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Abstract. The aim of the paper is to propose a mathematical model for
the flow of the interstitial fluid in a lymph node, which main feature is the

presence of a porous bulk region with a very low permeability, surrounded by

a thin channel where the fluid can flow freely. The flow is driven by a pulsatile
pressure gradient. An explicit solution is found in the case of a laminar flow

in a simplified situation, while some finite element simulations are presented

in a more realistic geometry.

1. Introduction

A large part of the biomathematical literature is devoted to model the circulatory
system (see for instance the review [14] and references therein). However, the focus
is almost always on the circulation of blood, while the lymphatic system received
much less attention: suffice it to say that [15], one of the first mathematical models
of the lymphatic vessels, was published only in 1975. This can be due to the
fact that the lymph flows in a non-closed system, consisting of organs, vessels and
diverse tissues, making the system very complicated to model.

The primary function of the lymphatic system is to transport excess interstitial
fluid from the interstitial space back to the blood circulation, via the thoracic
duct. Interstitial fluid (called lymph once inside the lymphatic system) is mainly
composed of water which contains sugars, salts, fatty acids, amino acids, coenzymes,
hormones, neurotransmitters, white blood cells and cell waste products (it accounts
for 26% of the water in the human body). Along with the excess interstitial fluid,
excess proteins and waste are transported back to the circulation. The lymphatic
system is composed of a network of vessels, capillaries and organs. For a more
complete introduction to the lymphatic system, the reader is referred to these
reviews [11, 13, 10]. The lymphatic system is an integral part of the immune system
thanks to the lymph nodes: they are organs scattered all across the lymphatic
network and their function is to filter the lymph and break down bacteria, viruses,
and waste. In a nutshell, the two important parts from a fluid dynamic point of
view are the lymphoid compartment and its exterior, the subcapsular sinus. The
lymphoid compartment is filled with a sponge-like tissue, called reticular meshwork,
where the lymph is filtered by macrophages [4]; indeed, certain molecules cannot
pass through the external surface and are destroyed by the lymphocytes which are in
the lymph nodes. The reticular meshwork contains elongated fibroblastic reticular
cells that form an interconnected network, called conduit system [17]; this network
contains tubules that are the only entry points for the fluid, forming a labyrinth-like
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structure. It seems natural to model such a tissue as a porous medium. On the
contrary, the part outside the lymphoid compartment (inside the subcapsular sinus)
is a non-porous body, and here the lymph is not filtered. Lymph nodes present a
relatively high resistance to flow; due to this, most of the lymph exits the node
from the efferent lymphatics without entering the lymphoid compartment [7, 10].

From a mathematical point of view, there are a lot of models that try to describe
the behavior of different cell processes and that use some data-driven and compu-
tational technique to describe the fibroblast reticular cells and the blood vessels
network organization inside the node [12, 18]; but, despite the importance of fluid
flow and the mechanics of the lymph node [1, 13, 6, 19], from a continuum mechan-
ics point of view the models are in their infancy [2, 3, 7, 5, 8] and are primarily
oriented to a physiological description instead of a more mechanical one. Hence the
aim of this paper is to propose a simple model of the circulation of lymphatic fluid
in a lymph node.

Our model is very idealized and is a starting point for more advanced studies
on the subject. To begin with, we assume that the lymph node is essentially
composed of two parts: a porous medium, modeling the lymphoid compartment,
characterized by a permeability constant K, surrounded by a thin channel in which
the lymph can flow freely. We describe the motion of the interstitial fluid within the
lymph node using the Darcy–Brinkman equation in the porous core and the Navier–
Stokes equation in the external channel. Differently from other studies present in
the literature [7, 3], here the motion is induced by a pulsatile gradient of pressure,
so that it has to be non-stationary. Being the lymph composed mainly of water, as
usual, we assume the incompressibility of the fluid.

2. Solving the problem in a very simplified geometry

As mentioned in the previous section, the geometry of a lymph node is very
complex. To begin with, we will assume a much more simplified geometry, so
that we can find an explicit expression for the solution even in the presence of a
pulsatile pressure gradient. More precisely, the lymph node is here represented by
a cylinder and it is permeated by an incompressible homogeneous Newtonian fluid.
The incompressibility constraint is motivated by the fact that the interstitial fluid
is essentially a water solvent.

