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Abstract Two mathematical models for phase segregation and diffusion of
an order parameter are derived, within one and the same continuum mechan-
ical framework. These models are, respectively, of the Allen-Cahn type and
of the Cahn-Hilliard type. Our framework is similar to that used in [1], in
that a postulated balance of microforces plays a central role in both deductive
paths, but differs from it, mainly in three ways: imbalance of entropy replaces
for a dissipation inequality, whose form depends on the case, restricting the
growth of free energy; balance of energy replaces for the mass balance intro-
duced in [1] to arrive at (a generalization of) the C-H equation; and chemical
potential is given the same role played by coldness in the deduction of the
heat equation. When appropriate constitutive prescriptions are made, differ-
ent in the cases of segregation and diffusion but consistent with the entropy
imbalance, it is found that standard A-C and C-H processes are solutions
of constant chemical potential of the corresponding generalized equations; in
particular, the stationary solutions are the same.
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1 Introduction

Two mathematematical models for phase segregation and phase diffusion
are here derived, along lines different from those proposed by Gurtin in [1],
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the paper which motivated this work, to derive generalized versions of the
Allen-Cahn and Cahn-Hilliard equations.

The standard A-C equation reads:

βρ̇ = α∆ρ− f ′(ρ), (1)

while the standard C-H equation is:

ρ̇ = κ∆(f ′(ρ)− α∆ρ); (2)

all material constants α, β, and κ are positive; ρ is a scalar order parame-
ter, interpreted as a phase descriptor; and f is a double-well potential that
accounts for a two-phase material system.1

The derivations of these two equations offered in [1] are far from standard:
they are based on a notion of contact and distance microforces consistent with
their own balance and on a dissipation inequality restricting the free-energy
growth. Such a dissipation inequality is a ‘purely mechanical’ counterpart of
the Second Law of thermodynamics, regarded as appropriate to physical con-
texts such as those the A-C and C-H equations aim to describe.2 In addition -
but only to derive the second of these equations - an order-parameter balance
is postulated and a free-energy inflow proportional to the order-parameter
inflow via the chemical potential is made to enter the dissipation inequality.

I find Gurtin’s method of derivation illuminating, but I prefer a vari-
ant of it that, while retaining Gurtin’s balance of microforce, is based on
a microenergy balance and a microentropy growth imbalance, with microen-
ergy and microentropy inflows deemed proportional via the chemical potential.
This I do to adapt to material systems susceptible to phase segregation and
diffusion the standard format leading to the heat equation. That format,
which I review in Section 2, is based on an energy equation and an entropy
growth inequality, where energy and entropy inflows are taken proportional
via the coldness, i.e., via the inverse of the absolute temperature.3

Two systems of evolution PDEs for material systems of the A-C and C-H
types are derived in Section 3. Both systems can be specialized to obtain the
generalized versions of equations (1) and (2) arrived at in [1]. I do not regard
this as an especially important result. What in my opinion has more relevance
is the clarification here achieved, through the systematic use of an energy
balance and an entropy imbalance, of the formal role (hence, in a sense, of
the generic physical nature) of the chemical potential in theories of phase

1 (1) is also known as the Ginzburg-Landau equation, which is the way Gurtin
refers to it in his cited paper; in order to facilitate comparisons, our notation and
terminology (with the pointed-out exception) are kept as close as possible to those
used there.

2 One may contend that the qualifier ‘purely mechanical’ should not be attached
to a macroscopic statement taking into account collectively as ‘dissipation’ those in-
dividual energy transfers that would become patent at a microscopic scale. Indeed,
no dissipation is envisaged at the molecular dynamics scale: whatever happens is
‘purely mechanical’.

3 Apparently, the term ‘coldness’ was coined by Truesdell [2]. That, for thermo-
dynamic consistency, the energy influx should be proportional to the mass influx
of individual constituents of a fluid mixture was shown by Gurtin and Vargas in
[3].
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segregation and diffusion. In fact, in the intermediate stages of the standard
derivations of the C-H equation, as well as in Gurtin’s derivation, the chemical
potential plays a pivotal role; yet, no trace of that field is found in the final
product. The mathematical models I propose, in both of which the chemical
potential enters in an essential manner, predict that standard Allen-Cahn and
Cahn-Hilliard processes take place at constant chemical potential, that is, in a
manner of speaking suggested by the analogy chemical potential ∼ coldness,
they are microscopically orderly (Subsection 3.1); in particular, no essential
differences with respect to the standard A-C and C-H theories emerge in
statics. As to the two coupled PDEs, for the order parameter and the chemical
potential, here suggested as a generalized alternative to the C-H equation, a
mathematical study of the well-posedness issues is on its way.

