo finito, $f \in F[x]$ irriducibile di grado n, E è un'estensione di F, allora sono equivalenti:
 - 1. f si fattorizza completamente in E[x];
 - 2. f ha una radice in E;
 - 3. n|E:F|.

Svolgimento.

 $(1.\Rightarrow 2.)$ Ovvio.

 $(2.\Rightarrow 3.)$ Sia α una radice di f. Allora: $\min_{F,\alpha}(x)|f$.

Poichè f è irriducibile in F[x], f è il polinomio minimo, a meno di un coefficiente. Allora $n = \deg(f) = \deg(\min_{F,\alpha}(x)) = |F(\alpha):F|$ e per la formula dei gradi:

 $(3.\Rightarrow 1.)$ Supponiamo che $n\big||E:F|$. Sia $|F|=p^t$. Sia E_1 un campo di spezzamento per f su F. Sia $\bar{\alpha}\in E_1$ una radice di f. Ripetendo il ragionamento fatto prima si ottiene $|F(\bar{\alpha}):F|=n$. Quindi $|F(\bar{\alpha})|=|F|^n=p^{nt}$, cioè $F(\bar{\alpha})$ è un campo finito. Anche E è un campo finito: $|E|=|F|^{|E:F|}=|F|^{nr}=p^{nrt}$ dove nr=|E:F|.

Per il Teorema di struttura dei campi finiti E contiene un sottocampo di ordine p^{nt} che è isomorfo a $F(\bar{\alpha})$ tramite un isomorfismo che è l'identità su F. Quindi l'elemento corrispondente in E ad $\bar{\alpha}$ è una radice di f.

Inoltre E è estensione di Galois di F, quindi E è estensione normale di F. Allora

E contiene tutte le radici di f (avendone una), e f si fattorizza completamente in E[x].

- **24.** Determinare il campo di spezzamento Σ su \mathbb{Q} del polinomio x^5-1 .
 - 1. Calcolare $|\Sigma : \mathbb{Q}|$.
 - 2. Determinare $\operatorname{Gal}(\Sigma : \mathbb{Q})$ e provare che è ciclico.
 - 3. Descrivere i sottocampi di Σ , specificando quale di essi è estensione normale di \mathbb{Q} .

Svolgimento.

Le radici di x^5-1 sono $\omega=e^{\frac{2}{5}\pi i},\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5=1.$

$$\Sigma = \mathbb{Q}(1, \, \omega^2, \, \omega^3, \, \omega^4) = \mathbb{Q}(\omega).$$

- 1. $|\Sigma : \mathbb{Q}| = \deg(\min_{\mathbb{Q},\omega}(x)) = \deg(\Phi_5(x)) = \varphi(5) = 4.$
- 2. Σ è estensione di Galois di \mathbb{Q} , perchè è campo di spezzamento di un polinomio in caratteristica zero. Allora:

$$|\operatorname{Gal}(\Sigma:\mathbb{Q})| = |\Sigma:\mathbb{Q}| = 4 \quad \text{e} \quad \operatorname{Gal}(\Sigma:\mathbb{Q}) \cong \operatorname{U}\left(\frac{\mathbb{Z}}{5Z}\right) = \mathbb{Z}_5^*$$

I $\mathbb Q$ -automorfismi sono completamente determinati dall'azione sull'elemento ω :

$$\sigma_1 : \omega \mapsto \omega$$
 $\sigma_1 = \mathrm{Id}_{\Sigma}$

 $\sigma_2 : \omega \mapsto \omega^2$

 $\sigma_3 : \omega \mapsto \omega^3$

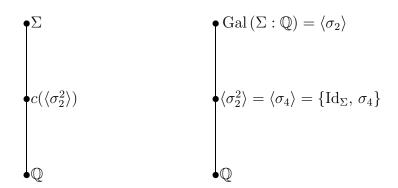
 $\sigma_4 : \omega \mapsto \omega^4$

$$\operatorname{Gal}(\Sigma:\mathbb{Q}) = \{\operatorname{Id}_{\Sigma}, \, \sigma_{2}, \, \sigma_{3}, \, \sigma_{4}\} = \langle \sigma_{2} \rangle \text{ infatti:}$$

$$\sigma_2^2(\omega) = \sigma_2(\omega^2) = [\sigma_2(\omega)]^2 = (\omega^2)^2 = \omega^4 = \sigma_4(\omega)$$

Quindi $\sigma_2^2 \neq \mathrm{Id}_{\Sigma}$, allora $|\sigma_2| \neq 2$ e poichè siamo in un gruppo di ordine 4 si ha $|\sigma_2| = 4$.