The region r ∈ [0, R1] represents the lymphoid compartment (LC). For simplicity,
we assume that the boundaries do not perform any contraction. This assumption
is motivated by the fact that the contractions of the boundaries of the lymph node
have a very long period with respect to the pressure gradient [20].

We treat the part of the lymph inside the LC as a porous medium, describing the
flow by the Darcy–Brinkman equation, while outside the LC we use the Navier–
Stokes equation. Hence, the flow of the fluid in the absence of body forces is
governed by

(1) ρ0
∂v

∂t
+ ρ0(gradv)v = − grad p− µ

K
v + µ∆v

for r ∈ [0, R1] (inside the LC) and by

(2) ρ0
∂v

∂t
+ ρ0(gradv)v = − grad p+ µ∆v

for r ∈ (R1, R2] (outside the LC), together with the incompressibility constraint
div v = 0. Here ρ0 is the constant density of the lymph, µ the constant viscosity,
K the permeability of the LC and v and p are the velocity and the pressure field
of the lymph, respectively.



A MODEL OF THE PULSATILE FLUID FLOW IN THE LYMPH NODE 3

Thanks to the symmetry of this idealized problem, we look for a laminar velocity
field of the form

v = vz(r, t)ez,

where ez is the axis of the cylinder and r the radial coordinate. In particular, the
incompressibility constraint div v = 0 is automatically satisfied.

Notice that the laminarity assumption is quite restrictive, especially because
it prevents any flow of the fluid from the LC to the external region, and vice
versa. Such a flow, which can be very important, will be recovered in the numerical
simulations of 4.

As far as the boundary and initial conditions are concerned, we assume:

vz(R2, t) = 0 (no-slip condition),(3)

vz(0, t) bounded,(4)

vz ∈ C1 (smoothness condition),(5)

vz(r, 0) = vz0(r) (initial condition).(6)

Then, Eqs. (1)1 and (2)1 reduce to

(7)
∂vz
∂t
− ν 1

r

∂

∂r

(
r
∂vz
∂r

)
+ χ[0,R1]

ν

K
vz = g(t)

where we put − 1
ρ0

∂p
∂z = g(t) and ν = µ/ρ0, and the characteristic function of a set

A is defined as χA(x) = 1 if x ∈ A and χA(x) = 0 elsewhere.

Denoting with v
(1)
z the solution in [0, R1] and with v

(2)
z the solution in (R1, R2],

the smoothness condition (5) implies that, for every t:

v(1)z (R1, t) = v(2)z (R1, t),
∂v

(1)
z

∂r
(R1, t) =

∂v
(2)
z

∂r
(R1, t).

The problem writes as a linear PDE in the form

(8)
1

ν

∂vz
∂t

+ Lvz =
1

ν
g(t),

where

(9) Lu = −1

r

∂

∂r

(
r
∂u

∂r

)
+ χ[0,R1]

1

K
u

is a linear operator. Hence it is useful to characterize the eigenvalues (λk) and the
eigenfunctions (φk) of the operator L,

Lφk = λkφk,

where φk(r) has to be bounded as r → 0+, φk(r) and φ′k(r) continuous for r = R1,
and φk(R2) = 0, for all values of k.

2.1. Eigenvalues of the linear operator. It is easy to prove that the eigenvalues
λk are positive; however it is convenient to consider the two cases λk < 1/K and
λk ≥ 1/K. Since by a standard change of variables the equation Lφk = λkφk can
be put in the form of a Bessel equation with ν = 0, then the eigenfunctions can be
written as a linear combination of J0 and Y0, the Bessel functions of order 0 of the
first and second kind, respectively:

(10) φk(r) :=


ĀkJ0

(
r

√
λk −

1

K

)
+ B̄kY0

(
r

√
λk −

1

K

)
r ∈ [0, R1]

AkJ0

(
r
√
λk

)
+BkY0

(
r
√
λk

)
r ∈ (R1, R2].
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Notice that in the case λk < 1/K the argument of the Bessel functions in the first
case is imaginary, hence we can rewrite it as

ĀkI0

(
r

√
1

K
− λk

)
+ B̄kK0

(
r

√
1

K
− λk

)
r ∈ [0, R1],

by using the modified Bessel functions I0,K0.
Now we impose the boundedness at r = 0, the smoothness at r = R1 and the

vanishing boundary condition at r = R2. Since Y0 and K0 are unbounded in the
origin, we must impose B̄k = 0, obtaining the following linear system:

(11)



