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Energies through the ether flow,
Waves travel to and fro,
And with a ratio
Their speed you measure.
Colours yield their secret hue,
And Saturn’s rings subdued by you
Suggest that gases
Might be measured too.

Science you freed
From cramping mechanistic creed,
And by your theory brought
The elastic solid ether to naught,
And changed the axiomatic basis
Of scientific thought.

Oh Maxwell! How can I declaim
On such a genius, such a fame,
And speak of one so very wise
Who saw the world through splendid eyes,
And though of such a subtle mind
Was yet so humorous and kind?
Yours was a mind unique and rare
That, nurtured in a northern air,
Struck out new paths in many ways
Through all too short, yet fruitful days.
How can one capture in a line
Something so great, so pure, so fine?

Give thanks,
That such a man drew breath,
And lament with all the world
His early death.

Eulogy in verse on display in Maxwell’s House at 14 India Street, Edinburgh

Dieses Wort Äther hat in der Entwicklung der Wissenschaft viele
Male seine Bedeutung geändert. [ . . . ] Seine Geschichte ist aber noch
keineswegs beendet [ . . . ] .

A. Einstein & L. Infeld, Die Evolution der Physik (1950)

In speaking of the Energy of the field, however, I wish to be understood
literally. All energy is the same as mechanical energy, whether
it exists in the form of motion or in that of elasticity, or in any other
form. The energy in electromagnetic phenomena is mechanical energy.
The only question is, Where does it reside?

J. C. Maxwell (1876)



Background

This note is a revised and augmented version of my essay G. Lamé vs.
J.C. Maxwell: how to reconcile them, as published in Scientific Computing
in Electrical Engineering, W. H. A. Schilders et al. eds., Mathematics in
Industry Series, Vol. 4, pp. 1–13, Springer, Heidelberg, 2004. Most of it was
composed during summer 2002, to write down the lecture I had given at
the 4th Conference on Scientific Computing in Electrical Engineering (SCEE-
2002, Eindhoven, June 23–28, 2002). An abridged version was accepted into
the above book of proceedings in July 2003. Giving a talk (Electromagnetic
and mechanical field theories set on the same stage) at the MACSI-net Work-
shop on Optimization and Coupled Problems in Electromagnetism (Naples,
September 22–23, 2003) gave me the opportunity to detect and correct a
few errors prior to publication. Later reworking was mostly prompted by two
courses I gave for the Doctoral Program in Physics at Università “Roma Tre”:
Mathematical structures of neo-classical physics (May 31–June 10, 2004), and
The geometry of neo-classical continuum mechanics (June 5–12, 2006). Also
a couple of talks I gave in the USA were instrumental in this respect: Elec-
tromagnetism and continuum mechanics: what makes them different (College
of Engineering, University of Wisconsin–Madison, June 18, 2004), and Basic
mathematical structures of neo-classical continuum mechanics (Department
of Mathematics, University of California, Berkeley, December 8, 2005). The
final impetus to gather and smooth out my scribbled notes, while summon-
ing unwritten thoughts, came from the present course in Brescia, paired with
an invitation to the Workshop on Advanced Computational Electromagnetics
(ACE ’07) to be held in Aachen next June—a late aftermath of my participa-
tion in the 2002 SCEE-conference at the Technische Universiteit Eindhoven,
where it all began.

Roma–Milano, December 20, 2006–January 28, 2007



Lamé’s elastic solid ether rekindled

The electromagnetic and the mechanical response of a medium cannot be
characterized independently of each other, in general. Therefore, a unified
formulation of both theories is basic to a successful approach to strongly cou-
pled electro-mechanical problems. Nowadays, after more than a century of
inconsiderate divergence between electromagnetic and mechanical field theo-
ries, we find it hard to bring them together. This is best exemplified by the
problematic status of the electrodynamics of deformable media. The blame
can be laid mainly on the limitations of the underlying theoretical frameworks
and on the practitioners’ education, too narrow to bridge the gap between
them. I would like to concentrate here on the first problem—even though I
am convinced that the second one carries more weight.

Here I transcribe the two field theories into the same unifying language, as
is needed both to contrast and to couple them. In electromagnetic field theory
there are plenty of real-valued physical quantities associated with geometrical
objects (cells) of various dimensions, embedded in four-dimensional space-
time. On the contrary, in continuum mechanics there is only one true real-
valued quantity, namely work, associated with the cells of highest dimension
in the body-time manifold (beware: body-time, not space-time). Mechanical
work is backed up by a composite team of vector-valued and covector-valued
physical quantities, associated with low- or high-dimensional cells. In elec-
tromagnetics, on the contrary, there are no true vector quantities—despite
appearances and ingrained habits.

Lamé’s treatise on three-dimensional elastic solids

I happen to have a copy of the second edition of Gabriel Lamé’s Leçons sur la
Théorie Mathématique de l’Elasticité des Corps Solides [1] on my bookshelf.
It was published in 1866 (Fig. 1). Its first edition had been published in
1852. Compare with the dates of the electromagnetic trilogy by Maxwell: On
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Fig. 1. The title page of the second edition of Lamé’s Leçons [1].
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Faraday’s lines of force [2] appeared in 1856, On physical lines of force [3] in
1861–2, and A dynamical theory of the electromagnetic field [4] in 1865.

Lamé’s lecture notes on the mathematical theory of elastic solids differ
strongly from any present-day book with a similar title. I do not mean by
this simply that its notions and notations are somewhat outdated, or its math-
ematics obsolete, which would be quite trivial. The main difference is that
Lamé was much bolder and more oriented towards fundamental physics than
any of his modern followers in elasticity or solid mechanics. Secondly, and
as a consequence, his main aim was to study the vibrations and waves of a
peculiarly thin and outlandish solid medium: the all-pervading elastic ether.

Mathematical physics as a new science

Let me quote verbatim from the terse preface to the first edition, interspersing
commented translations of its key points. Lamé writes:

La Physique mathématique, proprement dite, est une création toute
moderne, qui appartient exclusivement aux Géomètres de notre siècle.
Aujourd’hui, cette science ne comprend en réalité que trois chapitres,
diversement étendus, qui soient traités rationnellement ; c’est-à-dire
qui ne s’appuient que sur des principes ou sur des lois incontestables.
Ces chapitres sont : la théorie de l’électricité statique à la surface des
corps conducteurs ; la théorie analytique de la chaleur ; enfin la théorie
mathématique de l’élasticité des corps solides. Le dernier est le plus
difficile, le moins complet ; il est aussi le plus utile, à une époque où
l’on veut apprécier l’importance d’une théorie mathématique par les
résultats qu’elle peut fournir immédiatement à la pratique industrielle.

Lamé held the opinion that—at the moment of his writing—the only well-
founded chapters of proper Mathematical Physics were the electrostatics of
conducting bodies, the theory of heat conduction and the mathematical theory
of three-dimensional elasticity. Insisting that these creations—contrary to Ra-
tional Mechanics1 of old—belonged exclusively to his own century, Lamé was
unfair to the “Geometers” of the Baroque period (Euler and the Bernoullis,
to name the most prominent ones), at least as much as a modern quantum
physicist could be to him and his contemporaries in elasticity.

Elasticity—the most difficult and the least developed of the three chap-
ters of Mathematical Physics—was also the most useful, he emphasized. It is
thought-provoking to read that Lamé already viewed that his own time was
willing to assess the importance of a mathematical theory through the imme-
diate benefits it could provide industrial practice. We could with all the more
reason appropriate his judgment, even though we would not put elasticity at
the top of our list of most useful theories.

1 More on this terminology in the next subsection on elasticity and electrodynamics.
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However, Lamé did not focus on the engineering side of elasticity—the
most prominent nowadays, mainstream physics having repudiated it long ago.
His preface continues as follows:

L’Analyse ne tardera pas, sans doute, à embrasser d’autres parties de
la Physique générale, telles que la théorie de la lumière, et celle des
phénomènes électrodynamiques. Mais, on ne saurait trop le répéter,
la véritable Physique mathématique est une science aussi rigoureuse,
aussi exacte que la Mécanique rationnelle. Elle se distingue, par là, de
toutes les applications qui s’appuient sur des principes douteux, sur
des hypothèses gratuites ou commodes, sur des formules empiriques ;
le plus souvent ce ne sont là que des essais, que des calculs numériques
au service d’une classification factice.

Elasticity and electrodynamics

No mention of light or electrodynamics is to be expected from a modern author
in elasticity, who typically relates Lamé’s name only to his celebrated elastic
moduli (shortly introduced in no more than two pages out of the three hundred
and thirty-five of the whole treatise). The big divide between Maxwell’s and
Lamé’s descendants does not extend to the ascendants themselves, as we shall
see even better on Maxwell’s side (see, in particular, the subsection on Maxwell
and the theory of elasticity on page 24).