3. Per il teorema di corrispondenza di Galois:



$$c(\langle \sigma_2^2 \rangle) = c(\langle \sigma_4 \rangle) = \{ a \in \Sigma | a^{\alpha} = a, \ \forall \alpha \in \langle \sigma_4 \rangle \} = \{ a \in \Sigma | a^{\sigma_4} = a \}$$

$$\sigma_4(\omega + \omega^4) = \sigma_4(\omega) + [\sigma_4(\omega)]^4 = \omega^4 + \omega^{16} = \omega^4 + \omega$$

Allora $\omega + \omega^4 \in c(\langle \sigma_4 \rangle), \mathbb{Q} \subseteq c(\langle \sigma_4 \rangle),$ quindi $\mathbb{Q}(\omega + \omega^4) \subseteq c(\langle \sigma_4 \rangle).$

Inoltre
$$|c(\langle \sigma_4 \rangle) : \mathbb{Q}| = |\operatorname{Gal}(\Sigma : \mathbb{Q}) : \langle \sigma_4 \rangle| = \frac{4}{2} = 2$$

Poichè $\mathbb{Q}(\omega + \omega^4) \neq \mathbb{Q}$ si ha che $\mathbb{Q}(\omega + \omega^4) = c(\langle \sigma_4 \rangle)$.

 Σ è estensione normale di $\mathbb Q$ perchè è campo di spezzamento di un polinomio.

 \mathbb{Q} è estensione normale di \mathbb{Q} .

 $\mathbb{Q}(\omega + \omega^4)$ è un'estensione normale di \mathbb{Q} ? Per il teorema di corrispondenza di Galois dobbiamo verificare se $\langle \sigma_4 \rangle$ è un sottogruppo normale di Gal $(\Sigma : \mathbb{Q})$. $\langle \sigma_2 \rangle$ è ciclico, quindi abeliano, per cui tutti i sottogruppi sono normali:

$$\langle \sigma_4 \rangle \leq \langle \sigma_2 \rangle$$
.

Allora $c(\langle \sigma_4 \rangle)$ è estensione normale di \mathbb{Q} .

25. Dimostrare che F è un campo finito allora F non è algebricamente chiuso.

Svolgimento.

Consideriamo

$$p(x) = \prod_{a \in F} (x - a) + 1 \in F[x]$$

 $\forall a \in F : p(a) = 1$ quindi p(x) non ha radici in F, perció F non è algebricamente chiuso.

26. Sia F un campo con |F|=8. Si dia una costruzione esplicita di F e si trovi un generatore di F^* .

Svolgimento.

Caratteristica di F: 2, sottocampo primo di F: \mathbb{Z}_2 , $|F:\mathbb{Z}_2|=3$

$$F = \frac{\mathbb{Z}_2[x]}{\langle f(x) \rangle}$$
 con f irriducibile di grado 3 in $\mathbb{Z}_2[x]$

Consideriamo $x^3+x+1 \in \mathbb{Z}_2[x]$: è un polinomio irriducibile in \mathbb{Z}_2 , perchè ha grado 3 ed è privo di radici in \mathbb{Z}_2 . Allora:

$$F = \frac{\mathbb{Z}_2[x]}{\langle x^3 + x + 1 \rangle} = \mathbb{Z}_2(\alpha)$$
 con α radice di $x^3 + x + 1$

 $F = \{a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Z}_2\} = \{0, 1, \alpha, \alpha^2, 1 + \alpha, 1 + \alpha^2, 1 + \alpha + \alpha^2, \alpha + \alpha^2\}$ Il gruppo moltiplicativo ha ordine $|F^*| = 8 - 1 = 7$, quindi i suoi elementi hanno periodo che divide 7. Allora ogni elemento di $F \setminus \{0, 1\}$ ha periodo moltiplicativo 7 ed è un generatore di F^* :

$$F^* = \langle \alpha \rangle = \langle \alpha^2 \rangle = \langle 1 + \alpha \rangle = \dots$$

27. Sia $f(x) = x^4 - 3 \in \mathbb{Q}[x]$.

- 1. Determinare il campo di spezzamento Σ di f su \mathbb{Q} e calcolare $|\Sigma:\mathbb{Q}|$.
- 2. Scrivere gli elementi di Gal $(\Sigma : \mathbb{Q})$ come permutazioni delle radici di f.
- 3. Descrivere il reticolo dei sottocampi di Σ .