ĀkJ0

(
R1

√
λk −

1

K

)
−AkJ0

(
R1

√
λk

)
−BkY0

(
R1

√
λk

)
= 0

−Āk

√
λk −

1

K
J1

(
R1

√
λk −

1

K

)
+Ak

√
λkJ1

(
R1

√
λk

)
+Bk

√
λkY1

(
R1

√
λk

)
= 0

AkJ0

(
R2

√
λk

)
+BkY0

(
R2

√
λk

)
= 0

where we should replace J0, J1 with I0,−I1, respectively, in the case λk < 1/K. The
first two equations in (11) come from the smoothness at R1 and the last equation
from the boundary condition (and we used the fact that J ′0 = −J1, Y ′0 = −Y1 and
I ′0 = I1). Then the eigenvalues of the linear operator L defined in (9) can be found
imposing that the linear system (11) has nontrivial solutions, that is detA = 0,
where A is the 3× 3 matrix of the linear system in the unknowns Āk, Ak, Bk. One
can prove that there is an increasing unbounded sequence (λk) of simple zeros of the
equation. Then, for every eigenvalue λk one can solve the linear system (11), finding
the coefficients Āk, Ak, Bk and hence the corresponding eigenfunction φk (10), up
to a multiplicative factor.

2.2. Orthogonality of the eigenfunctions. By standard methods one can prove
that two eigenfunctions φk, φh defined in (10), corresponding to different eigenvalues
λk, λh, are orthogonal with respect to the weighted scalar product in L2 (keeping
in mind that r is the radial coordinate), namely:

λk 6= λh ⇒
∫ R2

0

rφk(r)φh(r) dr = 0.

Indeed, the two eigenfunctions satisfy the equations

r
∂2φj
∂r2

+
∂φj
∂r
− rχ[0,R1]

1

K
φj + rλjφj = 0, j = h, k.

Multiplying one equation by φh and the other by φk and taking the difference, we
get

∂

∂r

(
r
(
φh
∂φk
∂r
− φk

∂φh
∂r

))
= (λh − λk)rφkφh.

Integrating between 0 and R2 and keeping into account that φk(R2) = φh(R2) = 0,
we obtain

(λk − λh)

∫ R2

0

rφk(r)φh(r) dr = 0,
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which gives the orthogonality whenever λk 6= λh. Moreover, following [21, (10) p.
134] one can prove that∫ R2

0

rφ2k(r) dr =
R2

1

2Kλk

[
ĀkJ1

(
R1

√
λk −

1

K

)]2
+
R2

2

2

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]2
in case λk ≥ 1/K, and∫ R2

0

rφ2k(r) dr = − R2
1

2Kλk

[
ĀkI1

(
R1

√
1

K
− λk

)]2
+
R2

2

2

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]2
in case λk < 1/K. Dividing by the norm, it is not restrictive to assume that the
sequence of eigenfunctions is normalized, that is∫ R2

0

rφ2k(r) dr = 1.

2.3. Fourier coefficients and long-time behavior. In order to give an explicit
form of the solution of the PDE (8), let us introduce the Fourier coefficients

ck :=

∫ R2

0

rφk(r) dr,

∞∑
k=1

ckφk(r) = 1.

By using the formula (see [21, (1) p. 132])∫
rZ0(r) dr = rZ1(r), Z = J, Y, I

one can prove that

ck =
R1Āk

Kλk

√∣∣λk − 1
K

∣∣Z
(
R1

√∣∣∣λk − 1

K

∣∣∣)
+
R2√
λk

[
AkJ1

(
R2

√
λk

)
+BkY1

(
R2

√
λk

)]
where Z = J1 in case λk ≥ 1/K and Z = I1 in case λk < 1/K.

Taking the solution in the form

vz(r, t) =

∞∑
k=1

vk(t)φk(r),

we can rewrite (8) as

1

ν

∞∑
k=1

v′k(t)φk(r) +

∞∑
k=1

λkvk(t)φk(r) =
g(t)

ν

∞∑
k=1

ckφk(r).

Multiplying by rφk(r) and integrating on [0, R2], we find the sequence of ODEs

1

ν
v′k(t) + λkvk(t) =

ck
ν
g(t), k ≥ 1,

which can be easily solved:

vk(t) = e−νλkt

(
vk(0) + ck

∫ t

0

eνλkτg(τ) dτ

)
.
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Figure 1. The long-time behavior of the solution. The parame-
ters are given in 1.