In Lamé’s eyes, novel Mathematical Physics was far deeper and wider
in scope than older Rational Mechanics, which he saw confined to Celestial
Mechanics,2 rigid-body mechanics, hydrostatics, a primitive hydrodynamics,
and the mechanics of flexible low-dimensional bodies. In Chaps. 8–10 Lamé
touches upon elastic curves and surfaces with unjust disdain. He proclaims:

Ces deux questions ont été traitées, à l’aide de principes particuliers,
longtemps avant la création de la théorie mathématique de l’élasticité.
[ . . . ] Les anciens géomètres ont pu croire qu’avant d’étudier les corps
élastiques à trois dimensions finies, il convenait d’essayer d’abord les
fils minces et les membranes peu épaisses, c’est-à-dire les lignes et les
surfaces avant les solides. Mais cette marche, qui paraissait naturelle
et logique, a complétement manqué son but, car la vrai théorie de
l’élasticité n’a rien emprunté à ces premiers essais ; elle est née tout à
fait en dehors de ce champ d’exploration.

It is an irony that Lamé foreran both the reductionistic fundamentalism of
twentieth century physics and its most illustrious scapegoat: contemporary
continuum physics.
2 Elsewhere, Lamé designates Mathematical Physics as Terrestrial Mechanics. In

the closing section of his treatise on curvilinear coordinates [5], published in 1859,
he writes: « Mais quand il aura transformé et complété toutes les solutions de la
Mécanique céleste, il faudra s’occuper sérieusement de la Physique mathématique,
ou de la Mécanique terrestre ». See also footnote 5 on page 9.
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However, he insisted that genuine Mathematical Physics shared the stan-
dards of rigour and precision of Rational Mechanics. This quality differen-
tiated it from the host of empirical treatments based on doubtful principles
and ad hoc hypotheses, whose only merit was practicality, and whose function
was essentially provisional:

Cependant, la lenteur des progrès de la vraie science oblige d’avoir
recours à ce genre d’applications, pour coordonner les théories phy-
siques, pour étudier et comparer le moteurs, les machines, les pro-
jets de constructions de toute sorte, pour jauger les cours d’eau, les
conduites de gaz, etc. Malgré leur utilité actuelle, qui est incontestable,
toutes ces théories empiriques et partielles ne sont que des sciences
d’attente. Leur règne est essentiellement passager, intérimaire. Il du-
rera jusqu’à ce que la Physique rationnelle puisse envahir leur do-
maine. Elles n’auront plus alors qu’une importance historique.

Surrogate sciences and engineering education

I cannot be as confident as Lamé in the final victory of the one Rational
Physics over the myriad of special, empirical theories devised to cope with
practical problems for which a truly scientific treatment is not yet available.
For two reasons: first, I know that make-do sciences actively reproduce, after
swallowing morsels of true science; second, I doubt whether there is only one
Rational Physics.

However, I find his lucid depiction of the subtle rivalry between technical
and scientific thinking3 in the age of technology a great contribution from him,
and I stand on his side in this confrontation. I am also strongly in favour of
his impassioned call for a balanced and open-minded engineering education:

Jusqu’à cette époque, peut-être plus voisine qu’on ne le croit générale-
ment, enseignons avec soin ces sciences d’attente, que d’habiles pra-
ticiens ont édifiées, afin de répondre aux besoins incessants des arts
industriels. Mais ne les enseignons pas seules : tenons les élèves-ingé-
nieurs au courant des progrès lents, mais sûrs, de la véritable Phy-
sique mathématique ; et, pour qu’ils puissent eux-mêmes accélérer ces
progrès, faiçons en sorte qu’ils connaissent toutes les ressources ac-
tuelles de l’Analyse.

C’est ce dernier but que je me propose, en publiant des Leçons
sur la Théorie mathématique de l’élasticité, considérée dans les corps
solides.

Let us teach these surrogate sciences with care—I proclaim after him—
developed by skilful practitioners in response to the unceasing needs of in-
dustrial crafts. On the other hand, let us not teach only them. Let our engi-
neering students keep abreast of the gradual, but positive, progress of genuine

3 Cf. the opposition “techne” vs. “episteme” in the superb essay [6] by Koyré.
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Mathematical Physics. In order that they themselves be able to speed up its
progress, let them know all the resources of modern Analysis.

It seems to me that such an aim is even worthier—but more difficult—
to attain today than in Lamé’s time. I would incite any good engineering
school to make it its blazon. Not being in a position to do so with my home
institution, I would humbly address the Technische Universiteit Eindhoven4,
rated as “the best university of technology in Europe” by Der Spiegel in 1998.

Elasticity and molecular mechanics

At variance with modern textbooks in continuum mechanics, elasticity is de-
fined by Lamé in terms of molecular interactions, even though in a rather
vague way. The very first paragraph of Chap. 1, Sect. 1 runs as follows:

1. Définition de l’élasticité. — Lorsque les molécules de la matière
constituent un corps ou un milieu, limité ou indéfini, les causes qui
ont assigné à ces molécules leurs positions relatives sont en quelque
sorte persistentes, ou agissent continuellement ; car, si quelque effort
extérieur change un peu et momentanément ces positions, les mêmes
causes tendent à ramener les molécules à leur places primitives. C’est
cette tendance ou cette action continue que l’on désigne sous le nom
d’élasticité.

Roughly speaking, Lamé calls elastic the restoring forces which tend to bring
molecules back to their equilibrium positions. Notice that Lamé did not use
his näıve molecular picture as a convenient pedagogic cartoon. Strange as
it may appear to us, he and other founding fathers of continuum physics
strongly believed in the necessity of an underlying discrete structure of mat-
ter.5 Lamé criticized Navier’s method for establishing the general equations
of three-dimensional elasticity, on the grounds that it presupposed matter to
be continuous, which he considered flatly absurd and inadmissible. In Sect. 15
he writes:

Telle est la méthode suivi par Navier et autres géomètres, pour ob-
tenir les équations générales de l’élasticité dans les milieux solides.
Mais cette méthode suppose évidemment la continuité de la matière,
hypothèse inadmissible.

4 The Technische Universiteit Eindhoven was the venue of the conference where I
gave the lecture preliminary to this note (see Background on page 3).

5 Recall the dichotomy between Celestial and Terrestrial Mechanics (footnote 2 on
page 7). In Sect. 134—the closing section of [1]—Lamé contrasts Celestial Me-
chanics with Molecular Physics, thereby identifying Molecular and Mathematical
Physics: « Nous terminons cette Leçon, et le Cours que nous avons entrepris, par
quelques réflexions sur la constitution intérieure des corps solides. [. . .T]outes les
questions relatives à la Physique moléculaire ont été rétardées, plutôt qu’avancées,
par l’extension, au moins prématurée sinon fausse, des principes et des lois de la
Mécanique céleste. »
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And again, in Sect. 30:
On trouvera peut-être longue et minutieuse la marche que nous avons
adoptée, en la comparant à celle qu’ont suivie Navier, Poisson et
d’autres savants [ . . . ]. Chez nous, plus d’intégrations autour d’un
point, lesquelles supposent évidemment la continuité de la matière, hy-
pothèse absurde et complétement inadmissible, même par abstraction ;
mais, au lieu de cette continuité imaginaire, existe la continuité réelle
des déplacements géométriques, no 11 [ Projections du déplacement
moléculaire ].
The subtle role played in the nineteenth century by the molecular inter-

pretation of elasticity is best expounded in the masterly historical account of
structural mechanics by Benvenuto [7]. Let me quote from Sect. 14.2 (but see
also Sects. 6.7–8):

Elasticity represented the most promising line of inquiry, not only
because of its extraordinary practical usefulness and the accuracy of
the theoretical synthesis that it permitted, but also because of the
implications of its general principles and equations. The molecular
interpretation of elastic behavior that Navier, Cauchy and Poisson
promoted led many scientists to attempt finally to unify and explain
all forces operating in Nature in the light of a universal law of attrac-
tion and interatomic repulsion, like that foreseen by Boscovich. From
the masses of stars, subject to grand Newtonian forces, to the minute
attractions between atoms in a molecule—all seemed to be governed
by the same principle.

In this area, [ . . . ] Mossotti’s work is of great interest. His es-
say « Sur les forces qui régissent la constitution intérieure des corps,
aperçu pour servir à la détermination de la cause et des lois de l’action
moléculaire » was published in Turin in 1836; Faraday presented it to
the Royal Institution in 1837. Mossotti aims (rather ambitiously) to
unite all natural phenomena—gravity, molecular interactions, the “re-
pulsive force of the caloric,” electricity, light—by studying the “com-
bined action of the attraction and the repulsion between two of more
substances.” He enriches Boscovich’s model, taking into account as
“an important contribution to the stable equilibrium” of bodies the
action of ether, that “imponderable fluid . . . to which the phenomena
of elasticity and of heat can be attributed.” From this perspective,
the laws of elasticity are by no means restricted to a specific class of
bodies, but express an inherent property of matter itself.