Svolgimento.

1. Le radici di f sono: $\pm \sqrt[4]{3}$, $\pm i\sqrt[4]{3}$

$$\Sigma = \mathbb{Q}(\pm\sqrt[4]{3}, \pm i\sqrt[4]{3}) = \mathbb{Q}(\sqrt[4]{3}, i)$$

$$|\Sigma:\mathbb{Q}| = |\mathbb{Q}(\sqrt[4]{3}, i): \mathbb{Q}(\sqrt[4]{3})||\mathbb{Q}(\sqrt[4]{3}):\mathbb{Q}|$$

Risulta $\min_{\mathbb{Q}, \sqrt[4]{3}}(x) = x^4 - 3 \in \mathbb{Q}[x]$: è monico, si annulla in $\sqrt[4]{3}$ ed è irriducibile in $\mathbb{Q}[x]$ per il criterio di Eisentstein (p=3). Inoltre si ha che $\min_{\mathbb{Q}(\sqrt[4]{3}),i}(x) = x^2 + 1 \in \mathbb{Q}(\sqrt[4]{3})[x]$: è monico, si annulla in i ed è irriducibile in $\mathbb{Q}(\sqrt[4]{3})[x]$ perchè ha grado 2 e le sue radici non sono reali $(\mathbb{Q}(\sqrt[4]{3}) \subset \mathbb{R})$. Quindi $|\Sigma:\mathbb{Q}| = 2 \cdot 4 = 8$.

2. Σ è estensione di Galois di \mathbb{Q} perchè campo di spezzamento di un polinomio in caratteristica zero. Allora: $|\operatorname{Gal}(\Sigma:\mathbb{Q})| = |\Sigma:\mathbb{Q}|$.

Gli elementi di Gal $(\Sigma:\mathbb{Q})$ sono completamente determinati dalla loro azione su $\sqrt[4]{3}$ e i. Possiamo estendere l'identitá su \mathbb{Q} in quattro modi diversi, mandando $\sqrt[4]{3}$ in una delle radici di $\min_{\mathbb{Q},\sqrt[4]{3}}(x)=x^4-3$:

$$\tilde{\sigma}_1: \sqrt[4]{3} \mapsto \sqrt[4]{3}$$
 $\tilde{\sigma}_2: \sqrt[4]{3} \mapsto -\sqrt[4]{3}$

$$\tilde{\sigma}_3: \sqrt[4]{3} \mapsto i\sqrt[4]{3}$$
 $\tilde{\sigma}_4: \sqrt[4]{3} \mapsto -i\sqrt[4]{3}$

Ora possiamo estendere ogni $\tilde{\sigma}_i$ ad un automorfismo di $\mathbb{Q}(\sqrt[4]{3}, i)$ in due modi diversi, mandando i in una delle radici di $\min_{\mathbb{Q}(\sqrt[4]{3}),i}(x) = x^2 + 1$:

$$\sigma_{1,1}: \begin{cases} \sqrt[4]{3} & \mapsto \sqrt[4]{3} \\ i & \mapsto i \end{cases} \qquad \sigma_{1,2}: \begin{cases} \sqrt[4]{3} & \mapsto \sqrt[4]{3} \\ i & \mapsto -i \end{cases}$$

$$\sigma_{2,1}: \begin{cases} \sqrt[4]{3} & \mapsto -\sqrt[4]{3} \\ i & \mapsto i \end{cases} \qquad \sigma_{2,2}: \begin{cases} \sqrt[4]{3} & \mapsto -\sqrt[4]{3} \\ i & \mapsto -i \end{cases}$$

$$\sigma_{3,1}: \begin{cases} \sqrt[4]{3} & \mapsto i\sqrt[4]{3} \\ i & \mapsto i \end{cases} \qquad \sigma_{3,2}: \begin{cases} \sqrt[4]{3} & \mapsto i\sqrt[4]{3} \\ i & \mapsto -i \end{cases}$$

$$\sigma_{4,1}: \begin{cases} \sqrt[4]{3} & \mapsto -i\sqrt[4]{3} \\ i & \mapsto i \end{cases} \qquad \sigma_{4,2}: \begin{cases} \sqrt[4]{3} & \mapsto -i\sqrt[4]{3} \\ i & \mapsto -i \end{cases}$$

