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Westudy the couplingbetween time-dependentDarcy–Brinkman
and the Darcy equations at the microscale subjected to
inhomogeneous body forces and initial conditions to describe a
double porosity problem. We derive the homogenized
governing equations for this problem using the asymptotic
homogenization technique, and as macroscopic results, we
obtain a coupling between two Darcy equations, one of which
with memory effects, with mass exchange between phases. The
memory effects are a consequence of considering the time
dependence in the Darcy–Brinkman equation, and they allow us
to study in more detail the role of time in the problem under
consideration. After the formulation of the model, we solve it in
a simplified setting and we use it to describe the movement of
fluid within a vascularized lymph node.

1. Introduction
The flow of fluids through porous media is a fundamental
process with wide-ranging applications in various fields, such as
hydrogeology and biology. In particular, porous media with dual
porosity, where fluid flow occurs in different compartments with
different pore structures, have garnered growing attention because
of their widespread occurrence in both natural and engineered
environments [1–7].

© 2024 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rsos.231983&domain=pdf&date_stamp=2024-07-17
mailto:Raimondo.Penta@glasgow.ac.uk
http://orcid.org/
http://orcid.org/0000-0003-3581-7726
http://orcid.org/0000-0002-7303-7408
http://orcid.org/0000-0003-0965-3991
http://orcid.org/0000-0003-1202-8775
http://creativecommons.org/licenses/by/4.0/


In this work, we present a multiscale model for dual-porosity porous media using the asymptotic
homogenization technique [8,9] that couples a time-dependent Darcy–Brinkman equation [10] with a
Darcy equation [8,9,11,12] which describes the fluid flow of the blood vessels inside the node, as our
starting point. Here, we assume that the Darcy equation depends on time only parametrically. The
theoretical justification of the Darcy–Brinkman equation is less warranted from a multiscale
perspective compared to the Darcy equation [8,13–19]; however, since its structure is halfway between
the Darcy and the Stokes equations, it can serve as a valid starting point for a multiscale formulation
[1], and grants the ability to specify boundary conditions in more detail [20,21]. Moreover, the
Darcy–Brinkman equation is also well defined in a time-dependent setting [14,22,23].

We consider a multiscale volume load that drives the coarse scale fluid flow acting on both the Darcy
and Darcy–Brinkman problems [24]. These forces can occur from the use of electromagnetic fields, in
magnetorheological fluids and in electrolytes that permeate non-uniform tissues [24]. Moreover, we
consider a multiscale initial condition of the time-dependent problem that we take into account. Such
initial conditions can arise for the flow of fluids in porous media with drug injection [25] or when as
an initial condition we have another multiscale motion.

The derived model comprises porous media flow with memory effects (e.g. [8,26–29]), which are
encoded in the effective hydraulic conductivity; thus, the nature of the obtained differential problem
is intrinsically different with respect to [1]. The latter is represented by a convolution in time between
the time-dependent hydraulic conductivity (obtained by solving the differential problem at the cell
level) and the macroscopic pressure gradient. The macroscopic Darcy equation with memory effect
that we obtain is new and differs from previous works on this subject such as [8,26–29] because we
consider the effect of inhomogeneous body forces, a multiscale initial condition and the fluid
exchange with another phase (described here by the Darcy equation). Using asymptotic
homogenization, we pass from an equation at the microscale where the present time is necessary for
deducing the future [30] to a macroscopic equation where the present and the past are necessary to deduce
the future [31]. The memory effects appear to be a natural framework when dealing with the
homogenization of this kind of problems [30,31].

Among the countless applications of dual-porosity porousmedia, themainmotivation that guided us to
propose and study this model is the application of the latter to the fluid flow of a lymph node, an essential
part of the lymphatic system. The lymphatic system is composed of a network of vessels, capillaries and
organs [32]. The interstitial fluid is drained by the lymphatic capillaries and it is called lymph once inside
the lymphatic system. Inside the lymphatic vessels, there is a series of one-way valves which prevent
retrograde flows. The part of the vessel between two valves is called lymphangion. Lymphangion walls
are innervated with sympathetic and parasympathetic nerves [33–35] and can perform rhythmic
contractions, making lymph transport a time-dependent flow [33,36–38]. The lymphatic system is an
integral part of the immune system thanks to the lymph nodes. The lymph node is vital for immune
defence, housing B and T cells that circulate in the body to protect against infection. B cells generate
antibodies to fight antigens, while stimulated B cells transform into plasma or memory cells. Antigen-
presenting cells capture antigens and present them to T cells in the lymph nodes, activating the adaptive
immune response. Lymph transport has an important function in transporting immune cells, proteins,
cancer metastasis, drugs and so on [39–41]. Furthermore, the movement of fluid through lymph nodes
promotes the expression of chemokines, establishing a chemokine gradient that directs the movement of
immune cells into the node. Changes in lymph transport play an important role in several pathologies.
Elevated fluid flow augments the growth rate and sensitivity to drugs in specific forms of lymphomas
[42]. Inadequate lymph transport can lead to a condition called lymphœdema, where excess interstitial
fluid accumulates in the tissues, and it is often caused due to an impairment of lymph nodes [36,43].
From a mechanical perspective, the key characteristics of the lymph node include the lymphoid
compartment (LC), which is a porous bulk region and forms the parenchyma of the lymph node, and
the subcapsular sinus (SCS), a thin channel near the wall that surround the LC and that allows free-fluid
flow [33]. The fluid can enter the LC from the SCS through a conduit system network created by
fibroblastic reticular cells (FRCs) [44–46] which forms the main porous region of the lymph node. The
lymph node is a highly vascularized organ, and inside the LC there are plenty of blood vessels that
allow fluid and substance exchange [47–49], making the lymph node an important connection region
between the lymphatic system and the blood system.

To the best of our knowledge, only a few models in the literature try to describe the fluid dynamical
aspects of lymph node behaviour [50–52]. In [53,54], it is explored how the fluid flow in the lymph node
is influenced by its internal structure, using an image-based model to establish a relationship between
the greyscale values of the images and the permeability of the lymph node tissue, using this as the
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permeability for the steady Darcy equation. In [47], the authors conduct a parameter sensitivity analysis by
using a computational flow model based on a mouse popliteal lymph node, coupling a steady Darcy–
Brinkman equation in the LC with a steady Navier–Stokes equation in the SCS. Grebennikov and others
[45,46] study the lymph flow through the conduit system network using an object-oriented
computational algorithm to generate the three-dimensional geometry of the FRC graph network. In [55],
the fluid flow within the lymph node is simulated by using a microfluidic device that mimics the
microenvironment of a lymph node. Birmingham et al. [39] focused on the lymph node’s SCS fluid
dynamics thanks to a microfluidic platform, evaluating how physiological flow patterns impact the
adhesion of metastatic cancer cells (thanks to the wall shear stress values). In [56], a numerical method is
developed to simulate the fluid flow in the lymph node using boundary integral equations, and then in
[57] the authors provide an artificial neural network model to describe the lymph node drainage
function. In [1,58,59], we have the first explicit models that describe the fluid flow in the lymph node in
simplified geometries. In particular, in [58,59], they found a divergence-free explicit and numerical
solution in a time-dependent setting, with a very idealized geometry for [58] and a spherical geometry in
[59]. Girelli et al. [1] describe the blood vessel drainage function in the lymph node considering the
multiscale nature of the latter in a steady setting, obtaining a rigorous mathematical model using
the asymptotic homogenization technique; thanks to this approach, they were able to describe the fluid
flow inside the conduit system network (formed by FRC) and inside the blood vessels networks.

This work addresses a crucial limitation characterizing the work in [1], as it takes into account
the time-dependent character of the pulsatile flow which takes place in the lymph node due to the
pulsation of the lymphangions [36,60,61] and its upscaling onto the macroscale. In fact, we present a
multiscale model using the asymptotic homogenization technique [8,9] that couples a time-dependent
Darcy–Brinkman equation [10], which describes the fluid flow inside the conduit system network
formed by FRC, with a Darcy equation [8,9,11,12], which describes the fluid flow of the blood vessels
inside the node, as our starting point. The Darcy equation depends on time only parametrically
because the time-dependency we take into account is given by the lymphangion pulsation and affects
mainly the lymph flow inside the FRC network. This model focuses on the porous region of the
lymph node (LC) and the fluid exchange occurring solely between the node and the blood vessels
within this specific area [47–49]. It is crucial to emphasize that, as highlighted in [1], our analysis
begins with the Darcy–Brinkman and Darcy equations. This implies that variations in pore-scale
geometry have been effectively averaged out, eliminating the necessity for precise details about the
intricate and challenging-to-describe microstructure geometry of the lymph node.

