
Springer Nature 2021 LATEX template

A mathematical description of the flow in a

spherical lymph node

Giulia Giantesio1, Alberto Girelli2 and Alessandro Musesti1*

1Dipartimento di Matematica e Fisica, Università Cattolica del
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Abstract

The motion of the lymph has a very important role in the immune sys-
tem and it is influenced by the porosity of the lymph nodes: more than
90% takes the peripheral path without entering the lymphoid compart-
ment. In this paper, we construct a mathematical model of a lymph
node assumed to have a spherical geometry, where the subcapsular sinus
is a thin spherical shell near the external wall of the lymph node and
the core is a porous material describing the lymphoid compartment.
For the mathematical formulation we assume incompressibility and we
use Stokes together with Darcy-Brinkman equation for the flow of the
lymph. Thanks to the hypothesis of axisymmetric flow with respect to the
azimuthal angle and the use of the stream function approach, we find an
explicit solution for the fully developed pulsatile flow in terms of Gegen-
bauer polynomials. A selected set of plots is provided to show the trend
of motion in the case of physiological parameters. Then, a finite element
simulation is performed and it is compared with the explicit solution.
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1 Introduction

Lymph nodes are organs scattered throughout the lymphatic system which
play a vital role in our immune response in breaking down bacteria, viruses
and waste; the interstitial fluid (called lymph once inside the lymphatic sys-
tem) is of fundamental importance in doing this since it transports these
substances inside the lymph node [1]. The main features of the lymph node
from a mechanical point of view are the presence of a porous bulk region
(lymphoid compartment, LC), surrounded by a thin layer (subcapsular sinus,
SCS) where the fluid can flow freely. More than 90% of the lymph remains in
the SCS, while the remaining part enters into the LC through a conduit sys-
tem network [2–4] formed by fibroblastic reticular cells (FRC), which is the
parenchyma of the LN [5]; due to this, LNs are organs with high resistance
to flow. The bigger particles cannot enter the conduits formed by FRC and
remain in the SCS, where they are confined and filtered by specialized cells
of the lymphatic endothelial cells; however, there is some evidence that the
selectivity of the FRC network is not based solely on the size of the molecules;
indeed, selected macromolecules, such as antibodies, can gain access to the LN
parenchyma [6].

Lymph flow inside LNs has an important function; indeed, fluid flow
biases macromolecular distribution, enhances ligand expression, aligns extra-
cellular matrix and shapes active mechanisms of cell migration. Fluid flow
through endothelial monolayers and FRC networks enhances the expression
of chemokines that direct leucocyte localization and migration patterns [7].
Moreover, increased flows enhance proliferation and drug sensitivity in B cell
lymphoma [8, 9]. Fluid flow is important to study the tumor metastasis [10]
and drug transport [11]. Despite its importance, as far as we know, only few
models in the literature try to describe the behavior of the lymph from a
mechanical point of view [12–17] or mimicking the LN mechanical properties
in a LN-on-a-chip model [10, 18, 19].

In this paper, we propose a mathematical model for the flow of the inter-
stitial fluid in a lymph node. We assume the lymph to be an incompressible
fluid similar to water; moreover, we assume a small Reynolds number as a
result of the small velocities within the lymph nodes [20], hence we can model
the flow into the LC by Darcy-Brinkman equation (due to the high poros-
ity and the time-dependence of the flow [4, 18]), and the flow inside the SCS
by Stokes equation. The lymph enters the lymph node from the lymphatic
vessels, which have a complex structure formed by one-way valves that pre-
vent retrograde flow and a wall structure composed of sinus-lining cells: such
cells control and generate active pulsation of the wall, pumping the lymph
from a segment between two valves to another (the segment is called lymphan-
gion)[20, 21]. This means that the lymph has a relevant pulsatile behavior,
and we take it into account in our model. In Section 2 we describe the behav-
ior of the lymph explicitly in spherical geometry, supposing that the fluid flow
inside the lymph node is axisymmetric with respect to the azimuthal angle,
so that we can assume a simplified two-dimensional geometry and we can use
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the stream function approach [22] to find an explicit solution. We remark that
the solution given in Section 2.1 is quite general and can be used also for other
choices of boundary conditions. Finally, in Section 3 we compare our results
with some finite element simulations obtained using the open source software
FreeFEM [23].

2 Explicit result in a simplified case

Let us model the lymph node (LN) as a spherical region: the subcapsular sinus
(SCS) is a thin spherical shell with radii R1 < R2 of creeping fluid flowing
near the external wall of the LN, while the lymphoid compartment (LC) is a
sphere of radius R1 of porous material. We use spherical coordinates (r, θ, ϕ),
where r is the radial distance, θ the polar angle and ϕ the azimuthal angle;
moreover, we suppose axial symmetry with respect to the azimuthal angle ϕ.