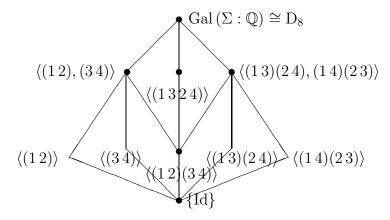
Sia $R = {\sqrt[4]{3}, -\sqrt[4]{3}, i\sqrt[4]{3}, -i\sqrt[4]{3}} = {1, 2, 3, 4}.$ Scriviamo i $\sigma_{i,j}$ come per-

mutazioni delle radici dif:

$$\sigma_{1,1} = \operatorname{Id}
\sigma_{1,2} = (i\sqrt[4]{3}, -i\sqrt[4]{3}) \to (34)
\sigma_{2,1} = (\sqrt[4]{3}, -\sqrt[4]{3})(i\sqrt[4]{3}, -i\sqrt[4]{3}) \to (12)(34)
\sigma_{2,2} = (\sqrt[4]{3}, -\sqrt[4]{3}) \to (12)
\sigma_{3,1} = (\sqrt[4]{3}, i\sqrt[4]{3}, -\sqrt[4]{3}, -i\sqrt[4]{3}) \to (1324)
\sigma_{3,2} = (\sqrt[4]{3}, i\sqrt[4]{3})(-\sqrt[4]{3}, -i\sqrt[4]{3}) \to (13)(24)
\sigma_{4,1} = (\sqrt[4]{3}, -i\sqrt[4]{3}, -\sqrt[4]{3}, i\sqrt[4]{3}) \to (1423)
\sigma_{4,2} = (\sqrt[4]{3}, -i\sqrt[4]{3})(-\sqrt[4]{3}, i\sqrt[4]{3}) \to (14)(23)$$

 $Gal(\Sigma : \mathbb{Q}) \cong D_8$ gruppo diedrale di ordine 8.

3. Abbiamo che:



Ci sono tre sottogruppo di ordine 4 e cinque sottogruppi di ordine 2 (corrispondenti agli elemnti di periodo due). I sottogruppi normali sono quelli di ordine 4 e $\langle (12)(34) \rangle$.

Per il teorema di corrispondenza di Galois:

 $|c(\langle \sigma_{2,2} \rangle): \mathbb{Q}| = 4$. Sappiamo che $i\sqrt[4]{3} \in c(\langle \sigma_{2,2} \rangle)$ e $\mathbb{Q} \subseteq c(\langle \sigma_{2,2} \rangle)$, quindi $\mathbb{Q}(i\sqrt[4]{3}) \subseteq c(\langle \sigma_{2,2} \rangle)$. Dato che $\min_{\mathbb{Q},i\sqrt[4]{3}}(x) = x^4 - 3$ si ha $|\mathbb{Q}(i\sqrt[4]{3}): \mathbb{Q}| = 4$ e dunque:

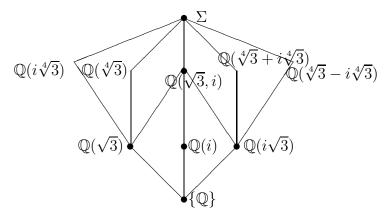
$$\mathbb{Q}(i\sqrt[4]{3}) = c(\langle \sigma_{2,2} \rangle).$$

 $|c(\langle \sigma_{1,2} \rangle): \mathbb{Q}| = 4$. Sappiamo che $\sqrt[4]{3} \in c(\langle \sigma_{1,2} \rangle)$ e $\mathbb{Q} \subseteq c(\langle \sigma_{1,2} \rangle)$, quindi $\mathbb{Q}(\sqrt[4]{3}) \subseteq c(\langle \sigma_{1,2} \rangle)$. Si ha $|\mathbb{Q}(\sqrt[4]{3}): \mathbb{Q}| = 4$ e dunque:

