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Hawkins & Bey, A Comprehensive Approach for Studying Muscle-Tendon Mechanics, J.
Biomech. Eng., 116 (1994)
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Morrow et al., Transversely isotropic tensile material properties of skeletal muscle tissue, Journal
of the Mechanical Behavior of Biomedical Materials, 3 (2010)
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hyperelastic (at least in some regimes)

anisotropic (locally transversely isotropic)

°
°
© (almost) incompressible
© active/passive material
°

activation is not an external parameter (unlike heart muscle tissue)



Biological soft tissues are generally inelastic. They usually show hysteresis
phenomena and viscoelastic behavior.

However, at least in some case, it is possible to drastically reduce the
viscoelastic nonlinear constitutive prescription of a biological tissue to a
hyperelastic one.
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Biological soft tissues are generally inelastic. They usually show hysteresis
phenomena and viscoelastic behavior.

However, at least in some case, it is possible to drastically reduce the
viscoelastic nonlinear constitutive prescription of a biological tissue to a
hyperelastic one.

A general feature of soft tissues in simple elongations is the following:

the slope of the stress-strain curve is approximately proportional
to the tensile stress.

Hence, the stress involves an exponential function of the strain.

Such models can describe:

® muscle tissue @ visceral pleura
® arterial walls ® visceral pericardium
® lung tissue ° .



Polynomial models

Raghavan and Vorp

Knowles
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Exponential model

Demiray
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Chagnon et al., Hyperelastic Energy Densities for Soft Biological Tissues: A Review, Journal of

Elasticity (2015) 120



Ehret, B&l, Itskov, JMPS, 59 (2011)
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The energy is polyconvex and coercive.
The parameters i, a, wy can be fitted with experimental data on the
relation between stress and strain in passive skeletal muscle
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Active strain approach: multiplicative decomposition of the deformation
gradient

F=FF, = Ce=F[F.=F,"CF;!
W(C,F,) = (det F,)W(C.) = (det F,)W(F; TCF;1), detC=1



The muscle contracts along the fibers, hence we describe the activation by
choosing

Foa=(1-amam+

1
m(l—m@m).

Hence, only a scalar parameter 0 < a < 1 has to be modeled.
Since detF, = 1, it follows that

W(C,a) = W(F; TCF;1)

1
F;1:1—am®m+\/1—a(l—m®m)




Let us consider an incompressible deformation along the fibers (m = e;):
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Considering W(A, a(\)), we can compute the stress along the fiber
direction by

oW oW
P =27 49y,
tot()\v a()\)) N "R D2 a
In particular, the passive stress is given by Ppas(A) := Piot(A,0) and the
active stress by

Ptot(A, a(A)) = Ppas(A) = Pace(A)
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W(A, a(\) = W(X,0) + Saee(N)
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