A Virtual Working Format for Thermomechanics

Paolo Podio-Guidugli
Università di Roma TorVergata

Motivation

Hodiernal continuum mechanics is multiscale and multiphysics:

- interdependent phenomena take place at different scales in bodies regarded as an interactive composition of material structures;
- plurality of scales and material structures calls for adjustments in the standard modeling format: primarily, to lay down in a systematic manner the relevant balance and inbalance laws, making sure that no interaction is overlooked.

Plan

To present a format modeled after the virtual working format, using thermomechanics as a paradigmatic example.

The Standard Mechanical \& Thermal Structures

- mechanical body structure based on
- Virtual Working Principle

$$
\int_{\mathcal{P}} \mathbf{S} \cdot \nabla \mathbf{v}=\int_{\mathcal{P}} \mathbf{d} \cdot \mathbf{v}+\int_{\partial \mathcal{P}} \mathbf{c} \cdot \mathbf{v}, \quad \mathbf{v} \in \mathcal{V}, \quad \mathcal{P} \subset \mathcal{B}
$$

implying force balance;

- thermal body structure based on
- energy balance

$$
\dot{\varepsilon}=-\boldsymbol{\operatorname { d i v }} \mathbf{q}+r,
$$

- entropy imbalance

$$
\dot{\eta} \geq-\operatorname{div} \mathbf{h}+s, \quad \text { with } \mathbf{h}=\vartheta^{-1} \mathbf{q}, \quad s=\vartheta^{-1} r .
$$

Body as a Composition of Mechanical \& Thermal Structures. i. Kinetics

- kinetic variables are
- mechanical displacement u, with

$$
\mathbf{v}=\dot{\mathbf{u}} \equiv \text { velocity }
$$

- thermal displacement α, with

$$
\vartheta=\dot{\alpha} \equiv \text { temperature }
$$

defined over space-time cylinder $\mathcal{B} \times(0, T)$

- process $(x, t) \mapsto(\mathbf{u}(x, t), \alpha(x, t))$, with

$$
(\mathbf{v}(x, t), \vartheta(x, t)) \equiv \text { realizable velocity pair }
$$

- $(\delta \mathbf{u}(x, t), \delta \alpha(x, t)) \equiv$ virtual velocity pair

Thermal Displacement, a Few References

- M. von Laue, Relativitätstheorie, Vol. 1 Vieweg, Braunschweig (1921). (for von Laue, thermacy = minus thermal displacement)
- A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elasticity 31 (1993), 189-208.
- C. Dascalu and G.A. Maugin, The thermoelastic materialmomentum equation. J. Elasticity 39 (1995), 201-212.
- P. P-G and A. Tiero, Un formato tipo lavori virtuali per la termodinamica dei processi omogenei. Proc. XIV Congr. Naz. Meccanica Teor. Appl. (Como, Italy - October 1999).

Body as a Composition of Mechanical \& Thermal Structures. ii. Dynamics

For \mathcal{P} a subbody of \mathcal{B}, and $I=\left(t_{i}, t_{f}\right)$ a subinterval of $(0, T)$, dynamics specified by
(i) internal virtual working

$$
\delta \mathcal{W}^{(i)}=\int_{\mathcal{P} \times I}(\mathbf{s} \cdot \delta \mathbf{u}+\mathbf{S} \cdot \nabla \delta \mathbf{u}+h \delta \alpha+\mathbf{h} \cdot \nabla \delta \alpha)
$$

where

- s and $\mathbf{S} \equiv 0$-th and 1 -st order mechanical interactions
- h and $h \equiv 0$-th and 1 -st order thermal interactions

Note

Treatments of mechanical and thermal entities should be kept as parallel as possible. But, parallelism broken by

- invariance requirements
in a galilean observer change,

$$
\mathbf{v} \mapsto \mathbf{v}^{+}=\mathbf{v}+\mathbf{t}, \quad \alpha \mapsto \alpha^{+}=\alpha
$$

Thus, translational invariance of $\delta \mathcal{W}^{(i)}$ implies a symmetrybreaking conclusion:
the 0th order stress s is null.