Lamé shared that same perspective. Indeed, his definition of elasticity con-
cludes along very similar lines (third paragraph of Chap. 1, Sect. 1):

L’élasticité est donc une des propriétés générales de la matière. Elle
est, en effet, l’origine réelle ou l’intermédiaire indispensable des phéno-
mènes physiques les plus importants de l’univers. C’est par elle que
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la lumière se répand, que la chaleur rayonne, que le son se forme, se
propage et se perçoit, que notre corps agit et se déplace, que nos ma-
chines se meuvent, travaillent et se conservent, que nos constructions,
nos instruments échappent à mille causes de destruction. En un mot,
le rôle de l’élasticité, dans la nature, est au moins aussi important que
celui de la pesanteur universelle. D’ailleurs la gravitation et l’élasticité
doivent être considérées comme les effets d’une même cause, qui rend
dépendantes ou solidaires toutes les parties matérielles de l’univers, la
première manifestant cette dépendance à des distances considérables,
la seconde à des distances très-petites.

Lamé’s view of ether

The main focus of Lamé’s treatise on elasticity is undoubtedly the study of
small vibrations and linear waves. Out of one hundred and thirty-four sec-
tions, grouped in twenty-four chapters, only the eight sections of Chaps. 12 and
16—making up twenty-eight pages in all—are devoted to equilibrium prob-
lems of three-dimensional elasticity. In fact, Lamé closes Chap. 10 (devoted to
the study of transversal vibrations of a flat membrane as a two-dimensional
preliminary to the three-dimensional problems treated afterwards) with a note
of apology to the practical-minded reader for such a bias:

L’object de cette Leçon paraitra sans doute fort peu important aux
ingénieurs qui s’intéressent spécialement à l’équilibre d’élasticité.

He then asks a provocative question we are in a better position to appreciate,
with the benefit of hindsight:

Mais, outre qu’il est souvent nécessaire d’étudier l’effet des vibrations
sur certaines constructions, le temps n’est-il pas venu de se demander
si l’état moléculaire des corps dont le repos nous parâıt le mieux établi
est bien réellement un état statique ; s’il n’est pas, au contraire, le
résultat de vibrations très-rapides, et qui ne s’arrêtent jamais ? Tout
porte à penser, en effet, que le repos relatif des molécules d’un corps
n’est qu’un cas très-exceptionnel, une pure abstraction, une chimère
peut-être.

The notion of wave speed, with emphasis on the classification into longitudinal
and transversal waves, is introduced in Chap. 11. From Chap. 17 on—one
hundred and eleven pages in all—Lamé strives to explain light waves through
elasticity theory, starting from Fresnel’s birefringence. The first section of
Chap. 17 starts with the following resolution:

91. Application de la théorie de l’élasticité à la double réfraction. —
Jusqu’ici nous avons traité la théorie de l’élasticité comme une science
rationnelle, donnant l’explication complète et les lois exactes de faits
que ne peuvent pas évidemment avoir une autre origine. Nous allons
maintenant la présenter comme un instrument de recherches [ . . . ].
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La théorie physique des ondes lumineuses porte certainement en elle
l’explication future de tous les phénomènes de l’optique ; mais cette
explication complète ne peut être atteinte par le seul secours de l’ana-
lyse mathématique, il faudra revenir, et souvent, aux phénomènes, à
l’expérience.

This endeavour leads him to the following conclusion: the phenomena of
light propagation in space, diffraction, and birefringence prove the ubiquitous
existence of ether beyond all conceivable doubt. In Sect. 131 he writes:

Il ne peut plus exister de doute sur cette question, car il résulte
clairement de notre analyse que la matière pondérable, seule, est
complétement incapable de produire les ondes progressives qui ex-
pliquent les phénomènes optiques des corps biréfringents [ . . . ]. Les
ondes lumineuses sont donc produites et propagées, dans les corps
diaphanes, par les vibrations d’un fluide impondérable, lequel ne peut
être que l’éther. Or, ces conséquences importantes ne pouvaient être
déduites, d’une manière certaine et rigoureuse, qu’à l’aide du calcul
et en partant de la théorie de l’élasticité.

While crediting the mathematical theory of elasticity for this important and
rigorous result, Lamé was confident that accounting properly for the interac-
tion between ethereal and ponderable matter would have disclosed the secrets
of a host of mysterious and incomprehensible beings, ranging from caloric,
electricity, magnetism, universal attraction, cohesion, to chemical affinities.
He closes his treatise with the following optimistic conjecture, which sounds
odd to us:

Il n’est donc plus possible d’arriver à une explication rationnelle et
complète des phénomènes de la nature physique, sans faire interve-
nir [le fluide éthéré], dont la présence est inévitable. On n’en saurait
douter, cette intervention, sagement conduite, trouvera le secret, ou
la véritable cause des effets qu’on attribue au calorique, à l’électricité,
au magnétisme, à l’attraction universelle, à la cohésion, aux affinités
chimiques ; car tous ces êtres mystérieux et incompréhensibles ne sont,
au fond, que des hypothèses de coordination, utiles sans doute à notre
ignorance actuelle, mais que les progrès de la véritable science finiront
par détrôner.

Maxwell’s electromagnetism vs. Lamé’s elasticity

Lamé was wrong with his elastic ether. As is clear to us now, Maxwell was
right with his electromagnetic field theory, shaped on Faraday’s unorthodox
ideas. This makes me appreciate Maxwell’s penchant for understatement and
the “absurd and infuriating modesty” which Dyson reproached him with in a
witty and enlightening short essay [8]. But was Maxwell against ether?
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Maxwell on ether

By no means. Consider the following quote from the presidential address6 he
gave at the annual meeting of the British Association for the Advancement of
Science in 1870:

Another theory of electricity which I prefer denies action at a dis-
tance and attributes electric action to tensions and pressures in an all-
pervading medium, these stresses being the same in kind with those
familiar to engineers, and the medium being identical with that in
which light is supposed to be propagated.

Such was the passing mention of his own theory that Maxwell uttered, after
praising the vortex theory of matter by Thompson as a wonderful example of
recent advances on the frontier between mathematics and physics. It should
be noted that at the moment of this speech Maxwell was concentrating on
his monumental treatise [9], having resigned from his professorship at King’s
College five years earlier. However, despite the kinship of “stresses” vaguely
advocated by Maxwell, his electromagnetic ether deeply differs from Lamé’s.7

Fig. 2. Spinning molecular vortices from Maxwell’s On physical lines of force [3].

6 Published in Nature, Vol. 2. See also the entry “Ether” in the ninth edition of
the Encyclopædia Britannica, written by Maxwell himself.

7 The role played by mechanical modelling (see Fig. 2) in earlier Maxwell’s con-
ceptualizations of his electromagnetic field theory is well appreciated in [10] (but
see [11] for an opposing argument). In his 1865 paper [4], Maxwell himself drew
a clear distinction between his equations, which he firmly believed to be correct,
and the mechanical model that supposedly accounted for them, which he did not
defend any longer. For a strong view on this paradigm shift see [8], where Dyson
writes: “Maxwell’s theory becomes simple and intelligible only when you give up
thinking in terms of mechanical models. [ . . . ] Maxwell theory had to wait for
the next generation of physicists, Hertz and Lorentz and Einstein, to reveal its
power and clarify its concepts. [ . . . ] The primacy of fields was as natural to
Einstein as the primacy of mechanical structures had been to Maxwell.”
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The key difference between Maxwell’s and Lamé’s theories

As we have just seen, this is not in being for or against the existence of
ether.8 Also their different invariance properties are not as discriminating as
is commonly adduced. After all, “classical” (i.e., non-relativistic and non-
quantistic) field theories of mechanics behave well under the action of slow9

Lorentz changes in observer—which is all to be expected.
The distinguished feature that makes the real difference between Lamé’s

ether and Maxwell–Faraday’s ether is topological in nature.10 In electromag-
netic field theory there are plenty of real -valued physical quantities associated
with geometric objects (cells) of dimension ranging from 1 to 3, embedded in
4-dimensional space-time (cf. the discussion by Tonti in [16, Sect. 5.1]; see also
the concise account by Vilasi in [18, Chap. 11]). On the contrary, in contin-
uum mechanics there is only one bona fide real-valued quantity, namely work,
associated with the cells of highest dimension in the body-time manifold (pay
attention: body-time, in lieu of space-time!). Mechanical work is backed up
by a dual team comprised of vector - and covector -valued physical quantities,
associated with cells of small (≤ 1 ) dimension and co-dimension, respectively.
In electromagnetics, on the contrary, there are no bona fide vector quantities
(distrust Euclidean/Riemannian appearances!).