2 The Heat Equation

In this section, our method of derivation is exemplified in the simple case
when the target is (a generalization of) the heat equation, describing tem-
perature evolution in rigid conductors.

A basic role is played by the energy balance

ε̇ = −div q + r, (1)

and by the entropy imbalance

η̇ ≥ −div (ϑ−1q) + ϑ−1r. (2)

Here we have used standard notation: ε is internal energy, with associated
influx q and source r; and η is entropy, with influx ϑ−1q and source ϑ−1r,
where ϑ > 0 is absolute temperature. We refer to the (influx, source) pair
associated with an extensive field as to its inflow, and note that the inflows
of entropy and internal energy are here deemed proportional, through the
coldness ϑ−1.

Next, as is customary, we introduce the free energy

ψ = ε− ηϑ, (3)

and, with the help of the energy balance, we formulate the entropy imbalance
as the following ‘reduced’ dissipation inequality :

ψ̇ ≤ −ηϑ̇− ϑ−1q · ∇ϑ, (4)

restricting the free-energy growth.4 With the constitutive assumptions

ψ = ψ̂(ϑ,∇ϑ), η = η̂(ϑ,∇ϑ), q = q̂(ϑ,∇ϑ), (5)

the dissipation inequality (4) takes the form

(∂ϑψ + η)ϑ̇+ ∂∇ϑψ · ∇ϑ̇+ ϑ−1q · ∇ϑ ≤ 0. (6)

4 As is well-known, the modifier ‘reduced’ alludes to the fact that the source term
has been eliminated from the entropy inequality, thanks to the energy balance.



4

We now require, à la Coleman-Noll, that (6) be satisfied whatever the
local continuation of any conceivable process, that is, in the present case,
whatever (ϑ̇,∇ϑ̇) at whatever state (ϑ,∇ϑ). This requirement is satisfied if
and only if

ψ̂ is independent of ∇ϑ, η̂(ϑ) = −∂ϑψ̂(ϑ), (7)

and, moreover,

q̂(ϑ,∇ϑ) · ∇ϑ ≤ 0 for all ϑ and ∇ϑ. (8)

By an argument given in Appendix B of [1], which is by now standard, it can
be shown that (8) is equivalent to the following representation for the energy
influx:

q̂(ϑ,∇ϑ) = −Ĉ (ϑ,∇ϑ)∇ϑ, (9)

where Ĉ is a mapping delivering the conductivity tensor C in a manner
consistent with the inequality

∇ϑ · Ĉ (ϑ,∇ϑ)∇ϑ ≥ 0 for all ϑ and ∇ϑ. (10)

With (7)-(9), the energy balance takes the form

ϑ(η̂(ϑ))̇ = div (Ĉ (ϑ,∇ϑ)∇ϑ) + r; (11)

moreover, with (11), the entropy imbalance (2) reduces to (8). Equation (11)
generalizes the classical heat equation:

λϑ̇ = χ∆ϑ+ r,

which obtains upon choosing

η̂(ϑ) = λ log ϑ+ a constant, with λ > 0 the latent heat,

and

Ĉ (ϑ,∇ϑ) = χ1 , a multiple of the identity, with χ > 0 the conductivity.