The coefficients vk(0) can be computed by writing the Fourier coefficients of the
initial datum

vz(r, 0) = vz0(r), r ∈ [0, R2],

that is

vk(0) =

∫ R2

0

vz0(r)φk(r) dr,

∞∑
k=1

vk(0)φk(r) = vz0(r).

Since λk > 0, it is easy to see that for t→ +∞ one has

vk(t) ≈ e−νλktck

∫ t

0

eνλkτg(τ) dτ,

hence the long-time behavior of the solution does not depend on the initial datum.

As an example, let us consider a harmonic pulsatile pressure gradient of the form

(12)
∂p

∂z
= C +G cosωt, g(t) = − 1

ρ0
(C +G cosωt)

where C is the pressure drop of the basic flow and the constants G,ω determine the
pulsatility of the motion. Then one can explicitly compute the Fourier coefficients
for the long-time behavior:

vk(t) ≈ −Gνλkω sinωt+Gν2λ2k cosωt+ Cω2 + Cν2λ2k
νλkρ0(ω2 + ν2λ2k)

.

The long-time solution then behaves as

−
∞∑
k=1

Gνλkω sinωt+Gν2λ2k cosωt+ Cω2 + Cν2λ2k
νλkρ0(ω2 + ν2λ2k)

φk(r),

which is represented in 1. We used the first 40 eigenfunctions: by increasing that
number, the plot does not change appreciably. We can notice a periodic profile
with a period of 2 s.
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3. The explicit expression of the long-time solution

In this section, we give an explicit form of the long-time periodic solution of the
problem. Actually, we look for an explicit solution of (7) of the form

(13) vz(r, t) = vp(r) +Re
(
U(r)eiωt

)
,

where U(r) has to be determined and vp is the velocity of the Poiseuille part of the
flow.

We recall that the Poiseuille flow refers to the steady laminar solution of problem
(1)–(2). Hence we search a solution v = vp(r)ez of

(14) −ν 1

r

∂

∂r

(
r
∂vp
∂r

)
+ χ[0,R1]

ν

K
vp = − 1

ρ0
C,

where C is the pressure drop in z-direction.
After some calculations, we get

(15) vp(r) =


Re

(
−C
µ
K + c5J0(ξp)

)
r ∈ [0, R1],

Re

(
C

4µ
r2 + c6 log r + c7

)
r ∈ (R1, R2],

where J0 is the Bessel functions of order 0 of the first kind, ξp(r) = ir/
√
K and

c5, c6, c7 are obtained by the boundary conditions

vp(R2) = 0, vp(0) bounded, vp ∈ C1.

We now put (13) in (7) and simplify the exponential part, obtaining

U ′′(r) +
1

r
U ′(r)−

(
χ[0,R1]

1

K
+
iρ0ω

µ

)
U(r) =

G

µ
,

which is a second order ODE in the form of a Bessel equation. Hence, its solution
can be written in the form:

U(r) =


− GK

µ+ iρ0ωK
+ ĀJ0(ξK(r)) + B̄Y0(ξK(r)) r ∈ [0, R1],

iG

ωρ0
+AJ0(ξ(r)) +BY0(ξ(r)) r ∈ (R1, R2],

where J0 and Y0 are Bessel functions of the first and second kind and ξK , ξ are
complex variables related to the radius r:

(16) ξK(r) = i

√
1

K
+
iωρ0
µ

r, ξ(r) =
i− 1√

2

√
ωρ0
µ
r.

The constants Ā, B̄, A and B have to be determined using the boundary conditions.
From the no-slip condition (3), we have

U(R2) = 0 ⇒ iG

ωρ0
+AJ0(ξ(R2)) +BY0(ξ(R2)) = 0,

while the boundedness in r = 0 (4) gives B̄ = 0.
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Figure 2. Trend of the velocity when K varies at t = 1.2 s. The
values of the parameters not explicitly mentioned in the figure are
given in 1.