Space-time cells

Let me explain myself, starting from the electromagnetic side. In the follow-
ing, I consider space-time as the product of a 3-dimensional space manifold
times a 1-dimensional time line, thus adopting the viewpoint of an observer.
Space-time vectors decompose accordingly into space and time components.
A space vector is, by definition, a space-time vector with null time compo-
nent (and viceversa). The dichotomy (space, time) is invariant under slow
Lorentz changes in observer. It should not be confused with the Minkowskian
trichotomy (spacelike, lightlike, timelike), which is invariant under a general
Lorentz transformation [19]. All space vectors are spacelike, and time vectors
timelike—but the converse does not hold true.

Consider the hierarchy of parallelepipedal cells in space-time, ranging from
0-dimensional (an event, i.e., a place times an instant) to (3+1)-dimensional
(a chunk of space times a time lapse). A nondegenerate k-cell (i.e., a k-
dimensional parallelepipedal cell) has k independent edges, which are space-
time vectors. More precisely, a k-cell with k>0 (synonymic to a k-vector) is
8 While changing meaning many times, this term keeps its place in physics, as

Einstein and Infeld put it: “Dieses Wort Äther hat in der Entwicklung der Wis-
senschaft viele Male seine Bedeutung geändert. [ . . . ] Seine Geschichte ist aber
noch keineswegs beendet [ . . . ].”

9 Right after my lecture, Alain Bossavit assured me that this notion could be made
precise using well-established mathematical tools [12, 13].

10 I espouse the viewpoint pionereed by Tonti [14–16] and expounded by Mattiussi
[17], among others. However, they completely miss the issue I think is crucial here.
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the equivalence class of all k-parallelepipeds sitting on the same 0-cell, lying in
the same k-plane and having the same (signed) k-volume (as a basic reference
for this gadgetry, see [20, Chap. 4]). When talking about cell edges, I really
mean the edges of at least one of its representative parallelepipeds.11

Let me call plumb all nondegenerate cells whose edges are either space
or time vectors; slant the other ones. Most cells are slant, but all of them
can be obtained as linear combinations of plumb cells. Among plumb cells,
I single out time-dipped cells, which have one time edge (they cannot have
more); the remaining ones, having no time edges, I call simply space cells. All
cells decompose (in a unique way) into space and time-dipped components.

The distribution of real-valued quantities additively associated with k-
dimensional space-time objects is properly gauged by (real-valued) k-forms,
i.e., fields of k-covectors, which are—by construction—the integrands that
makes sense to integrate on patches of k-cells, yielding their content of the
gauged quantity. The co-space and co-time components12 of a k-form are
singled out by integrating it on space and time-dipped k-cells, respectively.

The basic structure of electromagnetic field theory

Maxwell’s play—when staged in this transcription—has two leading char-
acters: the even electromagnetic 2-form F and the odd charge-current 3-
form J̃.13 Maxwell’s equations establish the existence of their companion

11 Parallelepipeds are affine constructs par excellence. Space and time (and, a for-
tiori, deformable media) should be thought of basically as mere differentiable
manifolds. Therefore, space-time k-cells sitting on {(x,i)}, where x is a place
and i an instant, lie in the tangent space to the space-time manifold at (x,i).
They can only be approximately realized on the manifold itself: roughly speaking,
only vanishingly small parallelepipedal cells belong in a differentiable manifold.

12 To be read space-conjugate and time-conjugate components, respectively.
13 The physically relevant distinction between even and odd k-forms is rather tricky

to explain. This notwithstanding, I am not prone to take it for granted, because
of the deficient attention odd forms and related notions usually get. For an intro-
duction to these notions with a view to application to classical electromagnetism,
the reader is referred to [21,22] and [15,16], with a warning: most often, odd forms
are called twisted—a misnomer, in my opinion; see also the very nice book [23].

An even k-form is just a k-form; an odd k-form is a k-form paired with a collec-
tion of local orientations of the m-dimensional ambient manifoldM (space-time,
in the case under consideration). At each e∈M, the orientation of the tangent
space TeM may be characterized by a nonzero m-covector ωe, any positive mul-
tiple of it providing the same orientation; since m-covectors have only one strict
component, each tangent space may be oriented in two distinct ways. On each
coordinate patch U ⊂M, it is also possible to associate a coherent orientation
to all tangent spaces in TU through a smooth local m-form ωU which vanishes
nowhere in U . Therefore, all manifolds are locally orientable; however, patching
together local orientations into a global one may be precluded by topological ob-
structions. The (local or global) orientation imparted to a k-submanifold S ofM
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potentials: the electromagnetic potential A (an even 1-form), and the charge-
current potential G̃ (an odd 2-form).14 To sum up, we have a nice symmetric
panoply, centered on dimension 2: one even 1-form ( A ), two 2-forms—one
even ( F ), one odd (G̃ )—, and one odd 3-form ( J̃ ). All of them are real-valued,
none of them sit at the extremes (0 and 4).

Down-to-earth electric and magnetic quantities are elicited by evaluating
the co-space and co-time components of the above k-forms: the scalar-valued
charge density ρ and the vector-valued current density J represent respectively
the co-space and co-time components of the odd charge-current 3-form J̃; the
vector-valued electric flux density D and magnetic field intensity H represent

by attaching a nonzero k-covector to each submanifold tangent space does not
depend on the way S is embedded intoM. It is labelled as inner, to tell it apart
from the outer orientation S may have as a submanifold of M. At each e∈ S,
the outer orientation of the tangent space TeS may be characterized by a normal
(m − k)-covector νe, any positive multiple of it providing the same orientation.
A normal (m− k)-covector is any nonzero (m− k)-covector νe such that

〈 u y νe,w 〉(m−k−1) ≡ 〈 νe, u ∧ w 〉(m−k) = 0

for each (m−k−1)-cell w at e and for all 1-cell (i.e., vector) u ∈ TeS. The duality
pairing between r-covectors and r-vectors (r-cells) is the basic algebraic structure
underlying integration; the interior (“hook” or “edge”) multiplication y is dual
to the exterior (“wedge”) multiplication ∧ (which I take for granted). Since the
(m− k)-covector νe vanishes on all (m− k)-cells that are not transversal to the
k-plane TeS, it has only one strict component (nonnull by hypothesis); hence,
TeS may be outer-oriented in two distinct ways. Local (and conditional global)
outer-orientability of S follows as for inner-orientability.

Odd k-forms are tailored to be integrated on k-submanifolds endowed with
outer orientation, irrespective of whether they are inner-oriented or not. In par-
ticular, odd m-forms—also called densities—can be integrated on the whole of
M also when M is not inner-orientable (any manifold is outer-orientable as a
submanifold of itself). Let eϕ := (ϕ,Ω) be an odd k-form on M, with ϕ an even
k-form and Ω a collection of local orientations of M; let c be a nondegenerate
k-cell lying in TeS, ωe the orientation imparted by Ω to TeM, and νe the normal
(m− k)-covector providing TeS with an outer orientation. Then, the integration
of eϕ on S is based on the following building block:

〈 eϕ|e, c 〉k := sgn(νe/(c yωe)) 〈ϕ|e, c 〉k .

The ratio between νe and the interior product c yωe makes sense, since c yωe is
a normal (m − k)-covector to S at e, hence a nonnull multiple of νe. Clearly,
〈 eϕ|e,−c 〉k = 〈 eϕ|e, c 〉k , while 〈ϕ|e,−c 〉k = −〈ϕ|e, c 〉k . The normal covector νe

may be conveniently normalized to the scaled normal covector ν̂e such that

sgn(νe/(c yωe)) = sgn(ν̂e/(c yωe)) = ν̂e/(c yωe) .

14 I am not especially satisfied with my nomenclature (inspired by [17,24]). In fact,
it seems that everybody in electromagnetism is unhappy with its terminology [25].
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respectively the co-space and co-time components of the odd charge-current
potential 2-form G̃; the vector-valued electric field intensity E and magnetic
flux density B represent respectively the co-time and co-space components
of the even electromagnetic 2-form F; the scalar potential V and the vector
potential A represent respectively the co-time and co-space components of
the even electromagnetic potential 1-form A.

It should be stressed that all of the above scalar fields and (space) vector
fields are but proxies of the thing-in-itself. Much structural information is
obliterated when those pallid substitutes are taken at face value: in fact,
only J and D should be regarded as true vector fields: A and E are covector
fields, B is a pseudovector field, and H is a pseudocovector field in Riemannian
disguise.15 These distinctions were well known to Maxwell [26]. However, they
never entered the physics vulgate—or evaporated early on.

The electric and magnetic fields E, B, et cetera can obviously be extended
to any space dimension—as bare vector fields. This is a futile exercise, how-
ever, since the delicate underlying structure can not be exported, as I now
formally state.

Proposition 1. Let take for granted that the time manifold is 1-dimensional.
Then, the only alternating multilinear forms having the same number of strict
co-time and strict co-space components are those sitting exactly halfway from
the extremes: if space has even dimension, there are none; if space has di-
mension 2k−1 (with k a positive integer), k-forms (and no others) will do.