In §2, we show the starting equations and boundary conditions of our problem, based on the balance
equations of continuum mechanics. In §3, we employ the asymptotic homogenization technique and in
§4, we find the macroscopic averaged equations. In §5, we find the explicit solution to our problem
in spherical geometry under the hypothesis of axisymmetry with respect to the azimuthal angle and
isotropy of the porous medium using the Fourier transform and using the explicit solution that we
already found in [1]. In §6, we describe the numerical simulation that we use to solve the problem in
the cell domain. Finally, in §7, we solve the explicit solution we found in §5 using lymph node
physiological data obtained from the literature, allowing us to study in more detail the behaviour of
the lymph inside the lymph node in a time-dependent setting.

2. Formulation of the starting problem
We consider the domain V ¼ Vv <Vm, where Ωm and Ωv denote regions of the matrix and the vessels,
respectively. A sketch of a portion of the three-dimensional domain at hand comprising the two phases is
provided in figure 1. We describe the fluid flow in Ωv via Darcy’s Law supplemented by a body force as
in the work [24], namely

vvðx, tÞ ¼ �~KvðxÞ(rpvðx, tÞ � bvðx, tÞ) in Vv � ½0, T�
r � vv(x, t) ¼ 0 in Vv � ½0, T�:
�

(2:1)

In order to model the unsteady fluid flow within the matrix phase Ωm, we exploit the following
Darcy–Brinkman equation [1,10,24]:

r0
@vm
@t ðx, tÞ ¼ �rpmðx, tÞ � ~K

�1
m ðxÞvmðx, tÞ þ meDvmðx, tÞ þ bmðx, tÞ in Vm � ½0, T�

r � vm(x, t) ¼ 0 in Vm � ½0, T�:

�
(2:2)
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For γ = v, m, vg is the velocity of the fluid in the region Vg, pg is the pressure in the region Vg, bg is the
inhomogeneous external force density in the region Vg, ~KgðxÞ is the hydraulic conductivity tensor in
the region Vg, μe is the effective viscosity, and ρ0 is the fluid density. For γ = v, m, we suppose that the
hydraulic conductivity tensor is symmetric and positive definite:

~KgðxÞ ¼ ~K
T
g ðxÞ, 8 a = 0 : a � ~KgðxÞa . 0: ð2:3Þ

Our starting point consists of both Darcy and Darcy–Brinkman equations, assuming that the pore
structure is homogenized in both compartments. In this scenario, the hydraulic conductivity tensor
~KgðxÞ functions as a means to represent the essential microscale geometric information.

The matrix and the vessels are coupled via the following interface conditions:

vvðx, tÞ � n ¼ vmðx, tÞ � n ¼ Lpðpmðx, tÞ � pvðx, tÞ � �pðtÞÞ on G� ½0, T�
vm(x, t) � t ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
m~Km(x)

p
a [(n � r)vm(x, t)] � t on G� ½0, T�,

(
(2:4)

where G ¼ @Vm > @Vv, n is the outer normal to Ωm, τ is any tangential vector to Γ, �pðtÞ is a function that
depends only on time and α is a constant that depends on the physico-chemical properties of the interface.
The first interface condition of (2.4) is related to the normal component of the velocity; if we take
�p ¼ sðpm � pvÞ, we obtain the well-known Starling equation [62,63], used to describe the fluid exchange
between two regions separated by a porous membrane, where σ is the Staverman reflection coefficient, πv the
osmotic pressure of Ωv and πm the osmotic pressure of Ωm. For simplicity, in this work, we assume that
the osmotic pressures πv and πm depend only on time, but they can depend also on space [3]. The
parameter Lp is typically experimentally measured and depends on the geometry and porosity/leakage of
the vessels’ walls Γ. We consider this particular interface condition because we aim to apply this model to
the fluid flow of a lymph node, but our formulation remains valid for other applications too. The second
equation of (2.4) is the Beavers–Joseph–Saffman boundary condition [64], an interface condition on the tangent
component of the velocity introduced in [65,66]. This interface condition introduces a slip velocity, which is
proportional to the normal component of the velocity gradient of the fluid near the boundary. This
interface condition is often used to describe the connection between free-fluid and porous regions, as well
as an interface condition for dual-porosity media [2,67]. Moreover, linking the Darcy–Brinkman equation
with the Darcy equation necessitates conditions reliant on the actual velocity. Therefore, the Beavers–
Joseph conditions offer a more comprehensive grasp of the underlying physics compared to merely
imposing a zero tangent velocity.

The initial condition is

vmðx, 0Þ ¼ vm,0ðxÞ in Vm, (2:5)

where vm,0(x) need to satisfy r � vm,0ðxÞ ¼ 0 and must be compatible with the interface conditions (2.4).
The non-dimensional form of the Darcy equation, the Darcy–Brinkman equation, and the interface

conditions for the domain Vg, with γ =m, v, are as follows. We denote with a prime symbol the
following non-dimensional quantities:

t ¼ L
U
t0, vg ¼ Uu0g, x ¼ Lx0, ~Kg ¼ KrefK

0
g, bg ¼ U

Kref
b0g, pg ¼ UL

Kref
p0g ð2:6Þ

and

e ¼ d
L
, ð2:7Þ

where U is the characteristic velocity, Kref is the representative (scalar) hydraulic conductivity, d is the fine-scale
length and L is the coarse-scale length. In the scope of this work, the parameter d takes on the role of

Ωυ
Ωm

rc
d

1
(a) (b)

Figure 1. A sketch of a periodic portion of the domain comprising the vessels Ωv (a) and matrix Ωm (b).
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denoting the separation between two vascularized regions. Instead of delving into the intricate
particulars of individual vessels, the vascular network region is conceptualized as a geometric domain
denoted as Ωv, consisting of interconnected cylinders with radius rc (illustrated in figure 1), where the
Darcy equation is applicable. Accordingly, d is precisely characterized as the distance between two
neighbouring cylinders within this model representation.

Substituting (2.6) into (2.2), we obtain, by neglecting the primes

h @vm
@t ðx, tÞ ¼ �rpmðx, tÞ � K�1

m ðxÞvmðx, tÞ þ ~mDvmðx, tÞ þ bmðx, tÞ in Vm � ½0, T�,
r � vm(x, t) ¼ 0 in Vm � ½0, T�,
�

(2:8)

where

h ¼ r0UKref
L

and ~m ¼ Krefme

L2
:

As d represents the fine-scale length in our problem, the most natural choice as a representative fine-scale
conductivity, which we denote as Kref, resides, given its physical dimensions, in choosing d2=m, i.e.

Kref ¼
d2

m
, h ¼ r0Ud2

mL
, ~m ¼ e2m�, m� ¼ me

m
: ð2:9Þ

Substituting these relations into (2.1) and (2.8), we obtain the non-dimensional equations

vvðx, tÞ ¼ �KvðxÞ(rpvðx, tÞ � bvðx, tÞ) in Vv � ½0, T�
r � vv(x, t) ¼ 0 in Vv � ½0, T�
�

(2:10)

and

h @vm
@t ðx, tÞ ¼ �rpmðx, tÞ � K�1

m ðxÞvmðx, tÞ þ e2m�Dvmðx, tÞ þ bmðx, tÞ in Vm � ½0, T�,
r � vm(x, t) ¼ 0 in Vm � ½0, T�:
�

(2:11)

We also need to non-dimensionalize the interface conditions (2.4). In particular, we adopt the same
distinguished limit embraced in [3, 68] which ensures that the blood flux stays finite when the length-
scale separation that exists in the system becomes more and more pronounced. This is equivalent to
assuming

vvðx, tÞ � n ¼ vmðx, tÞ � n ¼ e�Lpðpmðx, tÞ � pvðx, tÞ � �pðtÞÞ on G� [0, T]

vm(x, t) � t ¼ �e

ffiffiffiffiffiffiffiffiffi
Km(x)

p
a [(n � r)vm(x, t)] � t on G� [0, T],

(
(2:12)

where �Lp ¼ LpmL2=d3 [3]. Moreover, we close our problem using periodic boundary conditions at the
boundary @V n G.