Finally, we impose condition (5) and after some calculations we get

Ξ =
ξ′K(r)

ξ′(r)
=

√
2

2
(1− i)

√
µ+ iKρ0ω

Kρ0ω
,

d =J0(ξ(R2))Y1(ξ(R1))− Y0(ξ(R2))J1(ξ(R1)),

f =J0(ξ(R2))Y0(ξ(R1))− Y0(ξ(R2))J0(ξ(R1)),

A =− iG

ωρ0

Y1(ξ(R1))

d
− ΞĀ

Y0(ξ(R2))J1(ξK(R1))

d
,

B =
iG

ωρ0

J1(ξ(R1))

d
+ ΞĀ

J0(ξ(R2))J1(ξK(R1))

d
,

Ā =
iG

ωρ0

−d+ Y1(ξ(R1))J0(ξ(R1))− J1(ξ(R1))Y0(ξ(R1))

ΞJ1(ξK(R1))f − J0(ξK(R1))d

− GK

µ+ iKρ0ω

d

ΞJ1(ξK(R1))f − J0(ξK(R1))d
.

Plotting the solution (13) we obtain again the results of 1. In 2 we show the
velocity profile at a fixed time for some values of the permeability K.

4. Numerical solutions in more complex geometries

In this section, we perform some numerical simulations of the full two-dimensional
problem with Finite Elements using FreeFem++. We use the classical weak formu-
lation for both the Darcy–Brinkman and the Navier–Stokes equations.

Let us define the resistivity

r∗ =

{
1/K inside LC

0 outside LC

which is implemented as a finite element function (so that at the interface between
the LC and the subcapsular sinus, r∗ is connected with continuity).
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Table 1. Numerical values of the parameters related to the phys-
ical quantities of the lymph node [2].

R1 0.9 cm
R2 1 cm
ρ0 1 g cm−3

µ 0.015 g cm−1 s−1

C 0.05 g cm−2 s−2

G 20 g cm−2 s−2

ω π
K 10−4 cm2

For the spatial discretization, we use the finite element space P2
h = {w ∈

H1(Ω)|∀K ∈ Th,w|K ∈ P2} for the velocity, and P1
h = {q ∈ H1(Ω)|∀K ∈ Th, q|K ∈

P1} for the pressure; these choices guarantee us the inf–sup stability. For the time
discretization, we use the BDF2 method. Moreover, we use a grad-div stabiliza-
tion (see [16]), Newton’s method for matrix and GMRES as solver, with the same
parameters given in 1.

4.1. The cylindrical case. First of all, we study a cylindrical domain with length
L and external radius R2, where the LC is an inner coaxial cylinder with radius R1.
Using cylindrical coordinates, we assume axial symmetry and vθ = 0, so that we
can consider a rectangular mesh [0, R2]× [0, L]. Notice that the resistivity r∗ is dif-
ferent from zero only in the LC, which is described by the rectangle [0, R1]× [0, L].
Denoting as usual by vr and vz the radial and axial components of the velocity,
respectively, the boundary and initial conditions are: v(R2, z, t) = 0 (no-slip con-
dition in R2), vr(0, z, t) = 0 (symmetry condition), ∂vz

∂r (0, z, t) = 0 (homogeneous

Neumann b.c. in r = 0), ∂v
∂z (r, 0, t) = ∂v

∂z (r, L, t) = 0 (homogeneous Neumann b.c.
in z = 0 and in z = L), v(r, z, 0) = 0 for z ∈ (0, R2] (fluid initially at rest).

Moreover we impose the inlet condition

(17) vz(r, 0, t) =

[
C

4µ

(
R2

2 − r2
)

+Re

(
eiωt

iG

ωρ0

(
1− J0(ξ(r))

J0(ξ(R2))

))]+
where [ ]+ is the positive part and ξ(r) is given in (16). This is a pulsatile Poiseuille
flow truncated with a positive part; the aim of this function is to model the valve
behavior at the end of the lymphangion, which prevents retrograde flows [9, 15].

We plot the simulations at a large time, in order to reach the periodicity of the
solution, the period being T = 2 s. 3 shows the axial component of the velocity
vector field at three different values of z: as the coordinate z increases, the porous
part tends to slow down the flow in the LC.

In 4–5 we plot the two components of the velocity field at z = 0.5 cm for some
values of t. In particular, 5 shows that there is a non negligible radial component
of the velocity, so that the flow is far from being laminar. Hence the theoretical
results of 2–3 are not comparable with this simulation.