Proof. A k-form inm dimensions hasN = m!/((m−k)! k! ) strict components.
If space has dimension m−1, k-forms have therefore N strict components (co-
time plus co-space: N = Nt +Ns) and Ns = (m− 1)!/((m−1− k)! k! ) strict
co-space components. Now, N/Ns = m/(m−k); hence, Nt = Ns ⇔ m = 2 k.
ut

Remark 1. Prop. 1 proves that the crucial electric-magnetic duality—the key
experimental finding by Faraday—can only exist in an odd-dimensional space
manifold (paired with a one-dimensional time manifold). Such a duality has
far-reaching extensions beyond classical electromagnetism (see, e.g., [27–30]).

15 In fact, the representation of the co-space component of the electromagnetic po-
tential form via the vector potential A and of the co-time component of the
electromagnetic form via the electric field intensity E depends upon the iden-
tification between vector and covector fields brought about by the Riemannian
structure imparted to the space manifold by a metric g. The co-space component
of the electromagnetic form is represented by the magnetic flux density B in a
way mediated by the introduction of (local) volume forms µ on the space manifold
(see note 13 on page 15); whence the pseudo- prefix. Finally, to represent the co-
time component of the charge-current potential form through the magnetic field
intensity H both volume and metric structures are needed, whence the compound
pseudoco- prefix. The dichotomy true/pseudo- is the same as polar/axial.
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Proposition 2. Let space have odd dimension ns = 2k−1 (with k a positive
integer). Then, k-forms have exactly ns strict co-space components (and ns

strict co-time components, because of Prop. 1 ) if and only if k < 3 .

Proof. A k-form has Ns = ns!/(ns − k)! k! = (2k − 1)!/(k − 1)! k! strict
components. Hence, Ns = ns if and only if

(2k − 1)!
(k − 1)! k!

= 2k − 1 ⇔ (2k − 2)!
(k − 1)! k!

= 1 .

After letting j = k−1 , the problem may be conveniently rephrased as follows:

Find j ≥ 0 such that
(2j)!

(j + 1)!
= j! . (1)

Checking that 0 and 1 solve Prob. (1) is straightforward. For j > 1 ,

(2j)!
(j + 1)!

=
j∏

i=2

(j + i) , j! =
j∏

i=2

i ,

and the two products (each of which has j− 1 factors) cannot be equal, since
each factor of the first is larger than the corresponding factor of the second.
This proves that Prob. (1) has no solution greater than 1. ut

Remark 2. Prop. 2, together with Prop. 1, proves that the co-time component
of the electromagnetic form can be represented by a single (space) vector
field (the electric field intensity E), and the co-space component by another
one (the magnetic flux density B), if and only if the space dimension is odd
and small, namely, 1 or 3. If space had dimension 5, 2 + 2 (space) vector
fields would be needed to represent the electromagnetic 3-form; if ns = 7,
the electromagnetic 4-form would have as counterpart a host of 5 + 5 (space)
vector fields, and so on.

Proposition 3. An electromagnetic theory possessing the properties stated in
Remark 2 is physically unsound if k = 1 .

Proof. Because of Prop. 2, k = 1 implies ns = 1 . If space dimension were
1, electricity and magnetism would not couple in empty space, electromag-
netic waves would not travel through it, and the Poynting vector field E×H
(another true vector field, like J and D) would be identically null. ut

Remark 3. Summing up, space dimension has to be odd and small, but not too
small: Maxwell’s play can only be staged on a (3+1)-dimensional space-time.
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The basic structure of mechanical field theory

Let me now transcribe Lamé’s play into the same unifying language. The first
major change in the stage setting is that mechanical quantities are associated
with cells embedded in an(n+1)-dimensional body-time manifold, defined as
the product of an n-dimensional body manifold B ( 0 ≤ n ≤ns = 3 ) times a 1-
dimensional time line T . It should be noted that introducing a body manifold
does not privilege any observer. Singling out a time line from the space-time
continuum does call for an observer, however.16 The cases n= 1, 2 describe
respectively corporeal curves and surfaces (Lamé’s « fils minces et membranes
peu épaisses » quoted on page 7). Following Lamé, I concentrate here on the
mechanics of space-filling bodies (n= ns = 3 ). Even in this case it is of the
essence to keep body quite distinct from space. Not to confuse the issue, I
distinguish carefully between elements of the space manifold S —which I call
places—and elements of the body manifold B—which I call points.

Body-time cells are isomorphic to space-time cells, so only terminology
needs adapting. In particular, space cells translate into body cells. A 0-cell is
now a point times an instant, a body 1-cell a line element, a body (n−1)-cell
a facet, and a body n-cell a bulk element. At the top of the cell hierarchy sit
body-time lumps (bulk elements times time lapses). Distributions of phys-
ical quantities associated with k-dimensional body-time cells are gauged by
k-forms, endowed with co-body and co-time components.17 The important
difference with respect to electromagnetic field theory is that most mechanical
quantities—and hence the corresponding forms—are not real-valued.18

The fundamental mechanical descriptor is the (even) placement 0-form
p , a place-valued field attaching to each point at each instant—i.e., to each
0-cell—a place in space:

p : B ×T → S . (2)

At variance with electromagnetic forms, the very definition of placement calls
for an observer: a different observer sees a corresponding placement, as de-
creed by the action of the group of changes in observer on space-time. The
restriction of a placement to all simultaneous 0-cells is required to be an em-
bedding.19 The (exterior) differential of the placement 0-form is the (space)

16 A proper -time line may be attached to each body point independently of any
observer. But an observer is required to trivialize the proper-time bundle, i.e.,
to equate time lines attached to different body points [19, Sect. 1.4].

17 Body-conjugate and time-conjugate components (cf. footnote 12 on page 15).
18 The notion of vector-valued forms surfaces in a passing remark—entitled “A

glimpse of other physical theories”—in [31]. Vector- and covector-valued forms
are explicitly introduced in [32, 33], where their use is rightly advocated for the
evaluation of electromagnetic forces. The way these papers treat mechanics is,
however, far from satisfactory.

19 Any such embedding may be adopted to pull spatial structures back onto the
body, or to push body structures forward into space. The ingrained habit to grant
undue privileges to one embedding or another is cause of perennial confusion.
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tangent bundle-valued displacement 1-form dp, such that

〈dp ,X〉 = L
X
p (3)

for all vector field X tangent to the body-time manifold B×T , L
X

denoting
Lie differentiation along the vector field X. The co-time and co-body com-
ponents of the (even) 1-form dp are represented respectively by the velocity
ṗ and the body gradient of placement ∇p .

To focus on the essentials, in the following I stick to an affine space man-
ifold S (and, where needed, to an affine space-time S × T ), whose tan-
gent bundle has a canonical global connection, whereby all tangent spaces
are trivially identified with each other. If the manifold S is affine, then
TS ' S × VS , VS being the translation space of S , i.e., the vector space
that acts freely and transitively on S . Handling vector -valued forms requires
an easy extension of the rules valid for real-valued forms (see [34, Def. 6.3.11]).
This is not sufficiently general, however: think of the curved space-time of gen-
eral relativity or, in a lower key, of shallow waters flowing on a smooth but
uneven rocky bed. The general notions which are needed are that of bun-
dle-valued forms and twisted (or covariant) exterior differentiation (see [35,
Sect. II-1]). While such refinements may be set aside in the present discussion,
the moral to be drawn from them does belong to the essentials: no vector-
valued global quantity should be allowed in the basic structure of any physical
theory, since bundle-valued forms cannot be integrated—unless their target
bundle is trivial. This criterion dooms such “basic” notions as that of resul-
tant force, as I tried to explain—with mixed success—since the nineties [36],
advocating and enlarging Germain’s viewpoint [37,38]. See also [39] for a later
contribution from Segev and Rodnay along the same lines.

In dynamics, a key role is played by test velocities, VS -valued 0-forms
sharing the physical dimensions of ṗ . No differential compatibility is required
between a test velocity v and the placement p , the equality v = ṗ selecting
the one velocity realized along p . Let me emphasize that test velocities are
zero-forms: a test velocity should be interpreted as attaching to each 0-cell
{b}×{i} ( b a point, i an instant) the difference pε(b, i) − p (b, i) between
the place assigned to it by a juxtaposed placement pε, for vanishingly small
ε, and that assigned by p, it being intended that lim ε→0 pε = p (cf. [40]):

v := lim
ε→0

ε−1(pε− p ) (4)

In other words, test displacements develop in an extra subsidiary time dimen-
sion, parameterized by the pseudo-time ε .20

Work is the chief integral quantity in mechanics, associated with body-
time lumps.21 It is gauged by an odd R-valued (n+1)-form, obtained as the
20 Therefore, the equality v = ṗ is trickier than it seems.
21 Playing with the real-valued time coordinate parameterizing T , other real-valued

work-related ancillary quantities may be introduced, as the time rate of work,
namely the power (or working), or its time integral, namely the action.
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sum of exterior products of even VS -valued and odd V∗S -valued forms.22

The basic dynamical features of each individual mechanical theory are en-
coded in the structure of this distinguished bilinear functional. The standard
model of continuum mechanics—encompassing, in particular, Lamé’s theory
of three-dimensional elasticity—is founded on the assumptions I present in
the following paragraphs.