Remarks.
1. It follows from (7) that

ψ̇ = −ηϑ̇. (12)

Consequently, in view also of (3), the time rates of entropy and energy are
proportional via the coldness:

η̇ = ϑ−1ε̇, (13)

just as their inflows. As to the heat-conduction processes accounted for by the
present theory, we note that those which are isentropic involve no changes
in internal energy ; and that those which are isothermal involve no changes
in free energy.
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2. In classical thermomechanics [2], as long as diffusion phenomena are ig-
nored, the internal dissipation δ is defined to be

δ := ϑη̇ − (−div q + r). (14)

In view of definition (3) of the free energy, the internal dissipation is also
expressible by the following alternative formula:

δ = ε̇+ div q − r − ηϑ̇− ψ̇. (15)

In the purely thermal case, with the use of the energy balance (1), (15) yields:

δ = δth := −ηϑ̇− ψ̇; (16)

hence, in view of (12), δ ≡ 0: there are no dissipative processes. More gener-
ally, when the energy balance includes the internal working w:

ε̇ = e+ w, e := −div q + r, (17)

the internal dissipation is given the form

δ = w − ηϑ̇− ψ̇. (18)

The inequalities
δ ≥ 0 (19)

and
−q · ∇ϑ ≥ 0 (20)

(cf. (8)) are often called, respectively, the Planck inequality and the Fourier
inequality, after Truesdell [2]; together, as is well known, they imply the
Clausius-Duhem inequality (2), provided that internal energy is balanced
according to (17).

If attention is restricted to isothermal processes, (18) and (19) yield

w − ψ̇ ≥ 0. (21)

In [1], when he derives his generalization of the Allen-Cahn equation,5 Gurtin
bases his discussion of admissible constitutive responses on a ‘purely mechan-
ical’ dissipation inequality, his (2.3), which – the contingent form of w apart –
can be given precisely this form. However, this does not mean that he in any
manner, explicit or implicit, restricts his attention to isothermal processes:
he simply ignores thermal variables altogether. This is legitimate, of course:
nobody would insist that, to legitimately study elasticity, there is any need to
specify in what more general thermomechanical theory we imagine to embed
elasticity itself: for one, there are infinitely many such theories one can think
of, so that any embedding is intrisically arbitrary; for two, elasticity, as a
mathematical model, stands on its own feet as is: to assess to what collection
of experimental facts its predictions apply is a separate issue. However, to
establish elasticity’s position with respect to, say, thermoelasticity, causes

5 Or rather, we recall, the Ginzburg-Landau equation, in the terminology of [1].
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no harm to anybody. And, in such a case, (21) would be the dissipation in-
equality appropriate to elasticity regarded as the isothermal sub-theory of
thermoelasticity (see Appendix A of [1]).

To postulate (21) seems to us consistent with assuming that no changes in
temperature (a macroscopic measure of microscopic agitation) or of chemical
potential (as we shall see, a macroscopic measure of microscopic organization)
are expected to accompany the microscopic phenomena that the Allen-Cahn
equation aims to describe. We find such an assumption reasonable as a first
approximation, yet unnecessary.

3 Models of Phase Segregation and Diffusion

We hereafter construct the title mathematical models along the same lines
we used in the previous section to obtain a generalized version of the heat
equation.

3.1 Common developments

The Allen-Cahn equation describes the evolution of the atomic arrangement
within the unit cell of a lattice, in a two-phase material; such an arrangement
is characterized macroscopically by a scalar order parameter ρ, interpreted
as the volumetric density of one of the two phases (substitutional atoms
and vacancies, say) of the material under study [1]. “[T]he Cahn-Hilliard
equation, a conservation law, describes the transport of atoms between unit
cells” [1].

Gurtin [1] begins his deduction of generalized versions of both the A-C
equation and the C-H equation by assuming that any given arrangement is
maintained by a system of microforces. He writes the microforce balance as
follows:

div ξ + π + γ = 0, (22)
where ξ, the microstress vector, accounts for the interactions between atoms,
while the scalar internal microforce π accounts for the atom-lattice interac-
tions; and where the scalar external microforce γ represent a distance force
exerted on the atom-lattice system by agencies external to it.6 The modifier
‘micro’ is meant to suggest that the forces in question – as well as the ener-
gies and the entropy to be introduced later on – are different in nature from
the standard forces associated with ordinary deformation processes. Just as
in the classical theory of rigid conductors dealt with in the previous section,
standard forces and energies are here ignored. The tacit assumption, whose
applicability must be verified a posteriori, is that segregation and diffusion
processes can be efficiently described, at least as a first approximation, irre-
spectively of possibly concomitant deformation processes.7

6 Alternatively, ξ could be thought of as accounting for the short-range interac-
tions between atoms, and π for both the long-range interactions between atoms
and the atom-lattice interactions.