3. The multiscale formulation
The goal of this section is to derive a macroscale model for the continuum system of equations (2.10),
(2.5), (2.11) and (2.12), using the asymptotic homogenization technique [8,9,69]. We assume that there
is a clear separation between the spatial fine scale d and the coarse scale L, which means that the
quantity e defined in (2.7) is small:

e � 1:

To achieve spatial scale decoupling, we introduce a fresh local variable

y ¼ x
e
, ð3:1Þ

where x represents the coarse-scale spatial coordinates and y represents the fine-scale spatial coordinates:
they have to be considered independent in a formal way. We assume that pg, vg, Kg and bg (where γ =m, v)
depend on both x and y.

We assume two main hypotheses concerning the geometry of the multiscale problem: local periodicity
and macroscopic uniformity. Local periodicity means that pg, vg, Kg and bg are y-periodic. By making this
assumption, we are able to focus our study on a restricted portion of the fine-scale domain. Instead,
macroscopic uniformity means ignoring geometric variations within the cell structure and inclusions
concerning the coarse-scale variable x, i.e. the microstructure is unique. Then we may consider the
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utilization of a single periodic cell, denoted as Ωγ, for each macroscale point x, and

rx �
ð
Vg

ð†Þdy ¼
ð
Vg

rx � ð†Þdy: ð3:2Þ

The differential operator becomes

r ! rx þ 1
e
ry; ð3:3Þ

we now employ a power series expansion for e for the variables of our problem as follows (where γ =m, v):

vgðx, y, tÞ ; vegðx, y, tÞ ¼
X1
l¼0

vðlÞg ðx, y, tÞel, ð3:4Þ

pgðx, y, tÞ ; pegðx, y, tÞ ¼
X1
l¼0

pðlÞg ðx, y, tÞel, ð3:5Þ

bgðx, y, tÞ ; begðx, y, tÞ ¼
X1
l¼0

bðlÞg ðx, y, tÞel ð3:6Þ

and vm,0ðx, yÞ ; vem,0ðx, yÞ ¼
X1
l¼0

vðlÞm,0ðx, yÞel: ð3:7Þ

Substituting the asymptotic expansions (3.4)–(3.7) and the differential operator (3.3) into
equations (2.10)–(2.11), we have

evevðx, y, tÞ þ eKvðx, yÞrxpevðx, y, tÞ
þ Kvðx, yÞrypevðx, y, tÞ � eKvðx, yÞbevðx, y, tÞ ¼ 0 in Vv � ½0, T�

erx � vev(x, y, t)þry � vev(x, y, t) ¼ 0 in Vv � ½0, T�

8<
: (3:8)

and

he
@vem
@t ðx, y, tÞ ¼ �erxpemðx, y, tÞ � rypemðx, y, tÞ � eK�1

m ðx, yÞvemðx, y, tÞ
þ m�e3Dxvemðx, y, tÞ þ m�eDyvemðx, y, tÞ
þ m�e2rx � ðryvemðx, y, tÞÞ þ m�e2ry � ðrxvemðx, y, tÞÞ
þ ebemðx, y, tÞ in Vm � ½0, T�,

erx � vem(x, y, t)þry � vem(x, y, t) ¼ 0 in Vm � ½0, T�,

8>>>>><
>>>>>:

(3:9)

and if we substitute them into the interface conditions (2.12) and the initial condition (2.5), we obtain

vevðx, y, tÞ � n ¼ vemðx, y, tÞ � n ¼ e�Lpðpemðx, y, tÞ � pevðx, y, tÞ � �pðtÞÞ on G� ½0, T�
vem(x, y, t) � t ¼ �e

ffiffiffiffiffiffiffiffiffiffiffiffi
Km(x, y)

p
a n � rx þ 1

ery
� �� �

vem(x, y, t)
� � � t on G� ½0, T�

(
(3:10)

and

vemðx, y, 0Þ ¼ vem,0ðx, yÞ in Vm: ð3:11Þ

3.1. Coefficients of order e0

Collecting the terms of order e0 from (3.8) to (3.11), we obtain

rypð0Þv ðx, y, tÞ ) pð0Þv ¼ pð0Þv ðx, tÞ in Vv � ½0, T�, (3:12)

rypð0Þm ðx, y, tÞ ) pð0Þm ¼ pð0Þm ðx, tÞ in Vm � ½0, T�, (3:13)

ry � vð0Þv ðx, y, tÞ ¼ 0 in Vv � ½0, T�, (3:14)

ry � vð0Þm ðx, y, tÞ ¼ 0 in Vm � ½0, T�; (3:15)

vð0Þm ðx, y, tÞ � n ¼ vð0Þv ðx, y, tÞ � n ¼ 0 on G� ½0, T�, (3:16)

vð0Þm ðx, y, tÞ � t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmðx, yÞ

p
a

(n � ry)vð0Þm ðx, y, tÞ
h i

� t on G� ½0, T� (3:17)

and vð0Þm ðx, y, 0Þ ¼ vð0Þm,0ðx, yÞ in Vm: (3:18)
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3.2. Coefficients of order e1

If we collect the terms of order e1 from equations (3.8) to (3.11), we have

vð0Þv ðx, y, tÞ þ Kvðx, yÞ rxpð0Þv ðx, tÞ þ rypð1Þv ðx, y, tÞ � bð0Þv ðx, y, tÞ
� 	

¼ 0 in Vv � ½0, T�, (3:19)

rx � vð0Þv ðx, y, tÞ þ ry � vð1Þv ðx, y, tÞ ¼ 0 in Vv � ½0, T�, (3:20)

h
@v(0)m

@t
(x, y, t) ¼ �rxp(0)m (x, t)�ryp(1)m (x, y, t)� K�1

m (x, y)v(0)m (x, y, t)

þ m�Dyv(0)m (x, y, t)þ b(0)m (x, y, t) on Vm � ½0, T�, (3:21)

rx � vð0Þm ðx, y, tÞ þ ry � vð1Þm ðx, y, tÞ ¼ 0 on Vm � ½0, T�, ð3:22Þ

vð1Þm ðx, y, tÞ � n ¼ vð1Þv ðx, y, tÞ � n ¼ �Lp(pð0Þm ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ) on G� ½0, T�, (3:23)

v(1)m (x, y, t) � t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km(x, y)

p
a

(n � rx)v(0)m (x, y, t)þ (n � ry)v(1)m (x, y, t)
� � � t on G� ½0, T� (3:24)

and vð1Þm ðx, y, 0Þ ¼ vð1Þm,0ðx, yÞ in Vm: (3:25)

3.3. Derivation of Darcy’s equation
Applying the ry� operator to (3.19) and remembering equation (3.14), we obtain

ry � [Kvðx, yÞ(rxpð0Þv ðx, tÞ þ rypð1Þv ðx, y, tÞ � bð0Þv ðx, y, tÞ)] ¼ 0 in Vv � ½0, T�; (3:26)

it follows that the boundary condition (3.16) is

[Kvðx, yÞ(rxpð0Þv ðx, tÞ þ rypð1Þv ðx, y, tÞ � bð0Þv ðx, y, tÞ)] � n ¼ 0 on G� ½0, T�: (3:27)

We note that the problem is linear and that rxp
ð0Þ
v is constant in y; hence we formulate the following

solution ansatz:

pð1Þv ðx, y, tÞ ¼ hvðx, y, tÞ � rxpð0Þv ðx, tÞ þ ~hvðx, y, tÞ: ð3:28Þ

The ansatz (3.28) solves the problem (3.26)–(3.27) (it is a solution up to a y-constant function), provided
that the auxiliary vector and scalar fields hv and ~hv solve the following cell problems:

ry � [ryhvðx, y, tÞKvðx, yÞT] ¼ �ry � Kvðx, yÞT in Vv � ½0, T�,
[ryhv(x, y, t)Kv(x, y)