The (so-called “virtual”) work done on a test velocity v over an (n+1)-
dimensional body-time cell c (provided with external orientation) is the sum
of two contributions: an integral over the cell itself, and another over its
boundary ∂c.23 The odd real-valued (n+ 1)-form w̃ lmp to be integrated over
the lump c is the sum of two exterior products: the VS -valued 0-form v

22 The exterior product of an even and an odd form is odd. The exterior multiplica-
tion between vector- and covector-valued forms makes use of the duality pairing
〈〈 · , · 〉〉 between VS and V∗S . If α is a VS -valued r-form and β a V∗S -valued
s-form, α ∧ β is the R-valued (r+s)-form such that

〈α ∧ β ,X1 ∧ · · · ∧Xr+s 〉(r+s) =

1

r! s!

X
π∈S

ε(π) 〈〈 〈α ,Xπ(1) ∧ · · · ∧Xπ(r) 〉(r) , 〈β ,Xπ(r+1) ∧ · · · ∧Xπ(r+s) 〉(s) 〉〉

for all (body-time)-vector fields X1, . . . ,Xr+s (i.e., for all sections of the tangent
bundle T(B × T ) ' (TB) × (TT )). The symmetric group of degree r+s is
denoted S; the parity of the permutation π is denoted ε(π): ε(π) = +1 if π is
even, ε(π) = −1 if π is odd.

23 I consider the notion of boundary operator ∂ as primitive, and that of exterior
derivative d as derived from it by duality: the first applies to multivector fields,
the second to differential forms, and they are dual to each other with respect to
the duality pairing between r-forms and r-vector fields (cf. note 13 on page 15):

〈dϕ, c 〉(k) = 〈ϕ,∂c 〉(k−1)

for each (k−1)-form ϕ and k-vector field c. The boundary of a parallelepipedal
k-cell, i.e., a cell whose edges are defined by commuting vector fields X1, . . . ,Xk,
consists of k pairs of (k−1)-cells: by definition,

〈ϕ,∂(X1 ∧ · · · ∧Xk)〉 =

kX
`=1

(−1)`−1LX`
〈ϕ,X1 ∧ · · · ∧ X̂` ∧ · · · ∧Xk〉

for each (k−1)-form ϕ (X̂` denotes that X` is deleted). The boundary of a
quasi-parallelepipedal k-cell, built out of k non commuting vector fields, includes
also

`
k
2

´
“smaller”(k−1)-cells, whose contribution to the boundary integral is

accounted for by the sumX
1≤i<j≤k

(−1)i+j〈ϕ, (LXi
Xj) ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xk〉 ,

to be added to the right side of the previous equality. This is Palais’ definition of
d in terms of L [41], translated by duality into a definition of ∂; see [34, Sect. 7.4].
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times the impulse-supply form ς̃ (an odd V∗S -valued (n + 1)-form) plus the
opposite24 of the differential dv (a VS -valued 1-form) times the impulse-flux
form ϕ̃ (an odd V∗S -valued n-form):

w̃ lmp = v ∧ ς̃ − (dv) ∧ ϕ̃ . (5)

The odd real-valued n-form w̃ bry to be integrated over the cell boundary ∂c

is the exterior product of v times the boundary-impulse form β̃∂c (an odd
V∗S -valued n-form living on ∂c):

w̃ bry = v ∧ β̃∂c . (6)

The impulse-supply form ς̃ has a single (V∗S -valued) strict component, the
bulk force per unit body volume b; the co-body and co-time components of the
impulse-flux form ϕ̃ are represented respectively by the momentum per unit
body volume m (a V∗S -valued field) and the stress S (a TB ⊗ V∗S -valued
field, i.e., a section of the tensor product bundle of body (pseudo-)vectors
times space covectors).25 The boundary-impulse form β̃∂c, being an n-form
on an n-manifold, has a single strict component. On a time-dipped n-cell (i.e.,
a facet f times a time lapse l) the strict component of β̃∂c is the (V∗S -valued)
traction tf ; on a body n-cell (i.e., a bulk element b times an instant i) the
strict component of β̃∂c is the (V∗S -valued) impulse per unit body volume i.
All of the above vector- or tensor-valued densities are representations medi-
ated by the choice of a collection of local volume forms on the body manifold
B and local area forms on each body surface (i.e., on all 1-codimensional
submanifolds of B).26 Different choices affect densities in such a way that the
forms they represent (namely, ς̃, ϕ̃, and β̃∂c) stay the same.

An overriding balance principle [36–38, 40, 43] commands that the total
(“virtual”) work done on any test velocity over any body-time lump should
be zero: for each test velocity v and for all body-time cell c,

〈 w̃ lmp, c 〉(n+1) + 〈 w̃ bry,∂c 〉(n) = 0 . (7)

Since body-vector fields (i.e., sections of TB) commute with time-vector fields
(i.e., sections of TT ), the boundary ∂c of a body-time cell c = l ∧ b (l a time
lapse, b a bulk element) consists of the boundary of l (two oriented instants)
times b minus l times the boundary of b:

∂(l ∧ b) = (∂l) ∧ b− l ∧ ∂b .

If the bulk element b is parallelepipedal, its boundary ∂b consists of 2n facets.
24 There is nothing deep here: the minus sign in (5) is simply the most convenient—

and most common—choice. The rationale behind it is best caught in the context
of higher grade theories: see footnote 27 on page 23.

25 More details and motivations for a treatment of stress dispensing with all “refer-
ence configuration” may be found in [36,42]. See also note 19 on page 19 and [39].

26 Volume forms on (n−1)-dimensional submanifolds are aptly called area forms.
Note also that I take for granted a parameterization of the time line, as usual.
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Since
d(v ∧ ϕ̃) = (dv) ∧ ϕ̃+ (−1)0 v ∧ (dϕ̃) (8)

and
〈d(v ∧ ϕ̃), c 〉(n+1) = 〈v ∧ ϕ̃ ,∂c 〉(n) , (9)

standard localization arguments prove that the balance principle (7) is equiv-
alent to the following two conditions: (i) the impulse-supply form and the
exterior derivative of the impulse-flux form should add up to the null V∗S -
valued (n+1)-form:

ς̃ + dϕ̃ = 0 (10)

in B × T ; and (ii) the boundary-impulse form on any n-cell should match
with the unique impulse-flux form:

β̃ι(F) = ι∗ ϕ̃ (11)

for each embedding ι : F ↪→ B × T of a prototype n-manifold F into
the (n+1)-dimensional body-time manifold. In other words, the boundary-
impulse form on ι(F ) should be the pull-back of the impulse-flux form ϕ̃
by the embedding ι . Equation (11) constitutes a body-time version of the
celebrated Cauchy stress theorem.

In comparison with Maxwell–Faraday’s gossamer edifice, continuum me-
chanics has much more robustness than fineness in it: granted that time is
one-dimensional, its basic structure can easily accommodate for any space
dimension. Also body dimension may be chosen freely—provided it does not
exceed space dimension.27

27 Extended placements are often introduced in neo-classical continuum mechanics,
by adding an order parameter of some sort to mere place in space:

p : B ×T → S × O ,

where O is the manifold spanned by the selected order parameter. Test velocities
are extended accordingly. The requirement to be an embedding now applies to the
space projection of the restriction of p to all simultaneous 0-cells (πS ◦ p)( · , i),
for all i ∈ T . In other terms, the topological properties of the body manifold B
are modelled after those of the space manifold S , independently of O.

A distinct extension—possibly allied with the previous one—is to higher grade
theories, where the work density at (b, i) is allowed to depend on the value at
(b, i) of higher body-time gradients of v, namely, of all Djv (0 ≤ j ≤ k > 1), not
only of D0v = v and D1v = dv, as in (5). Since D = d only on 0-forms, the
theory is extended by using recursively the following elementary properties: (i)
Djv := D (Dj−1v), and (2) D (Dj−1v) = d (Dj−1v) if Dj−1v is regarded as a
0-form taking values in the tensor bundle Tj :=

`N j T∗(B×T )
´
⊗VS . Eq. (5)

generalizes to

ew lmp = v ∧ eς +

kX
j=1

(−1)j (d (Dj−1v)) ∧ eϕj ,
where the j-th hyper -impulse-flux form eϕj is an odd T∗j -valued 1-form. The
assumption (6) for ew bry is generalized accordingly, but I won’t go into that here.
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Constitutive issues

Neither the mechanical nor the electromagnetic field theories given above are
complete. To complete them, the response of the medium has to be character-
ized. Luckily enough, the electromagnetic response of ether—or empty space,
if you prefer—is stupendously simpler than the mechanical response of the
simplest earthly materials.28 Things get suddenly complicated—and surpris-
ingly unexplored—when the “classical” electromagnetic response of material
media comes into play.

