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1. Introduction

In standard continuum mechanics, a material body is termed simple if its lo-
cal stress response depends on the history of the deformation gradient F := ∇f
(cf. [4], Sect. 28). This constitutive notion singles out a large class of material
bodies, irrespectively of their aggregation state: to distinguish solids from flu-
ids (let alone to sort the latter into liquids and gases [2]) further specifications
are needed.

According to a criterion proposed by W. Noll, in simple solids the stress
state accompanying any given deformation history should be insensitive to all
previous rotations in a given subgroup of the orthogonal group; in simple flu-
ids, to all previous volume-preserving mixing deformations. These additional
constitutive requirements translate into well-known algebraic conditions, whose
role, when combined with the restrictions following from appropriate insensi-
tivity to observer changes, is to allow for different representations of the general
response laws for solids and fluids.

No such criterion for sorting different aggregation types, and hence no such
representations for the response mappings, is at our disposal for complex mate-
rial bodies, those not being simple. The aim of this note is to introduce notions
of simplicity and aggregation state slightly different from the standard ones,
by way of a couple of significant examples.

In my view, the main merit of these new notions is that their format is easier
to generalize so as to cover the complex case, in that they both are expressed
in terms of internal power. I here demonstrate their effectiveness by showing
that, if the Piola stress depends on the history of the deformation gradient in
the following way:

(1.1) S = Ŝ(F, Ḟ) = Ŝeq(F) + Ŝvs(F, Ḟ),

with

(1.2) Ŝeq(F) := Ŝ(F,0), Ŝvs(F, Ḟ) := Ŝvs(F, Ḟ)− Ŝvs(F,0),

then,

(1.3)
Ŝeq(F) = −πF−T , π ∈ IR, for a fluid;

FT Ŝeq(F) =
(
FT Ŝeq(F)

)T for an isotropic solid.
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2. Simple material bodies

I propose to call a material body B simple when, for whatever subbody P,
the basic duality between kinematic and dynamic state variables is declared by
laying down the internal-power form

(2.1) P (P,v) :=
∫
P

Z ·Dv, v ∈ V.

Here, (i) subbodies are pointwise identified with regions of an euclidean point
space, used as observational background; (ii) V is a collection of vector-valued
test fields over B, including all realizable velocity fields v = ḟ and closed
under the operation O of observer change, in the sense that, if v ∈ V, then
v+ = O(v) = t + Qv ∈ V for all translations t and all orthogonal tensors
Q; (iii) D is the gradient operator with respect to positional changes in the
background space; (iv) Z, the stress field dual to the strain-rate field Dv, is
required to be appropriately indifferent to observer changes, so as to let the
internal power be invariant under observer changes, in the sense that P+ = P ;
(v) the stress response to deformations depends on the history of the first
deformation gradient only.1

For the background space a referential copy of a given euclidean point space,
and for D ≡ ∇, the referential gradient operator, Z is interpreted as the Piola
stress S, a stress measure indifferent to observer changes, in the sense that
S+ = QS for all orthogonal tensors Q; the internal power takes the form

(2.2) P (P,v) =
∫
PR

S · ∇v,

where PR is the referential region occupied by the subbody P. If the current
copy of the given euclidean space is the chosen background space, and hence
D ≡ grad , the current gradient operator, then the appropriate indifferent stress
measure is the Cauchy stress T, for which T+ = QTQT ; one writes the internal

1A thermodynamic argument could be given to prove that (2.1) implies that higher gradi-
ents cannot influence the stress state, but I refrain from introducing the necessary machinery,
given the declared scope of the present note. Likewise, instead of a generic constitutive de-
pendence of stress on deformation history, I shall assume the simplest dependence (1.1)1.
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power as follows:

(2.3) P (P,v) =
∫
P

T · gradv,

with P denoting both the subbody P and the region of the current space it
occupies. Given that

∇v = (gradv)F, F = ∇f,

one finds that

(2.4) T := (detF)−1SFT ,

where detF is the jacobian of the deformation f of the reference into the current
space.

In continuum mechanics, it is common practice to use the Piola stress and
the internal-power formulation (2.2) when dealing with solids, the Cauchy stress
and the internal-power formulation (2.3) when dealing with fluids. The reasons
for this are that, for a solid, both referential and current observations are rou-
tinely recorded and compared, whereas a fluid body is generally observed only
in its current shape: in fact, not only a careful and persistent identification
of fluid elements is practically difficult but also tracing their paths is in most
cases irrelevant to evaluate the stress field accompanying a given motion pro-
cess. Given that my intention is to make use of certain invariance properties
of the internal power to distinguish the stress response of solids from that of
fluids, I should not risk to beg the question. Therefore, in the following I choose
for the internal power the referential formulation (2.2). Of course, the implicit
understanding is that material elements are presumed identifiable, no matter
how difficult the identification might be due to their aggregation state.2

3. Simple fluids and simple solids, “à la” Noll and not

The standard doctrine, where distinctions in aggregation state are based
on Noll’s criterion, is best illustrated in the case of simple elastic materials,

2This issue was first raised explicitly by Hellinger, in 1914; see [1]).
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whose response depends only on the current value of the deformation gradient.
Given a map F 7→ σ̂(F) delivering the stored energy per unit volume of BR,
the associated stress-response map is

F 7→ Ŝ(F) := ∂σ̂(F),

and the associated material symmetry group G consists of all those second-order
tensors H ∈ U := {H | detH = 1} that satisfy

(3.1) σ̂(FH) = σ̂(F)

for all F in the domain of σ̂. Simple elastic fluids compose the material class for
which the group U is a subgroup of G; as is well-known, this definition reflects
the physical expectation that, for a fluid, volume-preserving deformations (be
they obtained by mixing or shaking) are not energy- or stress-detectable by
any further deformation. For simple elastic solids, G is a subgroup of R :=
{R ∈ U |R−1 = RT }, the maximal subgroup of U consisting of all rotations;
this time, the physical expectation is that, for a solid, some (and possibly all)
rigid deformations are not detectable by any further deformation.