$$\mathbb{Q}(\sqrt[4]{3}) = c(\langle \sigma_{1,2} \rangle).$$

 $|c(\langle \sigma_{2,1} \rangle): \mathbb{Q}| = 4 \text{ con } \sigma_{2,1} = (\sqrt[4]{3}, -\sqrt[4]{3})(i\sqrt[4]{3}, -i\sqrt[4]{3}).$ Osserviamo che $i \in c(\langle \sigma_{2,1} \rangle), \sqrt{3} \in c(\langle \sigma_{2,1} \rangle)$ e $\mathbb{Q} \subseteq c(\langle \sigma_{2,1} \rangle)$, quindi $\mathbb{Q}(\sqrt{3}, i) \subseteq c(\langle \sigma_{2,1} \rangle)$. Si ha $|\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}| = 4$ e dunque:

$$\mathbb{Q}(\sqrt{3},i) = c(\langle \sigma_{2,1} \rangle).$$



 $|c(\langle \sigma_{3,2} \rangle): \mathbb{Q}| = 4$. Sappiamo che $\sqrt[4]{3} + i\sqrt[4]{3} \in c(\langle \sigma_{3,2} \rangle)$ e $\mathbb{Q} \subseteq c(\langle \sigma_{3,2} \rangle)$, quindi $\mathbb{Q}(\sqrt[4]{3} + i\sqrt[4]{3}) \subseteq c(\langle \sigma_{3,2} \rangle)$. Si ha $|\mathbb{Q}(\sqrt[4]{3} + i\sqrt[4]{3}): \mathbb{Q}| = 4$ (perchè, se $u = \sqrt[4]{3} + i\sqrt[4]{3}$, si vede che $\min_{\mathbb{Q},u}(x) = x^4 + 12$ e questo è irriducibile in $\mathbb{Q}[x]$ per il criterio di Eisenstein con p = 3) e dunque:

$$\mathbb{Q}(\sqrt[4]{3} + i\sqrt[4]{3}) = c(\langle \sigma_{3,2} \rangle).$$

Allo stesso modo si vede che

$$\mathbb{Q}(\sqrt[4]{3} - i\sqrt[4]{3}) = c(\langle \sigma_{4,2} \rangle).$$

I sottocampi che sono estensioni normali di \mathbb{Q} sono i corrispondenti dei sottogruppi normali di $\operatorname{Gal}(\Sigma:\mathbb{Q})$ e sono quelli evidenziati col puntino nel disegno.

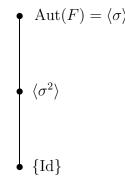
28. Sia $|F| = 7^4$. Determinare la caratteristica di F e $|F| : F_0|$ con F_0 sottocampo fondamentale di F Descrivere Aut(F).

Sia $f(x) = x^3 + x + 1 \in \mathbb{Z}_7[x]$. Dimostrare che f è irriducibile in $\mathbb{Z}_7[x]$ e dire se fè irriducibile in F[x].

Svolgimento.

Caratteristica di F: 7, $F_0 = \mathbb{Z}_7$, $|F : \mathbb{Z}_7| = 4$.

 $\operatorname{Aut}(F)$ è un gruppo ciclico generato dall'automorfismo di Frobenius $\sigma:x\mapsto x^7$ $\operatorname{Aut}(F)=\langle\sigma\rangle,\,|\sigma|=|F:\mathbb{Z}_7|=4$ quindi c'è un solo sottogruppo di ordine 2:



 $f(x) = x^3 + x + 1$ è irriducibile in $\mathbb{Z}_7[x]$ se e solo se non ha radici in \mathbb{Z}_7 .

$$f(0) = 1 \neq 0$$
 $f(4) = f(-3) = -1 \neq 0$
 $f(1) = 3 \neq 0$ $f(5) = f(-2) = -2 \neq 0$
 $f(2) = 4 \neq 0$ $f(6) = f(-1) = -1 \neq 0$

$$f(1) = 3 \neq 0$$
 $f(5) = f(-2) = -2 \neq 0$

$$f(2) = 4 \neq 0$$
 $f(6) = f(-1) = -1 \neq 0$

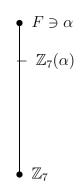
$$f(3) = 3 \neq 0$$

Quindi f(x) non ha radici in \mathbb{Z}_7 : f(x) è irriducibile in $\mathbb{Z}_7[x]$.

f è irriducibile in F[x] se e solo se non ha radici in F.

Se $\alpha \in F$ è una radice di f(x) abbiamo:

$$\min_{\mathbb{Z}_7,\alpha}(x) = x^3 + x + 1 = f(x)$$



$$|\mathbb{Z}_7(\alpha):\mathbb{Z}_7| = \deg(f) = 3$$

$$|F:\mathbb{Z}_7|=4$$

Allora dovrebbe essere $3 = |\mathbb{Z}_7(\alpha) : \mathbb{Z}_7| |F : \mathbb{Z}_7| = 4$: assurdo.