7 A version of the C-H theory for deformable continua is found in Section 4 of
[1].
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We begin our deduction by writing the microenergy balance directly in
the reduced form one arrives at with the use of (22), namely,

ε̇ = ē+ w, ē := −div h̄ +m, w := −πρ̇+ ξ · ∇ρ̇, (23)

where ē is an inflow of microenergy ε, consisting in an influx h̄ and a source
m, and where w is the internal microworking. Our equation (23) results from
localization of the microenergy balance for an arbitrary control volume V :∫

V

ε̇ = −
∫

∂V

h̄ · n +
∫

V

m+
∫

∂V

(ξ · n)ρ̇+
∫

V

γρ̇,

with the use of (22). Note that (ρ̇ξ, ρ̇γ) can be thought of as the additional
energy inflow associated to the kinetics described by ρ̇.

We next postulate the microentropy imbalance:

η̇ ≥ −div (µh̄) + µm, (24)

where η is the microentropy and µ > 0 the chemical potential.
Comparison of (17) and (2) with, respectively, (23) and (24) shows that

in the latter two relations the chemical potential is given the same role as the
coldness in the former two: in short,

orderliness µ ∼ coldness ϑ−1.

If we consistently define, by analogy with (3), the free microenergy as

ψ = ε − η µ−1, (25)

combination of (23), (24) and (25) yields the reduced dissipation inequality

ψ̇ ≤ −η(µ−1)̇ + µ−1h̄ · ∇µ− πρ̇+ ξ · ∇ρ̇. (26)

We shall base our discussion of admissible material response upon consistency
with this inequality in whatever conceivable process.

Remark. It would be tempting to interpret the order parameter as an ar-
rangement’s ‘probability’, but no normalization constraint such as∫

Ω

ρ = 1 (27)

enters the A-C theory (here Ω denotes the region occupied by the body of
interest). Instead, the C-H equation (2) implies that∫

Ω

ρ̇ =
( ∫

Ω

ρ
)̇

=
∫

∂Ω

κ ∂nµ, ∂nµ := ∇µ · n , (28)

where
µ := f ′(ρ)− α∆ρ; (29)
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if, as is customary, a homogeneous Neumann boundary condition is stipulated
for the chemical potential µ, then the total of the order parameter ρ is con-
served.8 Were condition (27) regarded as a part of the theory, then it would
be natural to consider formally an augmented free microenergy functional

Ψa{ρ, µ} =
∫

Ω

(ψ − µρ), Ψ{ρ} =
∫

Ω

ψ, (30)

and to characterize equilibrium by setting the variational derivative of Ψa

equal to null:
δρΨa = δρΨ − µ = 0. (31)

This would establish the role of the chemical potential µ as the reaction
field maintaining the normalization constraint at equilibrium, whatever the
boundary conditions.

3.2 Phase segregation and the Allen-Cahn equation

Our key constitutive assumption is that all of ψ, η, ξ, π, and h̄ , depend on
the list of variables (ρ,∇ρ, ρ̇, µ), with the form of the constitutive mappings
restricted by the requirement that the dissipation inequality (26) be satis-
fied identically for whatever local continuation of any given process, namely,
whatever (∇ρ̇, ρ̈, µ̇,∇µ) at whatever state (ρ,∇ρ, ρ̇, µ). This is the case if and
only if

ψ̂ is independent of ρ̇, η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ),
ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ), h̄(ρ,∇ρ, ρ̇, µ) ≡ 0,

(32)

and, moreover,
π̂dis(ρ,∇ρ, ρ̇, µ) ρ̇ ≤ 0, (33)

where
π̂dis(ρ,∇ρ, ρ̇, µ) := π̂(ρ,∇ρ, ρ̇, µ) + ∂ρψ̂(ρ,∇ρ, µ). (34)

Inequality (33) is equivalent to the following representation result for the
dissipative part of the internal microforce:

π̂dis(ρ,∇ρ, ρ̇, µ) := −β̂(ρ,∇ρ, ρ̇, µ)ρ̇, β̂(ρ,∇ρ, ρ̇, µ) ≥ 0. (35)