- habit
habitual entropy flux = minus the 1-st order thermal interaction h.
(ii) external virtual working

$$
\begin{aligned}
& \delta \mathcal{W}^{(e)}=\int_{\mathcal{P} \times I}(\mathbf{d} \cdot \delta \mathbf{u}+\mathbf{p} \cdot \dot{\delta} \mathbf{u}+s \delta \alpha+\eta \dot{\delta} \alpha) \\
& \quad+\int_{\partial \mathcal{P} \times I}(\mathbf{c} \cdot \delta \mathbf{u}+c \delta \alpha)+\int_{\mathcal{P} \times \partial I} \llbracket \mathbf{p} \cdot \delta \mathbf{u}+\eta \delta \alpha \rrbracket
\end{aligned}
$$

- (d, c) and $(s, c) \equiv$ distance and contact interactions, mechanical and thermal;
- $\mathbf{p} \equiv$ momentum, $\quad \mathrm{Sn} \equiv$ momentum flux; $\mathrm{d} \equiv$ momentum source \equiv (noninertial distance force);
- $\eta \equiv$ entropy, $\mathbf{h} \cdot \mathbf{n} \equiv$ entropy flux, $s \equiv$ entropy source;
- $\mathbf{c} \equiv$ contact force, $c \equiv$ contact heating;
- $\mathbf{p}_{f}, \ldots, \eta_{i} \equiv$ external actions, mechanical \& thermal, at time boundaries of $\mathcal{P} \times I$:

$$
\begin{aligned}
\int_{\partial I} \llbracket \mathbf{p} \cdot \delta \mathbf{u}+\eta \delta \alpha \rrbracket:= & \mathbf{p}_{f}(x) \cdot \delta \mathbf{u}\left(x, t_{f}\right)+\eta_{f}(x) \delta \alpha\left(x, t_{f}\right) \\
& +\mathbf{p}_{i}(x) \cdot \delta \mathbf{u}\left(x, t_{i}\right)+\eta_{i}(x) \delta \alpha\left(x, t_{i}\right) .
\end{aligned}
$$

The Virtual Working Axiom

(VW) The internal and the external working should be equal:

$$
\delta \mathcal{W}^{(i)}=\delta \mathcal{W}^{(e)},
$$

for each virtual velocity pair defined over the closure of any subcylinder $\mathcal{P} \times I$ of $\mathcal{B} \times(0, T)$ and such as to vanish at the end of I itself.

Notes

- Just as α called thermal displacement to allude to role analogy with mechanical displacement u , why not to call η thermal momentum, by analogy with the mechanical momentum p ?
- Just as p thought of as measuring reluctance to quiet, why not to think of η as measuring reluctance to order?

Implications of VW Axiom

- momentum and entropy balances:

$$
\dot{\mathbf{p}}=\operatorname{Div} \mathbf{S}-\mathbf{s}+\mathbf{d}, \quad \dot{\eta}=\mathbf{D i v} \mathbf{h}-h+s \quad \text { in } \mathcal{P} \times I
$$

- initial conditions:

$$
\mathbf{p}\left(x, t_{i}\right)=\mathbf{p}_{i}(x), \quad \eta\left(x, t_{i}\right)=\eta_{i}(x) \quad \text { for } x \in \mathcal{P}
$$

- boundary conditions on $\partial \mathcal{P} \times I$:

$$
\mathrm{Sn}=\mathbf{c} \equiv \text { balance of contact forces: } \mathbf{c}+\mathbf{S}(-\mathbf{n})=\mathbf{0}
$$

$\mathbf{h} \cdot \mathbf{n}=c \equiv$ continuity end. on contact heating: $c=(-\mathbf{h}) \cdot(-\mathbf{n})$
establishing -h as a measure of specific heat influx at a point of an oriented surface of normal n.