T]n ¼ �Kv(x, y)
Tn on G� ½0, T�

(
(3:29)

and

ry � [Kvðx, yÞry
~hvðx, y, tÞ] ¼ ry � [Kvðx, yÞbð0Þv ðx, y, tÞ] in Vv � ½0, T�,

[Kvðx, yÞry
~hvðx, y, tÞ] � n ¼ [Kvðx, yÞbð0Þv ðx, y, tÞ] � n on G� ½0, T�:

(
(3:30)

To ensure the solution uniqueness, we need to impose that hhvðx, y, tÞiVv
¼ 0 and h~hvðx, y, tÞiVv

¼ 0,
where the average operator hð†ÞiVg

is defined as

hð†ÞiVg
¼ 1

jVgj
ð
Vg

ð†Þdy: ð3:31Þ

Substituting the ansatz (3.28) into equation (3.19), we obtain the following Darcy’s equation:

vð0Þv ðx, y, tÞ ¼ �(Kvðx, yÞ þ Kvðx, yÞðryhvðx, y, tÞÞT)rxpð0Þv ðx, tÞ
� Kvðx, yÞry

~hvðx, y, tÞ þ Kvðx, yÞbð0Þv ðx, y, tÞ: ð3:32Þ

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231983
7



3.4. Derivation of Darcy’s equation with memory
Putting together (3.21), (3.15), (3.16), (3.17) and (3.18) in Ωm, we obtain the following auxiliary
Darcy–Brinkman problem in ðvð0Þm , pð1Þm Þ:

h @vð0Þm
@t ðx, y, tÞ ¼ �rxp

ð0Þ
m ðx, tÞ � ryp

ð1Þ
m ðx, y, tÞ

� K�1
m ðx, yÞvð0Þm ðx, y, tÞ þ m�Dyv

ð0Þ
m ðx, y, tÞ

þ bð0Þm ðx, y, tÞ in Vm � ½0, T�,
ry � v(0)m (x, y, t) ¼ 0 in Vm � ½0, T�,
v(0)m (x, y, t) � n ¼ 0 on G� ½0, T�,
v(0)m (x, y, t) � t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
Km(x, y)

p
a [(n � ry)v(0)m (x, y, t)] � t on G� ½0, T�,

v(0)m (x, y, 0) ¼ v(0)m,0(x, y) in Vm:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(3:33)

We apply the Fourier transform defined by

F ½fðtÞ� ¼ f̂ðvÞ ¼
ð1
�1

fðtÞe�2pitv dt ð3:34Þ

to system (3.33), and we obtain (note that the initial condition can be written as dðtÞvð0Þm,0ðx, yÞ, where δ(t)
is the Dirac delta)

2pivhv̂ð0Þm ðx, y, vÞ ¼ �rx p̂ð0Þm ðx, vÞ � ry p̂ð1Þm ðx, y, vÞ � K�1
m ðx, yÞv̂ð0Þm ðx, y, vÞ

þ m�Dyv̂ð0Þm ðx, y, vÞ þ b̂ð0Þm ðx, y, vÞ þ vð0Þm,0ðx, yÞ in Vm � (�1, 1), (3:35)

ry � v̂ð0Þm ðx, y, vÞ ¼ 0 in Vm � (�1, 1), (3:36)

v̂ð0Þm ðx, y, vÞ � n ¼ 0 on G� (�1, 1) (3:37)

and v̂ð0Þm ðx, y, vÞ � t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmðx, yÞ

p
a

[(n � ry)v̂ð0Þm ðx, y, vÞ] � t on G� (�1, 1): (3:38)

We have a linear problem and rx p̂
ð0Þ
m depends on the macroscale only; hence we formulate an ansatz

for the solution

p̂ð1Þm ðx, y, vÞ ¼ �ĥmðx, y, vÞ � rx p̂ð0Þm ðx, vÞ þ ~̂hmðx, y, vÞ ð3:39Þ

and

v̂ð0Þm ðx, y, vÞ ¼ �Q̂mðx, y, vÞrx p̂ð0Þm ðx, vÞ þ ~̂qmðx, y, vÞ: ð3:40Þ

We have that (3.39) and (3.40) are the unique solutions of the auxiliary Darcy–Brinkman problem
(3.33) provided that the auxiliary second rank tensor Q̂g, the auxiliary vectors ĥg, ~̂qg and the auxiliary
scalar function ~̂hg solve the following cell problems:

�2pivhQ̂mðx, y, vÞ ¼ �I þ (ryĥmðx, y, vÞ)T þ K�1
m ðx, yÞQ̂mðx, y, vÞ

� m�DyQ̂mðx, y, vÞ in Vm � (�1, 1),
ry � Q̂m(x, y, v) ¼ 0 in Vm � (�1, 1),
Q̂T

m(x, y, v)n ¼ 0 on G� (�1, 1),
Q̂T

m(x, y, v)t ¼ �
ffiffiffiffiffi
Km

p
a [(ryQ̂T

m(x, y, v))n]t on G� (�1, 1),

8>>>>><
>>>>>:

(3:41)

and

2pivh~̂qmðx, y, vÞ ¼ �K�1
m ðx, yÞ~̂qmðx, y, vÞ þ m�Dy~̂qmðx, yÞ

� ry
~̂hmðx, y, vÞ þ b̂ð0Þm ðx, y, vÞ þ vð0Þm,0ðx, yÞ in Vm � (�1, 1),

ry � ~̂qm(x, y, v) ¼ 0 in Vm � (�1, 1),
~̂qm(x, y, v) � n ¼ 0 on G� (�1, 1),

~̂qm(x, y, v) � t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
Km(x, y)

p
a [(n � ry)~̂qm(x, y, v)] � t on G� (�1, 1):

8>>>>>>><
>>>>>>>:

(3:42)
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If we apply the inverse Fourier transform F�1 to (3.41) and (3.42), we obtain

h @Qm
@t ðx, y, tÞ ¼ �K�1

m ðx, yÞQmðx, y, tÞ þ m�DyQT
mðx, y, tÞ

þ dðtÞI � (ryhmðx, y, tÞ)T in Vm � ½0, T�,
ry �Qm(x, y, t) ¼ 0 in Vm � ½0, T�,
QT

m(x, y, t)n ¼ 0 on G� ½0, T�,
QT

m(x, y, t)t ¼ �
ffiffiffiffiffi
Km

p
a [ryQT

m(x, y, t)n]t on G� ½0, T�,
Qm(x, y, 0) ¼ 0 in Vm,

8>>>>>>><
>>>>>>>:

(3:43)

and

h
@~qm
@t ðx, y, tÞ ¼ �K�1

m ðx, yÞ~qmðx, y, tÞ þ m�Dy~qmðx, y, tÞ
� ry

~hmðx, y, tÞ þ bð0Þm ðx, y, tÞ in Vm � ½0, T�,
ry � ~qm(x, y, t) ¼ 0 in Vm � ½0, T�,
~qm(x, y, t) � n ¼ 0 on G� ½0, T�,
~qm(x, y, t) � t ¼ �

ffiffiffiffiffi
Km

p
a [(n � ry)~qm(x, y, t)] � t on G� ½0, T�,

~qm(x, y, 0) ¼ v(0)m,0(x, y) in Vm:

8>>>>>>>><
>>>>>>>>:

(3:44)

We note that system (3.44) gives a null result if the initial condition vð0Þm,0ðx, yÞ and the multiscale force bm
are both zero.