4.2. The spheroidal case. Now we numerically study the same problem in a more
complex and realistic geometry, that is an oblate spheroid [7]. We suppose that
the velocity does not depend on the angle θ, hence we can consider a half-ellipse
defined by the parametric equations

x = r cosφ, y = 0.5r sinφ, r ∈ [0, R2], φ ∈
[
−π

2
,
π

2

]
,
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Figure 3. Cylindrical case: axial velocity profile with respect to
r for different values of z at a fixed time t = 8 s.
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Figure 4. Cylindrical case: the component vz of the velocity at
z = 0.5 for some values of t.

obtaining the oblate spheroid with a rotation around the x = 0 axis. The LC is the
smaller spheroid

x2/(0.9)2 + y2/(0.4)2 < 1,

hence r∗ vanishes outside the smaller spheroid.
We plot the numerical solution in 6. The inlet condition is given by (17) for

φ ∈ [−π2 ,−
π
3 ] (black boundary). In the outlet part φ ∈ [π3 ,

π
2 ] (green boundary)

we impose the homogeneous Neumann boundary condition. Moreover, we impose
the no-slip condition for φ ∈ [−π3 ,

π
3 ] (red boundary), and vr = 0 and homogeneous

Neumann b.c. in φ = ±π2 , r ∈ [0, R2] (blue boundary).
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Figure 5. Cylindrical case: the component vr of the velocity at
z = 0.5 for some values of t.

We plot the results for t = 1.5 s, when the velocity is maximal. The behavior
of the simulation over time is similar to the case of a cylinder. If we decrease the
permeability K, the fluid in the LC tends to flow in the non-porous zone outside
the smaller spheroid, as one can see in 62, where we take K = 10−6 cm2. This is the
reason why the majority of the lymph flows outside the node without getting filtered
by the lymphoid compartment: indeed, from the incompressibility of the lymph we
have that, if we decrease the permeability K, the velocity of the lymph inside the
porous part decreases and, to accommodate that, the lymph that flows in the non-
porous part outside LC increases its velocity. When there are pathogens in the
lymph, the lymph node increases its dimensions and its permeability; apparently,
in this way a greater part of the lymph enters in the lymphoid compartment and
can be filtered.

We notice that the time dependence of the solution is important for the study
of the lymph behavior inside the node. Indeed, in the lymph node the fluid keeps
oscillating between moments of almost rest to moments of flowing pumped by a
combination of lymphangion contractions and valve disclosures. In our model,
when the positive part of the inlet condition is non zero, the lymph enters the
lymph node and, when the inlet condition becomes zero, the lymph moves with a
very low velocity.

To conclude, we can say that the pulsatile behavior and the presence of a non
porous region outside the LC have an important role for the transport of the lymph
in the lymph node. We also performed some simulations where we decrease the
dimension of the region outside the LC, which we do not show for the sake of
brevity; as one would expect, the lymph increases its maximum velocity in the
external part as the size of the region decreases. We remark that we did not find
any data in the literature regarding the proportion between the LC and the external
part; in any case, the maximum of the velocity is always reached outside the LC,
whatever the dimension of the two parts, provided that the non porous part is much
smaller than the LC.
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Figure 6. Spheroidal case: velocity vector and its norm at the
fixed time t = 1.5 s, for K = 10−4 cm2 and K = 10−6 cm2, resp.
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5. Conclusions

Motivated by the scarcity of papers in the literature on the modeling of the
lymphatic system, we have studied the flow of the interstitial fluid in a lymph node.
The lymph node is here assumed to be essentially composed by a porous core, where
the fluid is governed by the Darcy–Brinkman equation, and a thin layer in which
the lymph can flow freely following the Navier–Stokes equation. In the first part
of the paper, we further assume laminarity, so that we can get an explicit solution
in terms of Bessel functions. Then, we perform some finite element simulations to
allow the exchange of flow between the porous and non-porous part, finding that
the hypothesis of laminarity is too restrictive in this case. Both the exact solution
and the numerical simulations show that the porous part slows the motion; as
expected, this behavior explains why the majority of the lymph entering the lymph
node does not enter the LC [10]. We can also expect, in response of some pathology,
the lymph node to change its dimension in order to increase the permeability K
and the proportion between the LC and the non porous part, allowing the lymph
node to filter more fluid than usual. We remark that our results are qualitative: the
material parameters here are chosen according to [2] and they do not come from
any medical or experimental data.

Possible future directions are the validation of the model by means of experimen-
tal data and the implementation of more realistic geometries where several porous
and non-porous parts interact. Moreover, in the finite element simulations the flow
is induced by (17), which describes the valves behavior with an inlet Poiseuille flow.
One interesting improvement of the model could be considering the behavior of the
lymphangion and the fluid exchange with the blood vessel.
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