Electromagnetic-mechanical coupling

On the surface, coupled electromagnetic-mechanical problems are mostly
taken as issues in computer-aided design—of a quite difficult nature, admit-
tedly.29 This is no surprise, thanks to the lasting division between Maxwell’s
and Lamé’s disciples, further aggravated in their pet computer codes, labori-
ously developed by niche experts.

However, the heart of the matter lies much deeper. First of all, lumping
electromagnetic and mechanical effects into distinct components of the same
device is not always possible. Therefore, loose coupling between preexistent
specialized simulators may not suffice. Second, and more important: the
electromagnetic and the mechanical response of a medium cannot in general be
characterized independently of each other. Therefore, a unified understanding
of both disciplines cannot be dispensed with—at least in principle.

Before discussing the gist of this issue, let us revisit our two heroes of old.

Did Maxwell understand Lamé’s theory of elasticity?

Unquestionably he did. He has an explicit—and vaguely critical—reference
to Lamé’s treatise in his fundamental paper [46] on linearly elastic frames:

[T]he theory of the equilibrium and deflections of frameworks sub-
jected to the action of forces is sometimes considered as more com-
plicated than it really is, especially in cases in which the framework
is not simply stiff, but is strengthened (or weakened as it may be)

28 But somewhat less special than it may seem at first, since it determines the
geometry of space-time—namely, its conformal Lorentzian structure (see [44] and
[18, Sect. 11.3.2]).

29 Such difficulties were vividly reported at the conference. Unfortunately, none of
the talks most relevant to this issue (“Continuous simulation of coupled systems”
by P. Schwarz and “Coupled simulation of electromagnetic fields and mechanical
deformation” by K. Rothemund and U. van Rienen) are documented in the pro-
ceedings. However, one of these authors has a nearly identical title [45] published
in the proceedings of the next SCEE-conference.
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by additional connecting pieces.30 I have therefore stated a general
method of solving all such questions in the least complicated man-
ner. The method is derived from the principle of the Conservation
of Energy, and is referred to in Lamé’s Leçons sur l’Elasticité, leçon
7ème, as Clapeyron’s Theorem; but I have not yet seen any detailed
application of it.

A modicum of chronology is in order here: Maxwell’s paper [46] was published
in 1864, that is, twelve years after the first edition of Lamé’s treatise [1], one
year before the culminating paper [4] of his own electromagnetic trilogy.

In the terse pages of this paper—six in all—Maxwell made two major
contributions: the celebrated reciprocity theorem bearing his name (together
with that of Betti, who improved its formulation in 1872), and the so-called
“method of forces”—the “general method” he mentions in the quote above—
which is most often related to the names of Castigliano, Müller-Breslau and
Mohr. The paper received little attention, and later authors struggled to reach
the same conclusions without the benefit of Maxwell’s work [7, Sects. 15.2-3].

Ten years earlier, in 1854, Maxwell had already published a juvenile paper
on elasticity [47], where he cites, among others, Lamé’s Cours de Physique [48]
and the memoir by Lamé and Clapeyron that had appeared on Crelle’s Math-
ematical Journal in 1852. The introductory paragraphs are worth quoting:

There are few parts of mechanics in which theory had differed more
from experiment than in the theory of elastic solids.

Mathematicians, setting out from very plausible assumptions with
respect to the constitution of bodies, and the laws of molecular action,
came to conclusions which were shewn to be erroneous by the observa-
tions of experimental philosophers. The experiments of Œrsted proved
to be at variance with the mathematical theories of Navier, Poisson,
and Lamé and Clapeyron, and apparently deprived this practically
important branch of mechanics of all assistance from mathematics.

The assumption on which these theories were founded may be
stated thus:—

Solid bodies are composed of distinct molecules, which are kept at a
certain distance from each other by the opposing principles of attrac-
tion and heat. When the distance between two molecules is changed,
they act on each other with a force whose direction is in the line join-
ing the centres of the molecules, and whose magnitude is equal to the
change of distance multiplied into a function of the distance which
vanishes when that distance becomes sensible.

The equations of elasticity deduced from this assumption contain
only one coefficient, which varies with the nature of the substance.

The insufficiency of one coefficient may be proved from the exis-
tence of bodies with different degree of solidity.

30 That is to say redundant, in the current terminology of structural mechanics.
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Did Lamé understand Maxwell’s electromagnetic theory?

I do not know whether Lamé was aware of Maxwell’s work on electromag-
netism—but I suppose he was not. In any event, if he had heard of it, he
would have shared the poor opinion held by most contemporary scientists. In
the words of Dyson [8]:

To his contemporaries, Maxwell’s theory was only one of many theories
of electricity and magnetism. It was difficult to visualise, and it did
not have any clear advantage over other theories that described electric
and magnetic forces in Newtonian style as direct action at a distance
between charges and magnets. It is no wonder that few of Maxwell’s
contemporaries made the effort to learn it.

[. . . T]he importance of Maxwell’s work was not obvious to his
contemporaries. For more than twenty years, his theory of electro-
magnetism was largely ignored. [ . . . ] It was regarded as an obscure
speculation without much experimental evidence to support it. The
physicist Michael Pupin31 [ . . . ] travelled from America to Europe in
1883 in search of somebody who understood Maxwell. [ . . . ] Pupin
went first to Cambridge and enrolled as a student, hoping to learn the
theory from Maxwell himself. He did not know that Maxwell had died
four years earlier. After learning that Maxwell was dead, he stayed
on in Cambridge and was assigned to a college tutor. But his tutor
knew less about the Maxwell theory than he did, and was only inter-
ested in training him to solve mathematical tripos problems. He was
amazed to discover, as he says, “how few were the physicists who had
caught the meaning of the theory, even twenty years after it was stated
by Maxwell in 1865.” Finally he escaped from Cambridge to Berlin
and enrolled as a student with Hermann von Helmholtz. Helmholtz
understood the theory and taught Pupin what he knew.

As implicitly recalled in the above account, Maxwell died in 1879. He was
forty-eight years old. Lamé had died much older—nearly seventy-five—nine
years earlier, in 1870 on May Day.32

31 Michael Idvorsky Pupin, an epitomic personality of the making of America: born
of a poor Serbian family in Idvor, Banat (in Hungary at that time), at the age of
sixteen he emigrated to America, where he worked at odd jobs, studying at night
to prepare himself for admission to Columbia, where he graduated in 1883. After
being awarded a doctorate in Berlin in 1899, he returned to America and served
as professor of electro-mechanics at Columbia until 1931, achieving positions of
influence and power with captains of industry by his inventions and discoveries.

32 « La mort lui épargna du moins les angoisses qu’une guerre funeste réservait au
cœur des pères. » (from the obituary published on the Annales des Mines in 1872).
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A sound basis for the electrodynamics of deformable media

“[T]he issue of force densities in material media is the most controversial,
the least investigated, and the least understood topic of classical electromag-
netism.” This is how it is put by the editor of the Academic Press Elec-
tromagnetism series, Isaak Mayergoyz, in his foreword to the book [49] by
Bobbio, where several specific materials are detailed: polarized dielectric flu-
ids, amorphous and crystalline solid dielectrics (including piezo- and pyro-
electric crystals), and magnetically polarized (nonhysteretic) materials. In all
cases, the key point is that sound constitutive assumptions for the free-energy
density—ascribed to matter—and for the electromagnetic energy—ascribed
to ether33—can not be laid down independently of each other.34

In the case of an electrically linear fluid dielectric, it is shown that
Helmholtz’s and Kelvin’s formulas for the electric force density—which noto-
riously disagree—correspond to a different splitting of the same total energy
density into ether- and matter-related terms—hence, to different prescriptions
for the mechanical force density, i.e., for pressure. A long-lasting—and quite
idle—controversy between supporters of either formula is dispelled this way.35

The discussion of permanent magnets by Henrotte and Hameyer [51,
Sect. 3] is also a case in point. Assuming that the magnetization vector field
is the Euclidean proxy for a 1-form or for a 2-form does not change the H–B
relation, nor the expression for the magnetic energy density. However, the
two assumptions do lead to different expressions for the Maxwell stress ten-
sor, hence to different electromagnetic forces. The physical interpretation by
the authors reads as follows:

There is [ . . . ] no mathematical reason to favour one of these expres-
sions. The first one might be better, for instance, when the magneti-
sation is actually due to the presence of microscopic magnetic dipoles,
whereas the second one might better fit a magnetization due to mi-
croscopic flux carriers (such as Abrikosov vortices in HTc Type II
superconductors).