3.1. Fluids

As a consequence of the standard notion of simple fluid, one can show that
another physical expectation is satisfied, namely, that for all elastic fluids the
stress has the form of a pressure, depending only on volume changes. In fact,
as is well-known, with the use of the multiplicative decomposition

F = ϕF̃, ϕ := (detF)1/3, F̃ ∈ U ,

it follows from (3.1) that, whatever σ̂, there is a function σ̄(detF) := σ̂(ϕ1),
that is invariant under observer changes and induces the indifferent stress-
response map

Ŝ(F) = −π̂(detF)F−T , π̂(detF) := (detF) σ̄′(detF).3

3With the use of (2.4), this result can be stated as follows:

T̂(detF) = −σ̄′(detF)1.
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Here is a line of reasoning that yields the same result, when a notion of
simplicity based on internal power is accepted.

Suppose, for simplicity, that the constitutive dependence of the Piola stress
on the deformation history is specified by (1.1)-(1.2), so that, just as the stress,
the internal power density is split additively into equilibrium and viscous parts:

S · Ḟ = Seq · Ḟ + Svs · Ḟ.

Call a simple material a fluid if, given an admissible process t 7→ F(t), the
equilibrium internal power is partwise invariant for whatever choice of a con-
comitant time-dependent volume-preserving change of reference placement t 7→
H(t) ∈ U :

Ŝeq(F) · Ḟ = Ŝeq(FH) · (FH)·,

i.e., if

(3.2) (Ŝeq(F)− Ŝeq(FH)HT ) · Ḟ = FT Ŝeq(FH) · Ḣ.

Since Ḣ can be chosen in any manner consistent with

(3.3) Ḣ ·H−T = 0,

we have from (3.2) that

(3.4) FT Ŝeq(FH) = −πH−T , π ∈ IR.

With this, (3.2) reduces to

(3.5) (Ŝeq(F) + πF−T ) · Ḟ = 0,

an invariant statement that can also be written in the following form:

Ŝeq(F) · Ḟ = −π divv, v = ḟ ;

Granted mass conservation:
ρR = (detF)ρ

(here ρR and ρ are the referential and current mass densities), the customary constitutive
law

T̃(ρ) = −π̃(ρ)1

is arrived at.



166 P. Podio-Guidugli

thus, for fluids, the equilibrium power expenditure in a test process depends
only on volume changes, because it is unaffected by whatever previous mixing.

To proceed further, it is convenient to assume that the geometric structure
of the state space is as rich as possible, by way of a postulate of state acces-
sibility and free process continuation that, at times, is unduly left tacit when
dealing with the constitutive theory of continuous media. In the present con-
tex, such postulate boils down to assuming that, for each given pair (F0, Ḟ0),
there is an admissible process such that F(t) = F0, Ḟ(t) = Ḟ0.

Due to the implicit quantification following from the postulate in question,
relation (3.5) implies that

Ŝeq(F) = −πF−T , π ∈ IR.

Thus, for all simple fluids the equilibrium stress is a pressure. Note that this
result is arrived at without presuming that the fluid is elastic, the case when
the pressure is constitutively specified in terms of volume (or density) changes.

3.2. Solids

I exemplify further my internal-power approach to sorting aggregation states
and stress responses to deformation processes by characterizing a material class
of simple solids that includes standard elastic isotropic solids as a subclass.

Once again, assume that (1.1)-(1.2) hold. Call a simple material an isotropic
solid if its equilibrium internal power is partwise invariant whatever the continu-
ation Ḟ of a given admissible process t 7→ F(t) and for whatever choice of a con-
comitant time-dependent rigid change of reference placement t 7→ R(t) ∈ R:

Ŝeq(F) · Ḟ = Ŝeq(FR) · (FR)·,

a condition that can be written as

(3.6) (Ŝeq(F)− Ŝeq(FR)RT ) · Ḟ = FT Ŝeq(FR) · Ṙ.

Now, Ṙ can be chosen in any manner consistent with

Ṙ ·AR = 0 for all A ∈ Sym,
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where Sym denotes the collection of all symmetric second-order tensors. There-
fore, for all A ∈ Sym, we have from (3.6) that

(3.7) FT Ŝeq(FR) = AR,

and hence, in addition, that

(Ŝeq(F)− F−T A) · Ḟ = 0.

Finally, provided that Ḟ is arbitrarily choosable, we arrive at the following
representation result for the equilibrium-stress response mapping of isotropic
solids:

(3.8) FT Ŝeq(F) ∈ Sym.

It is easy to check that any hyperelastic isotropic response mapping

S = ∂Fσ(F · F,F∗ · F∗,detF)

delivers a stress that satisfies (3.8). More generally, relation (3.8) may be
interpreted as a statement of the fact that the equilibrium Eshelby tensor
Eeq := ψ1 − FT Seq is symmetric (cf. [3], p. 78; here ψ denotes the free
energy per unit referential volume).

4. Final comments

A salient feature of the here proposed notion of aggregation state is that it
discriminates solids from fluids solely on the basis of their equilibrium response.
In fact, as I plan to show in a future paper, characterizations of the viscous
response of solids and fluids are also possible, that are especially relevant when
complex material bodies are dealt with.
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