Quindi non ci sono radici di f in F, ossia f è irriducibile in F[x].

- **29.** Sia $\omega = e^{\frac{2\pi}{6}i}$ e sia Σ il campo di spezzamento del polinomio $x^6 2$ su \mathbb{Q} .
 - 1. Calcolare $\Sigma \in |\Sigma : \mathbb{Q}|$.
 - 2. Calcolare $|\Sigma:\mathbb{Q}(\omega)|$ e dedurre che x^6-2 è irriducibile in $\mathbb{Q}(\omega)[x]$.
 - 3. Descrivere Gal $(\Sigma : \mathbb{Q}(\omega))$.

Svolgimento.

1. Radici di $f(x) = x^6 - 2$: $\sqrt[6]{2}$, $\omega \sqrt[6]{2}$, $\omega^2 \sqrt[6]{2}$, $\omega^3 \sqrt[6]{2} = -\sqrt[6]{2}$, $\omega^4 \sqrt[6]{2}$, $\omega^5 \sqrt[6]{2}$. $\Sigma = \mathbb{Q}(\sqrt[6]{2}, \omega)$

$$|\Sigma:\mathbb{Q}| = |\mathbb{Q}(\sqrt[6]{2},\omega):\mathbb{Q}(\sqrt[6]{2})||\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}|$$

Il polinomio minimo di $\sqrt[6]{2}$ su \mathbb{Q} è $x^6 - 2 \in \mathbb{Q}[x]$: è monico, si annulla su $\sqrt[6]{2}$ ed è irriducibile in $\mathbb{Q}[x]$ per il criterio di Eisenstein (p = 2).

Il polinomio minimo di ω su $\mathbb{Q}(\sqrt[6]{2})$ è $\min_{\mathbb{Q}(\sqrt[6]{2}),\omega}(x) = \Phi_6(x)$: infatti $\Phi_6(x)$ ha grado

$$deg(\Phi_6(x)) = \varphi(6) = \varphi(2) \cdot \varphi(3) = 1 \cdot 2 = 2$$

e non ha radici reali.

Allora: $|\Sigma : \mathbb{Q}| = 2 \cdot 6 = 12$.

2. Sappiamo che $|\mathbb{Q}(\omega):\mathbb{Q}|=\deg\left(\Phi_6(x)\right)=2$. Per la formula dei gradi:

$$|\Sigma : \mathbb{Q}(\omega)| = |\mathbb{Q}(\sqrt[6]{2}, \omega) : \mathbb{Q}(\omega)| = \frac{|\Sigma : \mathbb{Q}|}{|\mathbb{Q}(\omega) : \mathbb{Q}|} = \frac{12}{2} = 6.$$

Allora deg $(\min_{\mathbb{Q}(\omega), \sqrt[6]{2}}(x)) = 6.$

 $f(x)=x^6-2\in\mathbb{Q}(\omega)[x]$ è monico, di grado 6 e si annulla su $\sqrt[6]{2}$. Ne segue che $\min_{\mathbb{Q}(\omega),\sqrt[6]{2}}(x)|f(x)$, ma poichè sono entrambi monici e di grado 6 essi coincidono: $\min_{\mathbb{Q}(\omega),\sqrt[6]{2}}(x)=f(x)=x^6-2$, che quindi risulta essere irriducibile in $\mathbb{Q}(\omega)[x]$.

3. Σ è estensione di Galois di $\mathbb{Q}(\omega)$, perchè è campo di spezzamento di un polinomio in caratteristica zero. Allora $|\operatorname{Gal}(\Sigma:\mathbb{Q}(\omega))| = |\Sigma:\mathbb{Q}(\omega)| = 6$.