Another surprisingly persistent disagreement, still unresolved, is the Abra-
ham-Minkowski controversy, concerning electromagnetic momentum within
dielectric media. The debate is whether the Abraham expression of electro-
magnetic momentum E×H /c2 (with c the speed of light) or the Minkowsky
expression D×B is appropriate. Of course, the German mathematician

33 This is my own wording, inspired also by the recent mind-teasing contribution [50]
by Ericksen. Bobbio uses the neuter term “field”.

34 This point is touched upon also in [51, Sect. 2], where Henrotte and Hameyer
write: “In order to define specifically electromagnetic forces, we have to use elec-
tromagnetic energy functionals instead of total energy functionals.” Then they
admit that defining “such restricted functionals” is not at all obvious, e.g., for a
magnetostrictive material.

35 See [49, Sect. 4.7] and [52] for a review of the experimental side of the dispute.
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Hermann Minkowsky (1864–1909) and the German physicist Max Abraham
(1875–1922) agreed perfectly well in vacuum. It is interesting—and some-
what ironic—to read the following paragraphs from the conclusions of a recent
NASA inquiry into emerging prospects for future spaceflight [53]:36

3.2.1. Slepian-Drive. Funded through a Congressional earmark, the
West Virginia Institute for Scientific Research (ISR) is conducting ex-
perimental and theoretical assessments of the propulsive implications
of electromagnetic momentum in dielectric media. The equations that
describe electromagnetic momentum in vacuum are well established
(photon radiation pressure), but there is still scientific debate concern-
ing momentum within dielectric media, specifically the “Abraham-
Minkowski controversy.” [ . . . ] An independent assessment by the Air
Force Academy concluded that no net propulsive forces are expected
with this approach [ . . . ].

Separate from the ISR work, independent research published by
Dr. Hector Brito details a propulsive device along with experimental
data [reference omitted ]. The signal levels are not sufficiently above
the noise as to be conclusive proof of a propulsive effect.

While not specifically related to propulsion, a recent journal article
assessed the Abraham-Minkowski controversy from a quantum physics
perspective, suggesting it might be useful for micro-fluidic or other
applications [see [55] in my list of references].

In all of these approaches, the anticipated forces are relatively
small, and critical issues remain unresolved. In particular, the conver-
sion of oscillatory forces to net forces (Slepian-Drive) remains ques-
tionable, and the issue of generating external forces from different
internal momenta remains questionable. Even if not proven suitable
for propulsion, these approaches provide empirical tools for further ex-
ploring the Abraham-Minkowski controversy of electromagnetic mo-
mentum. This topic is considered unresolved.

The basic structure underlying Maxwell’s stress tensor

The Maxwell stress tensor—i.e., the (opposite of) the cospace-cospace compo-
nent of the electromagnetic energy-momentum tensor—represents the funda-
mental coupling between electromagnetism and mechanics.37 As a matter of
fact, it represents even more than that. As Eshelby wrote in his recapitulation
paper [56],
36 See also a very recent paper by Ido [54], where the equations for a non-conducting

magnetic fluid are obtained under the Abraham assumption, and compared with
those obtained in previous papers by the same author and others under the
Minkowski assumption. The outcome is that the two assumptions entail neg-
ligible differences unless the magnetic field fluctuates at high frequency.

37 I need not belabour this point, which is so neatly expounded by Henrotte and
Hameyer in [51]. I agree with them and dissent from [43, Sect. 4.2].
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[t]he archetypal energy-momentum tensor is Maxwell’s stress tensor
in electrostatics [ . . . ]. The writer, having looked at a book on field
theory, felt that the force on a defect ought to be given by a similar
expression involving the energy-momentum tensor appropriate to the
elastic field.

More recently, this tensor—now currently labelled with Eshelby’s name—has
been given a status well beyond hyperelasticity and other merely energetic
theories (see my own papers [42,57] and the tract [58] by Gurtin).

The basic structure underlying Maxwell’s stress tensor is readily accessible
via the mathematical apparatus developed so far. Let us consider a placement
p as defined in (2). I find now convenient to associate with p the mapping

B ×T ↪→ S ×T
(b, i) 7→ (p(b, i), i) , (12)

which embeds body-time into space-time. By a slight abuse of language, I
will denote also this trivial extension by p . Let c be a body-time k-cell, and ϑ
a spacetime-conjugate k-form (Fig. 3). Of course, ϑ cannot be integrated on
c, but it makes sense to integrate it on its push-forward by p , namely p?c .
By definition, the same result is obtained integrating on c the pull-back of ϑ
by p , namely p?ϑ :

〈p?ϑ, c 〉 = 〈ϑ,p?c 〉 . (13)

Given c , the value of the integral depends on both ϑ and p , which may be var-
ied independently of each other. In particular, a test dispacement (cf. footnote
20 on page 20) may be added to the placement p and the spacetime-conjugate
form ϑ changed, so as to keep its body-time pull-back p?ϑ fixed. This kind of
operation is central to a proper definition—and an efficient computation—of
Maxwell’s stress tensor and related force densities, as clearly pointed out by
Henrotte and Hameyer [51] (cf. my Fig. 3 with their Fig. 1).

What is to be done?

The heuristic role played by Maxwell’s electromagnetic constructs in the pio-
neering work by Eshelby on continuum mechanics of defective solids has just
been pointed out. It is fair to add that—until today—continuum mechanics
as a whole has felt little influence from those quarters. Eshelby’s paper [56]
starts in a coy tone:

In that corner of the theory of solids which deals with lattice de-
fects(dislocations, impurity and interstitial atoms, vacant lattice sites
and so forth) which are capable of altering their position or configu-
ration in a crystal, it has been found useful to introduce the concept
of the force acting on a defect. [ . . . ] The normal theory of elastic-
ity recognizes nothing which corresponds with the force on a defect.
(It has nothing to do with the ordinary body force, of course.) [ . . . ]
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a body-time k-cell c its space-time push-forward p?c

push-forward by the placement

p?

p?

pull-back by the placement

a spacetime-conjugate
k-form ϑ

its body-time
pull-back p?ϑ

Fig. 3. Placement-related k-cells and k-forms

Apart from its connection with the theory of lattice defects the energy-
momentum tensor and kindred concepts associated with elastic and
other material media are of interest for their own sake, but they have
received scarcely any attention from applied mathematicians, even
during the intensive re-examination and estension of continuum me-
chanics which has been under way for the last couple of decades, per-
haps because of the artificial separation whis has grown up between
applied mathematicians and theoretical physics. [ . . . ]

It is hoped that the present paper may perhaps help to dispel this
lack of interest.

The self-mocking understatement by Eshelby contrasts acutely with the pæan
sung by Dyson in the closing paragraph of [8] in praise of Maxwell and main-
stream twentieth-century physics:38

The ultimate importance of the Maxwell theory is far greater than its
immediate achievement in explaining and unifying the phenomena of
electricity and magnetism. Its ultimate importance is to be the pro-
totype of all the great triumphs of twentieth-century physics. It is the
prototype for Einstein’s theory of relativity, for quantum mechanics,
for the Yang–Mills theory of generalised gauge invariance, and for the
unified theory of fields and particles that is known as the Standard

38 Dyson’s panegyric is well-founded. As you may expect, the 175th anniversary
of Maxwell’s birth in 2006 has triggered a splurge of extravagant exaggerations
in popular physics journals, such as: “The greatest equations ever”, or “Could
Maxwell have deciphered quantum mechanics?”, and even “Had he not died so
young, Maxwell would almost certainly have developed special relativity a decade
or more before Einstein.” Have a look at the December 2006 issue of Physics
World for these and other more or less ludicrous claims [59].
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Model of particle physics. All these theories are based on the concept
of dynamical fields, introduced by Maxwell in 1865.

My personal view is that Maxwell’s theory, while paving the way to quan-
tum mechanics, interacted early on with the truly Newtonian chapters of
classical mechanics, i.e., the classical theories of inertia and gravitation. This
conceptual integration produced the special and general theories of relativity,
well within the first two decades of the twentieth century. On the contrary,
the integration of Maxwell’s electromagnetic theory with the main body of
classical mechanics, i.e., the mechanics of deformable continuous media,39

still remains to be done, nearly a century later.
Should we succeed in this endeavour, we could ascribe our accomplish-

ment exclusively to the “Geometers” of our own century—as justly (or as
unjustly) as Lamé did with his « Physique mathématique, proprement dite. »
While skeptical with regard to our ability to counter parochialism in sci-
ence and education, I am quite confident that the present strong trend to-
wards miniaturization—down to the nano-scale—could make a unified electro-
mechanics of deformable media one of the most useful physical theories in the
near future.
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