For system (3.43), we define the quantities

�hmðx, y, tÞ ¼
ðt
�e2

hmðx, y, sÞds and �Qmðx, y, tÞ ¼
ðt
�e2

Qmðx, y, sÞds, ð3:45Þ

where e2 is a small number >0, so that

hmðx, y, tÞ ¼ @�hm
@t

ðx, y, tÞ, Qmðx, y, tÞ ¼
@ �Qm

@t
ðx, y, tÞ; ð3:46Þ

substituting these equations into (3.43) and integrating over time, we have

h @ �Qm
@t ðx, y, tÞ ¼ �K�1

m ðx, yÞ�Qmðx, y, tÞ
þ m�Dy �Qmðx, y, tÞ þ I � (ry

�hmðx, y, tÞ)T in Vm � ½0, T�,
ry � �Qm(x, y, t) ¼ 0 in Vm � [0, T],
�QT
m(x, y, t)n ¼ 0 on G� ½0, T�,

�QT
m(x, y, t)t ¼ �

ffiffiffiffiffi
Km

p
a [(ry �Q

T
m(x, y, t))n]t on G� ½0, T�,

�Qm(x, y, 0) ¼ 0 in Vm:

8>>>>>>>><
>>>>>>>>:

(3:47)

Applying the inverse Fourier transform F�1 to the ansatz (3.39)–(3.40), we obtain

vð0Þm ðx, y, tÞ ¼ �F�1½Q̂mðx, y, vÞrx p̂ð0Þm ðx, vÞ� þ ~qmðx, y, tÞ

¼ �
ðt
0

@ �Qm

@t
ðx, y, t� sÞrxpð0Þm ðx, sÞdsþ ~qmðx, y, tÞ,

ð3:48Þ

which is in the form of a Darcy equation with memory effects [8,26,27].
By the same computations, we obtain

pð1Þm ðx, y, tÞ ¼ �
ðt
0

@�hTm
@t

ðx, y, t� sÞrxpð0Þm ðx, sÞdsþ ~hmðx, y, tÞ: ð3:49Þ

Moreover, we need that h�hmðx, y, tÞiVm
¼ 0 and h~hmðx, y, tÞiVm

¼ 0 to ensure the uniqueness of the
solution, where h�iVm

is the average operator defined in (3.31).

4. Derivation of the macroscopic model
We now apply the average operator (3.31)–(3.48)

hvð0Þm ðx, y, tÞiVm
¼ �

ðt
0

@ �Qm

@t
ðx, y, t� sÞ


 �
Vm

rxpð0Þm ðx, sÞdsþ h~qmðx, y, tÞiVm
,

where �Qm and ~qm are computed by problems (3.47) and (3.44), respectively.
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Applying the average operator (3.31) to equation (3.22), we obtain (using the macroscopic uniformity)

rx � hvð0Þm ðx, y, tÞiVm
þ hry � vð1Þm ðx, y, tÞiVm

¼ 0, ð4:1Þ
where, by the divergence theorem and the interface conditions (3.23), we have, for the phase Ωm

hry � vð1Þm ðx, y, tÞiVm
¼ 1

jVmj
ð
Vm

ry � vð1Þm ðx, y, tÞdy ¼
�LpS
jVmj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ], ð4:2Þ

and hence

rx � hvð0Þm ðx, y, tÞiVm
¼ �

�LpS
jVmj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ]: ð4:3Þ

For the Darcy problem on the phaseΩv, applying the average operator (3.31) to equation (3.32), we obtain

hvð0Þv ðx, y, tÞiVv
¼ �hKvðx, yÞ þ Kvðx, yÞðryhvðx, y, tÞÞTiVv

rxpð0Þv ðx, tÞ
� hKvðx, yÞry

~hvðx, y, tÞiVv
þ hKvðx, yÞbð0Þv ðx, y, tÞiVv

: ð4:4Þ

We apply the average operator and the divergence theorem to equation (3.20) and, following the same
computations as before, we obtain

rx � hvð0Þv ðx, y, tÞiVv
þ hry � vð1Þv ðx, y, tÞiVv

¼ 0, ð4:5Þ

and using the divergence theorem and the interface conditions (3.23)

hry � vð1Þv ðx, y, tÞiVv
¼ 1

jVvj
ð
Vv

ry � vð1Þv ðx, y, tÞdy ¼ �
�LpS
jVvj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ], ð4:6Þ

where we used the fact that nv =−n; hence

rx � hvð0Þv ðx, y, tÞiVv
¼

�LpS
jVvj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ]: ð4:7Þ

The total coarse velocity uC is

uC ¼jVmjhvð0Þm ðx, y, tÞiVm
þ jVvjhvð0Þv ðx, y, tÞiVv

¼ �jVmj
ðt
0
h@

�Qm

@t
ðx, y, t� sÞiVm

rxpð0Þm ðx, sÞdsþ jVmjh~qmðx, y, tÞiVm

� jVvjhKvðx, yÞ þ Kvðx, yÞðryhvðx, yÞÞTiVv
rxpð0Þv ðxÞ

� jVvjhKvðx, yÞry
~hvðx, yÞiVv

þ jVvjhKvðx, yÞbð0Þv ðx, yÞiVv
: ð4:8Þ

Substituting (4.1) into equation (4.3) and (4.4) into equation (4.7), we obtain

rx �
ðt
0

@ �Q
@t

ðx, y, t� sÞ

 �

Vm

rxpð0Þm ðx, sÞds
 !

¼ rx � h~qmðx, y, tÞiVm

þ
�LpS
jVmj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ] ð4:9Þ

and

rx � hKvðx, yÞ þ Kvðx, yÞðryhvðx, y, tÞÞTiVv
rxpð0Þv ðx, tÞ

� 	
¼ �rx � hKvðx, yÞry

~hvðx, y, tÞiVv

þrx � hKvðx, yÞbð0Þv ðx, y, tÞiVv
�

�LpS
jVmj [p

ð0Þ
m ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ]: ð4:10Þ

Equation (4.11) is the well-known diffusion problem related to the Darcy equation, where we can find
additional terms that are related to the fluid exchange between phases and the multiscale forces [1,24].
When the multiscale force bv is zero, the unique solution ~hvðx, y, tÞ of the system (3.30) is zero, and in
this case, equation (4.11) becomes the Darcy equation with fluid exchange between phases as derived
and solved in [2,3,68]. On the other hand, equation (4.10) is the Darcy equation diffusion problem
with memory effect, with additional terms related to the multiscale forces [24], the fluid exchange
between phases and the multiscale initial condition. We note that if the multiscale force bm and the
initial condition vm,0 are both zeros, the unique solution ~qm of the system (3.44) is zero. Taking into
account the time dependence of the problem, we obtain a very different model from the previous one
[1–3,24,68]. However, even when ignoring the contributions related to the external volume loads and
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the initial condition, the final model that we have obtained differs from the one in [8,26] due to the
coupling and the fluid exchange between the Darcy equation with memory effect and the classical
Darcy equation and due to the Darcy–Brinkman type cell problem which needs to be solved to
compute the hydraulic conductivity h@ �Q=@tiVm

for the matrix compartment Ωm.
Now we dimensionalize equations (4.1), (4.3), (4.4) and (4.7). We write the equations in dimensional

form because, with regard to their application to the lymph node, this makes it easier to interpret the
results and compare them with other studies on the same topic. We have

jVmj ¼ jVtot
m j
jVj , jVvj ¼ jVtot

v j
jVj and S ¼ Stotd

jVj , ð4:11Þ

where |Ω| is the lymph node total volume, jVtot
m j is the phase m total volume, jVtot

v j is the phase v total
volume and Stot is the total vessel surface. Hence equations (4.1), (4.4), (4.5) and (4.8) are (in dimensional form)

hvð0Þm ðx, y, tÞiVm
¼ � d2

m

ðt
0

@ �Q
@t

ðx, y, t� sÞ

 �

Vm

rxpð0Þm ðx, sÞds

þUh~qm,1ðx, y, tÞiVm
þUh~qm,2ðx, y, tÞiVm

,
ð4:12Þ

rx � hvð0Þm ðx, y, tÞiVm
¼ � LpStot

jVtot
m j

[pð0Þm ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ], ð4:13Þ

hvð0Þv ðx, y, tÞiVv
¼ � d2

m
hKvðx, yÞ þ Kvðx, yÞðryhvðx, y, tÞÞTiVv

rxpð0Þv ðx, tÞ

�UhKvðx, yÞry
~hvðx, y, tÞiVv

þUhKvðx, yÞbð0Þv ðx, y, tÞiVv
ð4:14Þ

and rx � hvð0Þv ðx, y, tÞiVv
¼ LpStot

jVtot
v j

[pð0Þm ðx, tÞ � pð0Þv ðx, tÞ � �pðtÞ]: ð4:15Þ

5. Explicit solution
In this section, we explicitly solve the problems given in §4.

For simplicity, we suppose vm,0 = 0, bm = 0, bv = 0; hence the unique solution of problems (3.30) and
(3.44) is zero. Moreover, we assume the isotropy of both the porous media, which means