Ogni elemento di Gal $(\Sigma : \mathbb{Q}(\omega))$ è completamente determinato dall'azione su $\sqrt[6]{2}$. Possiamo estendere l'identitá su $\mathbb{Q}(\omega)$ in 6 modi diversi, mandando $\sqrt[6]{2}$ in una delle radici di $\min_{\mathbb{Q}(\omega), \sqrt[6]{2}}(x) = x^6 - 2$:

$$\sigma_{1} = \operatorname{Id}_{\Sigma} : \sqrt[6]{2} \mapsto \sqrt[6]{2} \qquad \sigma_{2} : \sqrt[6]{2} \mapsto \omega\sqrt[6]{2} \qquad \sigma_{3} : \sqrt[6]{2} \mapsto \omega^{2}\sqrt[6]{2}$$

$$\sigma_{4} : \sqrt[6]{2} \mapsto \omega^{3}\sqrt[6]{2} = -\sqrt[6]{2} \qquad \sigma_{5} : \sqrt[6]{2} \mapsto \omega^{4}\sqrt[6]{2} \qquad \sigma_{6} : \sqrt[6]{2} \mapsto \omega^{5}\sqrt[6]{2}$$

Si ha che $\sigma_2^2 = \sigma_3$, $\sigma_2^3 = \sigma_4$, $\sigma_2^4 = \sigma_5$ e $\sigma_2^5 = \sigma_6$. Quindi σ_2 ha periodo 6 e $\operatorname{Gal}(\Sigma : \mathbb{Q}(\omega)) = \langle \sigma_2 \rangle$ è ciclico.

30. Sia $f(x) = x^5 + 15x - 3 \in \mathbb{Z}_p[x]$. Determinare i primi p per i quali f non ha radici multiple.

Svolgimento.

$$f'(x) = 5x^4 + 15 = 5(x^4 + 3)$$

Se p=5: $f'=0 \implies (f,f')=f\notin \mathbb{Z}_p$, quindi f ha radici multiple.

Se $p \neq 5$: $f' \neq 0$.

$$(f, f') \in \mathbb{Z}_p \iff \left(f, x^4 + 3 = \frac{f'}{5}\right) \in \mathbb{Z}_p$$

Eseguendo la divisione di f per f'/5 si ottiene:

$$f = \frac{f'}{5}x + 12x - 3$$

$$R(x) = 12x - 3 = 3(4x - 1)$$

Se R(x) = 0, allora $x^4 + 3|f$, quindi $(f, f'/5) = f'/5 \notin \mathbb{Z}_p$

Allora se p=3: $(f, f'/5)=f'/5 \notin \mathbb{Z}_p$, quindi f ha radici multiple.

Se $\underline{p=2}$: R(x)=-3=1, da cui $(f,f'/5)=1\in\mathbb{Z}_p$, quindi f non ha radici multiple.

Se $\underline{p \neq 2,3}$ $R(x) = 12x - 3 \neq 0$. Allora dividiamo $x^4 + 3$ per 12x - 3. Otteniamo:

$$x^4 + 3 = \frac{12x - 3}{3} \left(\frac{1}{4}x^3 + \frac{1}{16}x^2 + \frac{1}{64}x + \frac{1}{256} \right) + \frac{769}{256}$$

 $R'(x) = \frac{769}{256}$.

Se p = 769 il resto è zero e quindi $(f, f') = 12x - 3 \notin \mathbb{Z}_p$: f ha radici multiple.

Se $\underline{p \neq 769}$: $(f, f') = \frac{769}{256} \in \mathbb{Z}_p$, quindi f non ha radici multiple. Allora f non ha radici multiple per $p \neq 3, 5, 769$.

31. Dimostrare che σ è un K-automorfismo di L se e solo se σ è un automorfismo di L come campo ed è un automorfismo di L come K-spazio vettoriale. Svolgimento.

 (\Rightarrow) Supponiamo σ K-automorfismo di L.

Per definizione σ è un automorfismo di L come campo e quindi $\forall \alpha, \beta \in L$:

$$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$$
$$\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta)$$

Vediamo che $\forall k \in K, \forall a \in L : \sigma(ka) = k\sigma(a).$

Poichè $k \in K \subseteq L$ e σ è un automorfismo di L: $\sigma(ka) = \sigma(k)\sigma(a)$.

Poichè σ è un K-automorfismo, esso fissa gli elementi di K: $\sigma(k)\sigma(a) = k\sigma(a)$.

Quindi σ è un automorfismo di L come K-spazio vettoriale.

(\Leftarrow) Verifichiamo che σ è un K-automorfismo di L, ossia che $\forall k \in K : \sigma(k) = k$. Poichè σ è un automorfismo di L come K-spazio vettoriale:

$$\sigma(k) = \sigma(k1_L) = k\sigma(1_L)$$

Poichè σ è un automorfismo di L come campo: $k\sigma(1_L)=k1_L=k$.