Consequently, the constitutive mapping delivering the internal microforce is
the sum of an energetic and a dissipative contribution, namely,

π̂(ρ,∇ρ, ρ̇, µ) = −∂ρψ̂(ρ,∇ρ, µ)− β̂(ρ,∇ρ, ρ̇, µ)ρ̇. (36)

With the use of (32)1,3, (23)3, and (36), the microforce balance (22) takes
the form

β̂(ρ,∇ρ, ρ̇, µ)ρ̇ = div
(
∂∇ρψ̂(ρ,∇ρ, µ)

)
− ∂ρψ̂(ρ,∇ρ, µ) + γ. (37)

8 For a study of Neumann boundary conditions in the case of the generalized
C-H model due to Gurtin, see [4].
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Furthermore, with the use of (32)2,4 and (25), equation (23) can be written
as follows:

µ−1
(
η̂(ρ,∇ρ, µ)

)̇
= β̂(ρ,∇ρ, ρ̇, µ)ρ̇2 +m, (38)

an expression of the microenergy balance which, in view of (35), is consistent
with

η̇ ≥ µm, (39)

the form taken by the microentropy imbalance (24).
The microforce balance (37) is our generalized version of the Allen-Cahn

equation. We note that, if the chemical potential µ is not regarded as a
parameter, then (37) should be considered coupled with the microenergy
balance (38). We also note that, for ψ̂ and π̂ independent of the chemical
potential, inequality (26) reduces to the dissipation inequality postulated in
[1], namely,

ψ̇ ≤ ξ · ∇ρ̇− πρ̇ (40)

(recall Remark 2 in Section 2); and that equation (37) reduces to the gen-
eralized form of the A-C equation derived in [1] (cf., respectively, inequality
(2.2) in Section 2.1 and equation (2.12) in Section 2.3). The standard A-C
equation (1) follows on choosing, in addition, γ = 0, β̂ constant-valued, and

ψ̂(ρ,∇ρ) = f(ρ) +
1
2
α|∇ρ|2, (41)

with α a positive constant and f a double-well potential inducing phase seg-
regation. More generally, the same generalized A-C equation as in [1] obtains
within our present framework whenever (i) the material response is chosen
independent of the gradient of the chemical potential and (ii) attention is
restricted to processes during which the chemical potential is kept constant in
time. In particular, in statics, and provided that m is set everywhere to null,
the predictions of our mathematical model and Gurtin’s are the same.

Remark. Our model has, with respect to the standard A-C model, the same
position as thermoelasticity with respect to elasticity, with chemical potential
playing the role of coldness: just as purely elastic processes can be regarded as
isothermal thermomechanical processes, the A-C processes are those during
which the chemical potential is kept constant, both in time and in space. We
point out that such double constancy is required for a scalar field over the
region occupied by a deformable material body to be constant in time in a
properly invariant manner. To see that this is the case, let φ = φ̂(t, y) be a
scalar field depending on the current place y = ŷ(x, t) of a material point
occupying the referential place x, so that

φ̇ = ∂tφ+ ∂yφ · v , ∇φ = (∂yφ)∇y,

with v the motion velocity and the deformation gradient ∇y an invertible
tensor. In a galilean change in observer with relative velocity a ,

v 7→ v+ = v + a .
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Hence,

φ̇+ = φ̇ for all vector a ⇔ ∇φ = 0. (42)

In particular, for φ to be constant in time in a properly invariant manner,
both ∂tφ and ∇φ must vanish.

3.3 Phase diffusion and the Cahn-Hilliard equation: Step 1

This time, our basic constitutive assumption is that all of ψ, η, ξ, π, and h̄ ,
depend on the list of variables (ρ,∇ρ, µ,∇µ), with the form of the constitutive
mappings restricted by the requirement that the dissipation inequality (26)
be satisfied identically for whatever the local continuation (ρ̇,∇ρ̇, µ̇,∇µ̇) of
any given process. This is tantamount to requiring that

ψ̂ is independent of ∇µ, π̂(ρ,∇ρ, µ) = −∂ρψ̂(ρ,∇ρ, µ),
η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ), ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ);

(43)

and that, moreover,

h̄ · ∇µ ≥ 0, (44)

or rather, equivalently, that

h̄(ρ,∇ρ, µ,∇µ) = Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ·Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0. (45)