�Kv ¼ �KvI, �Km ¼ �KmðtÞI, ð5:1Þ
where �Kv and �KmðtÞ correspond to d2=mhKv þ KvðryhvÞTiVv

and d2=mhQmðy, tÞiVm
, respectively. We have

that �Kv is constant in space due to the geometry and the hypotheses used, and it is found solving the cell
problem (3.29) using COMSOL Multiphysics (see §6 for more details about the numerical simulations of
the cell problem). We have that the dimensional value for the vessel hydraulic conductivity Kvd

2/μ is
computed using the Kozeny–Carman formula, i.e. ð1=c0ÞðjVtot

v j=StotÞ2; see table 1 and [1, appendix B]
for more details. For phase m, due to the memory term that appears in equation (4.1), it is better to
work in the frequency domain to find an explicit solution. Hence, applying the average operator (3.31)
to the ansatz (3.40), we have in dimensional form

hv̂ð0Þm ðx, y, vÞiVm
¼ � �̂KmðvÞrx p̂ð0Þm ðx, vÞ ¼ � d2

m
hQ̂mðy, vÞiVm

rx p̂ð0Þm ðx, vÞ: ð5:2Þ

We find Q̂mðy, vÞ by solving the cell problem (3.41) using COMSOL Multiphysics, with α = 1 (see §6 for
more information about the numerical simulations of the cell problem and figure 2 for the results).

As we are working in the frequency domain, we apply the Fourier transform (3.34) to (4.9)–(4.9). We
consider a spherical domain Ω with radius R, denoting by r the radial coordinate, θ the polar coordinate
and ϕ the azimuthal angle. Moreover, we assume axisymmetry with respect to the azimuthal angle ϕ.
Hence, we obtain the following problem:

D p̂ð0Þv ðr, u, vÞ ¼ �Mv[ p̂
ð0Þ
m ðr, u, vÞ � p̂ð0Þv ðr, u, vÞ � �pðvÞ] r , R, u [ ½0, 2p½, v [ (�1, 1),

D p̂ð0Þm ðr, u, vÞ ¼ MmðvÞ[ p̂ð0Þm ðr, u, vÞ � p̂ð0Þv ðr, u, vÞ � �pðvÞ] r , R, u [ ½0, 2p½, v [ (�1, 1),
p̂ð0Þv ðR, u, vÞ ¼ �̂pvðu, vÞ, p̂ð0Þm ðR, u, vÞ ¼ �̂pmðu, vÞ u [ ½0, 2p½, v [ (�1, 1),
non-degeneracy r ¼ 0, u [ ½0, 2p½, v [ (�1, 1),

8>>><
>>>:

ð5:3Þ

where R is the sphere radius,Mv ¼ LpStot=jVtot
v j�Kv,MmðvÞ ¼ LpStot=jVtot

m j �̂KmðvÞ, and �̂pv and �̂pm are the
Fourier transforms of the given boundary condition.
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Following the computations presented in [1, appendix A], we obtain the following solutions (see
[1, appendix A]):

p̂ð0Þm ðr, z, vÞ ¼
X1
n¼0

cðnÞ1 ðvÞrn þMmðvÞ~AnðvÞ
MðvÞ

1ffiffi
r

p Inþð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ

p
r

� 	" #
PnðzÞ ð5:4Þ
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Figure 2. The Fourier transform of the dimensional average hydraulic conductivity in mm3 s mg�1 calculated numerically with
physiological values of the lymph node (table 1).

Table 1. Physiological and estimated parameters; see [1, appendix] for more details.

name physiological range/value description

R 0.49 mm LC radius [39,59]

μ 1 mg mm�1 s�1 viscosity [36,37]

ϕ 0.75 porosity [55]

μe
m
f effective viscosity [10,70–72]

ρ0 1 mg mm�3 density [36,37]

K̂m 3.84 × 10−9 mm2 interstitial permeability [46,55]

σ 0.88–0.9 Staverman’s coefficient [47,53,54,57]

πv− πm 3.41 × 105–2.08 × 106 mPa osmotic pressure difference [47,53,54,57,73–76]

Lp 5:475� 10�12–3:67� 10�8 mm s�1 mPa�1 hydraulic conductivity of the blood vessel walls

[47,53,54,57]

�pv 6.67 × 105–1.066 × 106 mPa mean blood vessel pressure [47,53,54,57]

Stot 13.4 mm2 surface of the blood vessels [48,49]

jVtot
v j 0.0322 mm3 volume of the blood vessel [48]

N 1310 cell number [1, appendix B]

rc 1.7 × 10−3 mm cylinders radius (microscale) [1, appendix B]

d 2 × 10−2 mm cylinder mean distance (microscale)

[1, appendix B]

L 1 mm characteristic length (macroscale)

Kv (d
2/μ) 1:1� 10�6 mm3 s mg�1 blood vessels hydraulic conductivity, calculated

using the Kozeny–Carman formula [1,77,78]

bm, bv 0 body forces
�̂Km figure 2 macroscopic interstitial hydraulic conductivity

(solving system (3.41))
�Kv 4:12� 10�7 mm3 s mg�1 macroscopic blood hydraulic conductivity

(solving system (3.29))
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and

p̂ð0Þv ðr, z, vÞ ¼
X1
n¼0

dðnÞ1 ðvÞrn �Mv ~AnðvÞ
MðvÞ

1ffiffi
r

p Inþð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ

p
r

� 	" #
PnðzÞ, ð5:5Þ

where z ¼ cos u, M(ω) =Mv +Mm(ω), In is the modified Bessel function of the first kind of order n, Pn is
the Legendre polynomial of the first kind of order n, and (the following relations are obtained from
[1, appendix A])

~A0ðvÞ ¼ [bð0ÞðvÞ � �pðvÞ] ffiffiffiffi
R

p

Ið1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞp

R
� � for n ¼ 0, ~AnðvÞ ¼ bðnÞðvÞ ffiffiffiffi

R
p

Inþð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞp

R
� � for n � 1, ð5:6Þ

cðnÞ1 ðvÞ ¼
bðnÞm ðvÞ � ðMmðvÞ~AnðvÞ=MðvÞ ffiffiffiffi

R
p ÞInþð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞp

R
� �h i

Rn , ð5:7Þ

dðnÞ1 ðvÞ ¼
bðnÞv ðvÞ þ ðMv ~AnðvÞ=MðvÞ ffiffiffiffi

R
p ÞInþð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞp

R
� �h i

Rn , ð5:8Þ

bðnÞðvÞ ¼ 1
2
ð2nþ 1Þ

ð1
�1

[ �̂pmðz, vÞ � �̂pvðz, vÞ]PnðzÞdz ð5:9Þ

and bðnÞm ðvÞ ¼ 1
2
(2nþ 1)

ð1
�1

�̂pmðz, vÞPnðzÞdz, bðnÞv ðvÞ ¼ 1
2
(2nþ 1)

ð1
�1

�̂pvðz, vÞPnðzÞdz: ð5:10Þ

Hence, we have, applying the inverse Fourier transform F�1 to (5.4) and (5.5)

pð0Þm ðr, z, tÞ ¼
X1
n¼0

F�1 cðnÞ1 ðvÞrn þMmðvÞ~AnðvÞ
MðvÞ

1ffiffi
r

p Inþð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ

p
r

� 	" #
PnðzÞ ð5:11Þ

and

pð0Þv ðr, z, tÞ ¼
X1
n¼0

F�1 dðnÞ1 ðvÞrn �Mv ~AnðvÞ
MðvÞ

1ffiffi
r

p Inþð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
MðvÞ

p
r

� 	" #
PnðzÞ: ð5:12Þ

6. Cell problem numerical simulations
In this section, we discuss the numerical simulations used to find the solutions of the cell problems (3.29),
(3.30), (3.41) and (3.42). We can see the geometry of the cell problems using the lymph node physiological
data found in [1, appendix B] and summarized in table 1 in figure 1.

