Prova scritta di Istituzioni di Algebra Superiore I

10 Luglio 2008

- 1. Sia $u = i + \sqrt{2} \in \mathbb{C}$.
- a) Provare che $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, i);$
- b) determinare $|\mathbb{Q}(U):\mathbb{Q}|$;
- c) determinare il polinomio minimo di u su \mathbb{Q} e su \mathbb{R} .
 - **2.** Si consideri il polinomio $f(x) = x^4 x^2 6 \in \mathbb{Q}[x]$.
- a) Si determini il campo di spezzamento Σ di f(x) su \mathbb{Q} e si calcoli $|\Sigma : \mathbb{Q}|$;
- b) si scrivano gli elementi di $\operatorname{Gal}(\Sigma : \mathbb{Q})$ come permutazioni sulle radici di f(x) e si dica a quale gruppo è isomorfo $\operatorname{Gal}(\Sigma : \mathbb{Q})$;
- d)si determinino i sottocampi di Σ specificando quali di essi sono estensioni di Galois di $\mathbb{Q}.$
- **3.** Dare una costruzione esplicita del campo F di ordine 27. Detto F_0 il sottocampo fondamentale di F, dire qual è la caratteristica di F, chi è F_0 e qual è il grado di F su F_0 . Dimostrare che per ogni $\alpha \in F \setminus F_0$ si ha $F = F_0(\alpha)$.
- **4.** Determinare il polinomio ciclotomico $\Phi_{12}(x)$. Fattorizzare $\Phi_{12}(x)$ in prodotto di irriducibili in $\mathbb{Q}[x]$ e in $\mathbb{Z}_{13}[x]$.
- **5.** Sia G un gruppo e H un sottogruppo di G con |G:H|=2. Dimostrare che H è un sottogruppo normale di G.