Assuming that the lymph, which flows inside the LN, is an incompressible
fluid, and that the Reynolds number is small, we have the equations

ρ0
∂v

∂t
(r, θ, t) = −∇p(r, θ, t) + µe∆v(r, θ, t)− µ

k
v(r, θ, t) r ∈ [0, R1]

ρ0
∂v

∂t
(r, θ, t) = −∇p(r, θ, t) + µ∆v(r, θ, t) r ∈ [R1, R2]

div v(r, θ, t) = 0

(1)

where ρ0 is the constant density, v the velocity, p is the pressure, µ the vis-
cosity of the lymph, µe the effective viscosity, k the permeability. The second
equation in (1) is the Stokes equation and describes the motion in the sub-
capsular sinus, the first is the Darcy-Brinkman equation, which is used for
modeling the flow in the porous region of the LC, while the last equation mod-
els the incompressibility of the fluid. Here we assume a constant homogeneous
permeability k [4, 18]. The effective viscosity µe in general differs from the clas-
sical viscosity µ because µe keeps into account the Brinkman correction [24].
Furthermore, assuming that the flow is time periodic with period T , we write
the time dependence of the velocity and of the pressure as a Fourier expansion

v(r, θ, t) =

∞∑
m=−∞

vm(r, θ)eimωt, p(r, θ, t) =

∞∑
m=−∞

pm(r, θ)eimωt, (2)

where ω = 2π/T .

2.1 Solving the equations

Now we want to compute the general solution of system (1) in terms of
the Fourier expansion (2). Here we try to be as general as possible, without
imposing any boundary condition, so that out solution can be used in sev-
eral situations. We will deal with suitable boundary conditions for our specific
problem in Section 2.3.
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By using (2), system (1) becomes
∆vm(r, θ)−

(
µ

kµe
+
imωρ0
µe

)
vm(r, θ) =

1

µe
∇pm(r, θ) in [0, R1],

∆vm(r, θ)− imωρ0
µ

vm(r, θ) =
1

µ
∇pm(r, θ) in [R1, R2],

div vm(r, θ) = 0,

(3)

which can be written in compact form as∆vm(r, θ)− qm(r)vm(r, θ) =
1

µ
∇pm(r, θ)

div vm(r, θ) = 0,

m ∈ Z, (4)

where Z is the set of integers, while qm is given by

qm(r) =


µ

kµe
+
imωρ0
µe

in [0, R1],

imωρ0
µ

in [R1, R2].

(5)

Now, writing vm = vr,mer + vθ,meθ, we introduce the stream function ψm

[22] as

vr,m(r, θ) = − 1

r2 sin θ

∂ψm

∂θ
, vθ,m(r, θ) =

1

r sin θ

∂ψm

∂r
. (6)

Moreover, it is useful to perform the change of variable ζ := cos θ, so that the
previous equations become

vr,m(r, ζ) =
1

r2
∂ψm

∂ζ
, vθ,m(r, ζ) =

1

r
√

1− ζ2
∂ψm

∂r
. (7)

By introducing the operator

E2 =
∂2

∂r2
+

(
1− ζ2

)
r2

∂2

∂ζ2
,

we can rewrite (4) as

E2
(
E2 ψm(r, ζ)

)
− qm(r) E2 ψm(r, ζ) = 0, m ∈ Z, (8)

while for the pressure we have
∂pm
∂r

=
µ

r2
∂

∂ζ

((
E2 −qm(r)

)
ψm

)
∂pm
∂ζ

= − µ

1− ζ2
∂

∂r

((
E2 −qm(r)

)
ψm

) m ∈ Z. (9)
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Focusing on the case m ̸= 0, we have that the solution can be written as

ψm(r, ζ) = ψ1,m(r, ζ) + ψ2,m(r, ζ),

where
E2 ψ1,m(r, ζ) = 0, E2 ψ2,m(r, ζ)− qm(r)ψ2,m(r, ζ) = 0. (10)

We can now solve (10): by using the separation of variables

ψ1,m(r, ζ) = R(r)Z(ζ), (11)

substituting in the first equation of (10) we get

r2

R

d2R

dr2
+

1− ζ2

Z

d2Z

dζ2
= 0. (12)

As the first term of (12) depends only on r and the second term only on ζ,
the two have to be constant, say n(n− 1) with n ∈ N [25], where N is the set
of natural numbers. Hence (12) becomes

r2
d2R

dr2
− n(n− 1)R = 0, (13)(

1− ζ2
) d2Z
dζ2

+ n(n− 1)Z = 0. (14)

The solution of (13) is given by

R(n)(r) = A(n)rn +B(n)r1−n, (15)

for some constants A(n), B(n), while (14) is the Gegenbauer equation, whose
solutions are the Gegenbauer polynomials Gn, Hn with order −1/2, of the first
and second kind, respectively. Hence the solution of the first equation of (10)
becomes