As we mentioned in §5, we suppose um,0 = 0, fm = 0, fv = 0, which means that the solutions of the
problems (3.30) and (3.42) are zeros. Moreover, we suppose that both porous media are isotropic,
which means

�Kv ¼ �KvI ¼ d2

m
hKv þ Kv(ryhv)TiVv

I and �̂KmðvÞ ¼ �̂KmðvÞI ¼ d2

m
hQ̂mðy, vÞiVm

I: ð6:1Þ

For the solution of the cell problem in the phase Ωv, we refer to [1, appendix C]. For the phase Ωm, we
solve the problem (3.41) with α = 1 using the steady Brinkman equation module in COMSOL
Multiphysics. We use the PARDISO solver and the P3

2 � P1 finite-element discretization for the
velocity and the pressure, respectively. Moreover, we perform a parametric sweep analysis varying ω
to obtain the solution for different frequencies. After that, we apply the average operator to obtain
hQ̂mðy, vÞiVm

. We obtain the dimensional hydraulic conductivity �̂KmðvÞ shown in figure 2.
If we take the values of the permeability hQ̂mðy, vÞiVm

and we perform an inverse Fourier transform
(with the MATLAB built-in command ifft), we find the dimensional average hydraulic conductivity shown
in figure 3. As expected, we have a permeability that decreases in time [8]. The decreasing imaginary part
of hQ̂mðy, vÞiVm

in figure 2 is connected to the decrease in time of the permeability (due to the memory
effect of the macroscopic Darcy’s Law). If we compare the ifft result with the solution of the cell problem
(3.45), we have a maximum relative error of 0.188%. Moreover, we have that the real part of the
permeability is similar to the one found in the steady case in [1]. We believe these values to be
realistic because, at time zero, we have the same permeability values we found in the steady
setting [1]. Additionally, as time increases, the permeability tends to zero very fast, reflecting its
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diminishing influence on the flow dynamics at the time we are studying our flow, a characteristic
commonly observed in memory-type equations [8].

To study in more detail the mesh of the previous solution, we perform an adaptive mesh refinement
study. After this process, we compare the two �̂KmðvÞ that we found, and we obtain, for all the values of ω,
a maximum relative error of 0.06%.

To test the Brinkman equation module in Comsol with complex numbers, we run some simulations in
a cylindrical geometry and we compare the solution to the following explicit solution (found in [1]):

WDB
33,vðrÞ ¼ K� 1� J0 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=m�K�Þp
r

� �
J0 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=m�K�Þp
r̂c

� �
" #

, WDB
31,v ¼ WDB

32,v ¼ 0:

Taking the average, we obtain

hWDB
33,viVv

¼ 2plc
jVcylj

K� r̂2c
2
þ i

ffiffiffiffiffiffiffiffiffiffiffi
m�K�p

r̂c
J1 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=m�K�Þp
r̂c

� �
J0 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=m�K�Þp
r̂c

� �
" #

, ð6:2Þ

where lc is the cylinder length, Ωcyl is the cylinder volume, K� is the permeability, r̂c is the cylinder radius,
μ� is the viscosity, J0 and J1 are the Bessel functions of the first and second kind, respectively. We run the
numerical simulations and compare the solution to the explicit one (6.2) with the following (non-
dimensional) data: lc = 1, r̂c = 7.7 × 10−3, K� = 6.66 × 10−6 + i, 6.66 × 10−6 + 10i, 6.66 × 10−6 + 100i, μ� = 1.
We found that the maximum relative error between the numerical and the explicit solution is 0.67%
for the real part and 1.9% for the imaginary part.

7. Study of the fluid flow in a lymph node
In this section, we study the fluid flow inside the lymph node using the model results obtained in the
previous sections of this work. In particular, we use the explicit solution of §5 applied to the porous
region of the node (the LC) because all the lymph node vascularization is situated in this region
[47–49]. Moreover, we assume that the lymph node has a spherical shape, and we use physiological
lymph node data inspired by a mouse popliteal lymph node [1,47,59]. The explicit solution of §5 is
implemented in MATLAB. To compute the inverse Fourier transform, we use the MATLAB built-in
command ifft, that is, the inverse fast Fourier transform.

We have that Ωv and Ωm are the portions of the domain that represent the blood vessels and the FRC
network, respectively. Choosing �pðtÞ ¼ sðpmðtÞ � pvðtÞÞ, we describe the fluid exchange between the
phases mentioned above using the well-known Starling equation [62,63]. Moreover, all the physiological
data used are summarized in table 1, and the meaning of these data is explained in [1, appendix B].
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Figure 3. The inverse Fourier transform of the dimensional average hydraulic conductivity in mm3 s mg�1 calculated numerically
using the command ifft to the solution plot in figure 2 with physiological values of the lymph node (table 1).
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As we can see from the previous sections, here the hydraulic conductivity of the phase Ωm depends
on time due to the memory term in the Darcy equation (4.1). This is very different from the previous
works on the lymph node [1,47,53,54,57–59], as it allows for a comprehensive analysis of the lymph’s
time behaviour through a rigorous homogenization method.

Using physiological data obtained from the literature on the lymph node, we find that the parameter
that governs the time dependency of our problem is η≈ 0.1, in line with the Womersley number found in
the lymphatic system [36].

At the boundary, we have the following boundary conditions:

pmðR, z, tÞ ¼ �pmðz, tÞ and pvðR, z, tÞ ¼ �pv,

where �pmðz, tÞ is a general function in ζ and t, and �pv is the mean of the blood vessel pressure data (in
general constant).

As we mentioned in [1], the variation with respect to z ¼ cos u of the boundary condition �pm
is essential to mimic the pressure distribution in the SCS. The precise pressure distribution of
the SCS is not well known so, to circumvent this lack of data in the literature and inspired by [45],
we take a linear relation between the pressure and z ¼ cos u. This linear relation connects the
maximum value of the pressure �pm,max ¼ 3:9mmHg 	 5:2� 105 mPa with the minimum value of
�pm,min ¼ 3mmHg 	 4� 105 mPa, taken from the numerical results of [47]. Moreover, to describe the
pulsatile inflow, we take a pressure distribution that varies over time in the following way:

�pmðz, tÞ ¼ �pm,min þ
1
2
(1� cosðptÞ) zþ 1

2
ð�pm,max � �pm,minÞ: ð7:1Þ

We can see the behaviour of the boundary condition (7.1) with respect to ζ at different times in figure 4.
We use the following physiological parameters: σ = 0.88, πv− πm = 1.02 × 106 mPa,

Lp ¼ 5:475� 10�10 mms�1 mPa�1 and �pv ¼ 6:66� 105. We can see the behaviour of the interstitial
pressure pm over time in figure 5. As we can see, the minimum of the interstitial pressure pm increases
and moves from the centre of the node to the lower part of the node. This is due to the fact that, as
time passes, the boundary pressure distribution (7.1) remains linear but the maximum of the pressure
increases, and this effect combines with the effect of the fluid exchange between phases. This
phenomenon highlights the importance of the time dependency of the flow inside the node. We note
that the Darcy equation linearly relates the fluid discharge to the pressure gradient, so the lymph
moves accordingly to the pressure, which means that a sink term is represented by a lower pressure
region in the node.