Conservation of Internal Action. Preliminaries

An integral consequence of momentum and entropy balances is:

$$
W(\mathcal{P})+H(\mathcal{P})=\frac{d}{d t}\left(\int_{\mathcal{P}}(\mathbf{p} \cdot \mathbf{v}+\eta \vartheta)\right)+\int_{\mathcal{P}} \text { stuff }
$$

where

- noninertial working

$$
W(\mathcal{P}):=\int_{\mathcal{P}} \mathbf{d} \cdot \mathbf{v}+\int_{\partial \mathcal{P}} \mathbf{c} \cdot \mathbf{v}
$$

- heating

$$
H(\mathcal{P}):=\int_{\mathcal{P}} s \vartheta+\int_{\partial \mathcal{P}} c \vartheta
$$

- internal action

$$
\Phi(\mathcal{P}):=\int_{\mathcal{P}} \varphi, \quad \text { with }
$$

$$
\text { stuff }=\mathbf{s} \cdot \mathbf{v}+\mathbf{S} \cdot \nabla \mathbf{v}-\mathbf{p} \cdot \dot{\mathbf{v}}+h \vartheta+\mathbf{h} \cdot \nabla \vartheta-\eta \dot{\vartheta}:=\dot{\varphi} .
$$

The Axiom of Conservation of Internal Action

(CIA) In a cycle, the noninertial working plus the heating supplied to or extracted from \mathcal{P} sum to null:

$$
\oint(W(\mathcal{P})+H(\mathcal{P}))=0 .
$$

Equivalently,
(CIA)' In a cycle, the internal action is conserved:

$$
\oint \Phi(\mathcal{P})=0
$$

Implications of CIA Axiom. The 1st Law

For $\tau \equiv$ specific total energy:

$$
\tau:=\varphi+\mathbf{p} \cdot \mathbf{v}+\eta \vartheta, \quad T(\mathcal{P}):=\int_{\mathcal{P}} \tau
$$

we have:

$$
\dot{T}(\mathcal{P})=W(\mathcal{P})+H(\mathcal{P}), \quad \text { the First Law of TD. }
$$

To see this,

- set entropy inflow ($-\mathbf{h}, s$) proportional to energy inflow $(-\mathbf{q}, r)$ through coldness:

$$
\mathbf{h}=\vartheta^{-1} \mathbf{q}, s=\vartheta^{-1} r
$$

- accept standard notion of specific kinetic energy κ :

$$
\kappa:=\frac{1}{2} \mathbf{p} \cdot \mathbf{v}, \quad \text { with } \dot{\mathbf{p}} \cdot \mathbf{v}=\mathbf{p} \cdot \dot{\mathbf{v}},(\text { so that } \quad \dot{\kappa}+(-\dot{\mathbf{p}}) \cdot \mathbf{v}=0) .
$$

- set

$$
\varepsilon:=\tau-\kappa, \quad \varphi:=\psi-\kappa,
$$

and interpret
$-\varepsilon \equiv$ specific internal energy
$-\psi \equiv$ specific Helmholtz free energy $=\varepsilon-\eta \vartheta$,
whence the interpretations for both the total energy τ and the internal action φ.

The Dissipation Axiom

(D) Whatever the process $(x, t) \mapsto(\mathbf{u}(x, t), \alpha(x, t))$,

$$
h \dot{\alpha} \leq 0
$$

over the space-time cylinder $\mathcal{B} \times(0, T)$.

Implications of D Axiom. The 2nd Law

- Main implication is the generalized dissipation inequality:

$$
\dot{\psi} \leq-\eta \dot{\vartheta}+\mathbf{h} \cdot \nabla \vartheta+\mathbf{s} \cdot \mathbf{v}+\mathbf{S} \cdot \nabla \mathbf{v} .
$$

- If $\vartheta \geq 0$ (an unnecessary assumption so far), then entropy balance \& \boldsymbol{D} axiom imply:

$$
\dot{\eta} \geq \operatorname{div} \mathrm{h}+s \quad(\text { entropy inbalance } \equiv \text { the Second Law of TD }) .
$$

- Standard dissipation inequality \& entropy imbalance follow for

$$
\mathbf{h}=-\vartheta^{-1} \mathbf{q}, \quad s=\vartheta^{-1} r ; \quad \mathbf{s}=\mathbf{0} .
$$