ψ1,m =

∞∑
n=0

[(
A(n)

m rn +B(n)
m r1−n

)
Gn(ζ) +

(
C(n)

m rn +D(n)
m r1−n

)
Hn(ζ)

]

for some constants A
(n)
m , B

(n)
m , C

(n)
m , D

(n)
m . Since Hn is not smooth in ζ = ±1

and G0, G1 lead to an infinite tangential velocity, the solution simplifies as

ψ1,m(r, ζ) =

∞∑
n=2

(
A(n)

m rn +B(n)
m r1−n

)
Gn(ζ), (16)

for some constants A
(n)
m , B

(n)
m .
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The second equation of (10) is

∂2ψ2,m

∂r2
+

1− ζ2

r2
∂2ψ2,m

∂ζ2
− qm(r)ψ2,m = 0 (17)

and, using again the separation of variables,

ψ2,m(r, ζ) = R(r)Z(ζ),

by a similar procedure as before, we obtain

d2R

dr2
− qmR− n(n− 1)

r2
R = 0, (18)

(1− ζ2)
d2Z

dζ2
+ n(n− 1)Z = 0. (19)

Equation (18) is a Bessel equation, hence the solution can be written as

R(n)(r) = α(n)
√
rJn− 1

2
(−i√qmr) + β(n)

√
rYn− 1

2
(−i√qmr) ,

where Js, Ys are the Bessel functions of the first and second kind, respectively.
Equation (19) is the same Gegenbauer equation as (14), hence the solution
of (17) is given by

ψ2,m =

∞∑
n=2

[
α(n)
m

√
rJn− 1

2
(−i√qmr) + β(n)

m

√
rYn− 1

2
(−i√qmr)

]
Gn(ζ),

and the general solution ψm = ψ1,m + ψ2,m is

ψm(r, ζ) =

∞∑
n=2

[
A(n)

m rn +B(n)
m r1−n + α(n)

m

√
rJn− 1

2
(−i√qmr)

+ β(n)
m

√
rYn− 1

2
(−i√qmr)

]
Gn(ζ). (20)

Now we want to employ the definition of qm, so that we have to distinguish

between the Stokes and the Darcy-Brinkman case. Let us denote with A
(n)
m ,

B
(n)
m , α

(n)
m , β

(n)
m the constants of the Stokes case (R1 ≤ r ≤ R2) and with Ā

(n)
m ,

B̄
(n)
m , ᾱ

(n)
m , β̄

(n)
m those of the Darcy-Brinkman case (0 ≤ r ≤ R1). Using (5),

we obtain, for any m ̸= 0,

ψS
m(r, ζ) =

∞∑
n=2

[
A(n)

m rn +B(n)
m r1−n + α(n)

m

√
rJn− 1

2

(
−i
√
iρ0mω

µ
r

)

+β(n)
m

√
rYn− 1

2

(
−i
√
iρ0mω

µ
r

)]
Gn(ζ),

(21)
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ψB
m(r, ζ) =

∞∑
n=2

[
Ā(n)

m rn + ᾱ(n)
m

√
rJn− 1

2

(
−i
√
iρ0mω

µe
+

µ

µek
r

)]
Gn(ζ), (22)

where the superscript S denotes the Stokes case and B the Darcy-Brinkman

case, and we used the fact that r = 0 is in the domain of ψB , so that B̄
(n)
m =

β̄
(n)
m = 0 in view of the non degeneracy of the solution.
Regarding the pressure, we use (9) to obtain

pSm(r, ζ) = CS
m + imωρ0

∞∑
n=2

[
A

(n)
m

n− 1
rn−1 − B

(n)
m

n
r−n

]
Pn−1(ζ) (23)

in the Stokes case, and

pBm(r, ζ) = CB
m +

(
imωρ0 +

µ

k

) ∞∑
n=2

Ā
(n)
m

n− 1
rn−1Pn−1(ζ) (24)

in the Darcy-Brinkman case, where Pn are the Legendre polynomials of the
first kind.

For m = 0 we get the well-known steady solution of the Stokes equation
ψS
0 =

∞∑
n=2

(
A

(n)
0 rn +B

(n)
0 r1−n + C

(n)
0 rn+2 +D

(n)
0 r−n+3

)
Gn(ζ),

pS0 = CS
0 − µ

∞∑
n=2

[
2(2n+ 1)

n− 1
C

(n)
0 rn−1 +

2(2n− 3)

n
D

(n)
0 r−n

]
Pn−1(ζ)

(25)

and for the Darcy-Brinkman equation we have
ψB
0 =

∞∑
n=2

[
Ā

(n)
0 rn + B̄

(n)
0

√
rJn− 1

2

(
−i
√

µ

µek
r

)]
Gn(ζ),

pB0 = CB
0 +

µ

k

∞∑
n=2

[
Ā

(n)
0

n− 1
rn−1

]
Pn−1(ζ).