As expected and in accordance with [1], increasing Lp results in a decrease of pm and an increase of pv
at the centre of the node. We can see this behaviour of the interstitial pressure pm in the contour plot of
figure 6 at time t = 1 s. As we can see, the results are in line with the steady one [1], which means that the
increase of Lp decreases and moves the minimum of pm towards the centre of the node.
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Figure 4. The pressure distribution in mPa of equation (7.1) calculated at different times (in seconds).
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In figures 7 and 8, one can see the behaviour of the interstitial pressure pm and the blood vessel
pressure pv for some values of �pv at time t = 1 s. When �pv increases, we have the opposite behaviour
of the one found for Lp: the minimum value of the interstitial pressure pm moves towards the lower
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Figure 5. The variation of the interstitial pressure pm (in mPa) with respect to time (in seconds), with the parameters in table 1 and
πv− πm = 1.02 × 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1, �pv ¼ 6:66� 105 mPa and the boundary conditions (7.1).
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Figure 6. The variation of the interstitial pressure pm (in mPa) varying Lp (in mm s−1 mPa−1) at time t = 1 s, with the parameters
in table 1, πv− πm = 1.02 × 106 mPa, �pv ¼ 6:66� 105 mPa and the boundary conditions (7.1).
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part of the node and the fluid exchange between the two phases decreases (because the minimum of pm
increases); on the contrary, the maximum of the blood vessel pressure pv increases. We have an inversion
of the flow direction for every t at �pv 	 1:4mPa 	 10:5mmHg, which is the same value found in [47] and
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Figure 7. The variation of the interstitial pressure pm (in mPa) varying the mean blood vessel pressure �pv (in mPa) at time t = 1 s, with
the parameters in table 1, πv− πm = 1.02 × 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1 and the boundary conditions (7.1).
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Figure 8. The variation of the blood vessel pressure pv (in mPa) for some values of the mean blood vessel pressure �pv (in mPa) at
time t = 1 s, with the parameters in table 1, πv− πm = 1.02 × 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1 and the boundary
conditions (7.1).
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in [1]; from this value to higher values of �pv, the maximum of pm starts to move towards the centre of the
node. This behaviour is in accordancewith the findings in [1].Moreover, we can have flow inversion for only
certain values of the time; for instance, we can see figure 9, where we plot the blood vessel pressure pv at
different times with �pv ¼ 1:35� 106 mPa. For the initial times, we have a flow inversion, which means
that the fluid moves from phase Ωv to phase Ωm, resulting in a region of minimum pressure at the centre
of the node for pv. As time passes, the boundary condition (7.1) increases the pressure in the upper
region of the lymph node (near θ = 0), and this results in a region of higher pressure zone near θ = 0 and
the region of lower pressure zone moves near θ = π.

Increasing Δπ means an increase in the concentration difference between the blood vessels and the
FRC phase, and this results in a decrease of the minimum of pm and moves it to the centre of the
node, and an increase of the maximum of pv. We can see a contour plot of pm at t = 1 s varying Δπ in
figure 10.

From the fact that the boundary condition �pmðz, tÞ can be chosen as we want, we solve our explicit
solution using the solution we found in our previous paper [59] using the stream function approach. We
refer to [59] for more details about the computations and the data of this pressure distribution; this
solution is calculated in a div-free setting, where we fix �pmðR2, � 1Þ ¼ 6:18� 105 mPa and with a time
pulsation of the form ð1� cosðptÞÞ=2. In figure 11, we can see the boundary pressure distribution. The
fast increment near ζ = 1 represents the inlet condition, and the fast decrement near ζ =−1 represents the
outlet condition. In figures 12 and 13, we can see the pressure and the velocity distribution over time
using the parameters �pv ¼ 1:06� 106 mPa, πv− πm = 1.02 × 106 mPa, Lp = 5.475 × 10−11 mm s−1 mPa−1,
and the above-mentioned boundary pressure. As we can see, for initial times, we have a similar
pressure distribution to that we found in the previous case but, as time passes, it becomes more evident
the higher pressure near the inlet and the lower pressure near the outlet. We can see this behaviour for
the velocity magnitude too, where at t = 1 s, we can see a higher difference between the inlet–outlet
velocity and the velocity at the centre of the node.

Moreover, we have that the velocities that we found inside the LC are in agreement with the literature
[47,55,79–81]. We found a higher velocity (at time t = 1 s) with respect to the steady case [1]; moreover, we
have that the pressure change (at time t = 1 s) between the upper region (near the inlet condition) and the
lower region (near the outlet condition) is higher here too.

Finally, we have performed a parameter sensitivity analysis and found that on varying the average
hydraulic conductivity, the resulting pressure (interstitial and blood pressure) exhibits only a relatively
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Figure 9. The variation of the blood vessel pressure distribution pv (in mPa) with respect to time (in seconds), with the parameters in
table 1, πv− πm = 1.02 × 106 mPa, �pv ¼ 1:35� 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1 and the boundary conditions (7.1).
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small variation. In particular, a variation of 1, 2, and 5% of the average hydraulic conductivity
corresponds to the relative variations of the interstitial pressure of 0.012, 0.0238 and 0.0578%.

8. Conclusion
In this paper, we use the asymptotic homogenization technique in a time-dependent setting, starting
from the equations and interface conditions (2.1), (2.2), (2.4), assuming both local periodicity and
macroscopic uniformity.
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Figure 10. The variation of the interstitial pressure pm (in mPa) varying Δπ (in mPa), with the parameters in table 1,
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This model is a non-trivial extension of our previous model [1]; here, we have considered a time-
dependent Darcy–Brinkman equation, which results in a Darcy equation with memory at the
macroscale for the phase Ωm. The time dependency is considered for the pulsation behaviour of
the lymph [36,37,61,82] and allows us to study the fluid behaviour inside the lymph node in more
detail [39,40,59]. With lymph node physiological data, the characteristic time is η≈ 0.1: this is in
agreement with the Womersley number found for the lymphatic system [36].

This model has been designed to be applied to the flow of lymph within the lymph node, but the
derivation of the model has been intentionally kept as general as possible to be applicable to other
problems as well.

After the derivation of the macroscopic equations that described the time-dependent fluid flow (§4),
in §5, we have found the explicit solution of the proposed model in a spherical domain, using the
computations of the solution that we found in [1] and the properties of the Fourier transform.
Subsequently, we have studied the fluid and pressure distribution within the lymph node using the
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above-mentioned explicit solution and physiological data inspired by an idealized spherical mouse
popliteal lymph node. Incorporating the temporal component into the proposed model has allowed us
to study how lymph pulsations influence these quantities within a lymph node. Regarding this
multiscale formulation, our primary focus has been directed towards the porous region of the lymph
node (the LC). Moreover, we have placed particular emphasis on studying the fluid exchange that
occurs between the interstitial space of the lymph node and the blood vessels, which are exclusively
present in this specific part of the node [47–49]. We have analysed how various parameters influence
fluid absorption and pressure (i.e. velocity) over time, and the obtained results align with findings
documented in the literature [1,47,73–75,83].

Let us now explore considerations that could enhance the model in the future. In this work, we solely
focused on the LC, but it would be interesting to couple this model with the fluid flow in the SCS to
describe the fluid flow in the entire lymph node.

The Beavers–Joseph–Saffman interface condition (2.4) used in this work is initially established in a
two-dimensional setting, and expanding it to three dimensions presents a significant and complex
challenge [2,84–88]. Moreover, it would be interesting to study how the physico-chemical properties of
the interface affect the solution [67].

When we applied our model to the lymph node, we assumed negligible forces to simplify our model
and due to a lack of data regarding them in the literature. However, it is important to note that in
practical situations, such forces can play a significant role, especially when using electromagnetic
fields, as seen in [89,90] within the context of cancer hyperthermia. Hence, when we have access to
physiological data, it becomes crucial to account for the impact of inhomogeneous volume loads, as
discussed in [24]. We can say the same for the velocity initial condition, which we have assumed to
be zero. In general, we can have more general fluid behaviour as an initial condition, in particular in
drug delivery applications [25].

In our model, we have taken into account the time variation of the concentration of protein inside the
node, but we have supposed it to be constant due to a lack of precise data. Incorporating the temporal
and spatial behaviour of protein concentration, as discussed in [3], and together with physiological data,
would be a compelling and valuable direction to explore.

In this work, we have assumed a rigid porous matrix to keep the model as simple as possible and due
to the lack of biological data regarding this problem; a possible extension of this model is to take into
account a deformable matrix that interacts with the lymph flow inside the node, for example by
considering the modelling framework developed in [91,92].

Finally, due to our explicit analysis, we assumed a spherical lymph node. In general, lymph
nodes have a more complex geometry, typically an ellipsoid shape [47,53,54]. If we can access
more realistic data regarding their shape through medical imaging [53,54], our model could be
used for more realistic numerical simulations to make physiologically meaningful predictions in
the future.
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