In view of (43)1,2, we write the microforce balance (22) as

−div
(
∂∇ρψ̂(ρ,∇ρ, µ)

)
+ ∂ρψ̂(ρ,∇ρ, µ)− γ = 0. (46)

Moreover, with the use of (43), (23)3, and (25), we give the microenergy
balance (23) the form

µ−1η̇ = −div h̄ +m, (47)

or more explicitly, in view also of (45)1,

µ−1(η̂(ρ,∇ρ, µ))̇ = −div
(
Ĥ (ρ,∇ρ, µ,∇µ)∇µ

)
+m. (48)

Remark. A relevant difference in the physics underlying our mathemati-
cal models of phase segregation and diffusion is that the relative dissipative
mechanisms are different, dissipation being ascribed to work-conjugation of
the microforce πdis and the order parameter rate ρ̇ in the former case (where,
consequently, dissipative terms enter the microforce balance); to work con-
jugation of the microenergy influx h̄ and the gradient ∇µ of the chemical
potential, the field driving diffusion, in the latter.
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3.4 Phase diffusion and the Cahn-Hilliard equation: Step 2

With a view toward reconstructing a model of Cahn-Hilliard type from (46)
and (48), we need to further specialize our constitutive choices of a free-
energy mapping ψ̂ and an influx-tensor mapping Ĥ . As to the former, we
take

ψ̂(ρ,∇ρ, µ) = −µρ+ ψ̃(ρ,∇ρ), (49)

whence, with the use also of the second and fourth of (43),

∂ρψ̂(ρ,∇ρ, µ) = −µ+ ∂ρψ̃(ρ,∇ρ) = −π̂(ρ,∇ρ, µ), (50)

∂∇ρψ̂(ρ,∇ρ, µ) = ∂∇ρψ̃(ρ,∇ρ) = ξ̂(ρ,∇ρ, µ), (51)

∂µψ̂(ρ,∇ρ, µ) = −ρ (52)

(note that the microstress vector turns out to be independent of the chemical
potential).

With the first of (50) and of (51), the microforce balance (46) reads:

µ = ∂ρψ̃(ρ,∇ρ)− div ∂∇ρψ̃(ρ,∇ρ)− γ.9 (53)

From (52) and the third of (43) it follows that

η̂(ρ,∇ρ, µ) = −µ2ρ, (54)

so that, in particular, the microentropy is independent of the order-parameter
gradient. With (54) we can give the microenergy balance (48) the following
form

−µ−1(µ2ρ)̇ = −div
(
Ĥ (ρ,∇ρ, µ,∇µ)∇µ

)
+m. (55)

Our general replacement for the Cahn-Hilliard diffusion equation is the
system consisting of the microforce balance (53) and the energy balance (55).
Equation (53) is identical to equation (3.15) of [1], although it has been de-
rived in a slightly different manner. Instead, equation (55) is similar, but not
identical to the generalized C-H equation deduced in [1], because it expresses
a different balance. We discuss this issue in the next subsection, where we
motivate the differences and try and make them as small as possible.

3.5 Relationship with Gurtin’s diffusion model

When in Section 3 of [1] he deals with the C-H equation, Gurtin, in line with
a view point developed by materials scientists [5], postulates the following
balance law for the order parameter :

ρ̇ = −divh +m, (56)

9 Just as we did in the remark ending Subsection 3.1, in standard derivations of
the Cahn-Hilliard equation it is customary to define the chemical potential to be
the variational derivative of the free energy, which is precisely what this form of the
microforce balance requires, for γ null (cf. equation (1.10) of [1] and our equation
(31)).
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with (h ,m) the inflow of ρ. He then derives a representation for the order
parameter influx:

h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ), (57)

and with
∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.10 (58)

Combination of (56) and (57) yields the order-parameter balance

ρ̇ = div
(
M̂ (ρ,∇ρ, µ,∇µ)∇µ

)
+m. (59)

Finally, substituting (53) into this last relation, Gurtin arrives at his gener-
alized Cahn-Hilliard equation:

ρ̇ = div
(
M̂ (ρ,∇ρ, µ,∇µ)∇

(
∂ρψ̃(ρ,∇ρ)− div ∂∇ρψ̃(ρ,∇ρ)− γ

))
+m (60)

(cf. equation (3.17) of [1]).
Gurtin also notes that a derivation of the standard C-H equation requires

that the influx h be constitutively given in terms of a constant and isotropic
mobility tensor

M = κ1 , κ > 0, (61)

whence
h = −κ∇µ (62)

(cf. equation (1.9) of [1]). With (62), the order-parameter balance (56) takes
the form

ρ̇ = κ∆µ+m, (63)

and (60) becomes:

ρ̇ = κ∆
(
∂ρψ̃(ρ,∇ρ)− div ∂∇ρψ̃(ρ,∇ρ)− γ

)
+m. (64)

The standard C-H equation (2) follows from (64), on choosing for ψ̃ the same
form specified in (41) for ψ̂ and on setting null both γ and m.

Suppose now that we choose Ĥ in (55) as follows:

Ĥ (ρ,∇ρ, µ,∇µ) = µM̂ (ρ,∇ρ, µ,∇µ), (65)

so that
h̄ = H∇µ = −µh . (66)

10 A kinetic (i.e., evolution) equation resulting from combination of (56) (with
m = 0) and (57)1 has been proposed by Truskinovsky in Appendix 1 of [6], where
he also shows how to derive from it the standard Cahn-Hilliard equation, under the
assumption that the chemical potential is the variational derivative of the internal
energy. In the same paper, another kinetic equation is proposed (in our notations,
ρ̇ = −β−1µ, with β a positive material constant), which, granted the same char-
acterization of the chemical potential, yields a generalization of the Allen-Cahn
equation (1).
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In so doing, we have taken the microenergy influx proportional to the order-
parameter influx via the chemical potential. If, as we also do, the microenergy
source is assumed to be such that

m = −µm, (67)

then the order-parameter inflow determines the microenergy inflow just as it
determines the free-energy inflow in [1]. Substitution of (43)3, (66) and (67)
into (47) yields:

−µ−1(µ2ρ)̇ = div (µh)− µm, (68)

Comparison of the microenergy balance (68) with the order-parameter bal-
ance (56) shows that, if the chemical potential is a space-time constant, the
two statements are equivalent. Thus, provided we restrict attention to the
appropriate process class, our model yields the same predictions as the gen-
eralized C-H equation (60) of [1].

Remarks.
1. For m = 0, and for homogeneous Neumann boundary conditions

(M∇µ) · n = 0, (69)

the balance (59) implies that the total of the order-parameter is conserved,
just as in the case of the standard C-H equation. The same result cannot be
expected to hold in general in a theory like ours, which does not postulate an
order-parameter balance, and relies instead on the balance of microenergy.
However, integration over a material region Ω of (48) gives:( ∫

Ω

η
)̇

= −
∫

∂Ω

µ (H∇µ) · n +
∫

Ω

∇µ ·H∇µ+
∫

Ω

m. (70)

Thus, if the boundary condition

µ(H∇µ) · n = 0 over ∂Ω (71)

prevails, then the third of (45) and (54) imply that in an unforced process
(m = 0) the total microentropy cannot decrease:( ∫

Ω

η
)̇
≥ 0. (72)

This conclusion indicates what boundary conditions on the chemical potential
are physically plausible within our generalization of the Cahn-Hilliard theory.

2. For m = 0 and H = κµ1 , the microenergy balance (48) reads:

µ−1η̇ = κ(µ∆µ+ |∇µ|2) =
1
2
κ∆µ2. (73)

Moreover, the boundary condition (71) becomes

µ2∂nµ = 0 ( ⇔ µ2∂nµ
2 = 0) over ∂Ω. (74)
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Thus, if
η̇ = 0,

we see that, under circumstances that are typical of the standard Cahn-
Hilliard processes regulated by (2), the balance of microenergy implies that
the microentropy is constant in time if and only if the chemical potential is a
space-time constant. When this is the case, the microforce balance (46) can
be seen as the Euler-Lagrange equation of the free microenergy functional

Ψ{ρ} =
∫

Ω

(ψ̂(ρ,∇ρ, µ)− γρ) for ψ̂ as in (49).
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