(26)

2.2 Geometrical and physiological parameters

We use an idealized spherical geometry based on the data obtained from a
murine (popliteal) lymph node: the radius is R2 = 0.5mm, the subcapsular
sinus (SCS) thickness is h = 10µm, the afferent and efferent lymphatic vessels
have the same radius RLV = 40µm [10, 13, 18, 26–29]. With these data, we
have that more than 90% of the lymph takes the peripheral path without
entering the LC in a pulsation cycle [13, 30, 31].

The inlet and outlet conditions are imposed in the upper and lower lym-
phatic vessel (near θ = 0 and θ = π, respectively) as a pulsatile flow of the
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Variable name Value Description

R2 0.5mm external radius

h 10µm height of SCS

R1 R2 − h internal radius

RLV 40µm lymphatic vessel radius

µ 1mg/(mms) viscosity

ϕ 0.75 porosity

µe
µ
ϕ

effective viscosity

ρ 1mg/mm3 density

β 0.7 stress jump

k 3.84× 10−9 mm2 permeability

L 10−3 mm3/s maximum lymph fluid mean flow

Table 1 Physiological parameters of Section 2.2.

form

vin(θ, t) =
L

πR2
LV

f(t)H(cos θ), (27)

where L is the maximum lymph mean flow of the inlet lymphatic vessel.
Here we assume L = 10−3 mm3/s, as measured in [32], and f(t) is a periodic
function. The function H is given by

H(ζ) =


1 ζ ∈ [−1,−1 + ζ0]

0 ζ ∈ (−1 + ζ0, 1− ζ0)

−1 ζ ∈ [1− ζ0, 1],

(28)

where the constant 0 < ζ0 < 1 describes the inlet and outlet regions, and is
given by

ζ0 = cos

[
arcsin

(
RLV√

R2
LV +R2

2

)]
=

R2√
R2

LV +R2
2

.

Notice that we are assuming that the inlet and outlet velocities are the same.
The lymph is modeled as an incompressible Newtonian fluid similar to

water [20] with viscosity µ = 1mg/(mms) and density ρ0 = 1mg/mm3. The
permeability is considered homogeneous [4] with value k = 3.84 × 10−9 mm2

[18]. The effective viscosity is taken as µe =
µ
ϕ [33, 34], where ϕ is the porosity

taken as ϕ = 0.75 [18]. The parameters are summarized in Table 1.

2.3 Boundary conditions

We now want to impose suitable boundary conditions to our general solution.
We give a Dirichlet condition at the external boundary and the Ochoa-Tapia
boundary conditions [33, 35] at the interface between the porous zone LC and
the free-fluid region SCS. In this way we can close the problem and find a
unique solution.
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More precisely, we will assume the no-slip condition for the velocity on R2,
except near θ = 0, π, where we impose the inlet/outlet flow (27). For simplicity,
given the small diameter of the afferent/efferent lymphatic vessel, we impose
the inlet/outlet condition only for the radial velocity vr, but we could use the
same procedure to impose boundary condition for vθ too. For the boundary
conditions on the internal radius R1, the Ochoa-Tapia boundary conditions
imply the continuity of radial and tangential velocity, the continuity of the
normal stress tensor and a jump-condition on the shear stress.

Thanks to the above conditions, we can determine for every n the six
unknown constants in equations (21)-(22). For the sake of brevity, we rewrite
the stream functions as

ψS/B
m (r, ζ) =

∞∑
n=2

ψ̃S/B
m,n (r)Gn(ζ), pS/Bm =

∞∑
n=2

p̃S/Bm,n (r)Pn−1(ζ).

Expanding the step functionH(ζ) in (28) in terms of Legendre polynomials,
we get

H(ζ) =

∞∑
n=2

bn−1Pn−1(ζ), (29)

where

bn =
2n+ 1

2

∫ 1

−1

H(ζ)Pn(ζ)dζ =
2n+ 1

2

 −1+ζ0∫
−1

Pn(ζ)dζ −
1∫

1−ζ0

Pn(ζ)dζ


and we kept into account that b0 = 0 since H is an odd function.

To impose the boundary condition, we need to expand in Fourier series the
time dependence of (27), as we did in (2). Writing

f(t) =

∞∑
m=−∞

fme
imωt,

it follows that

vin(ζ, t) =
L

πR2
LV

H(ζ)

∞∑
m=−∞

fme
imωt

=
L

πR2
LV

∞∑
n=2

∞∑
m=−∞

bn−1Pn−1(ζ)fme
imωt.

Now we impose the boundary condition vr(R2, ζ, t) = vin(ζ, t): recalling the
relation G′

n(ζ) = −Pn−1(ζ), by (7)1 we obtain

1

R2
2

ψS
m(R2, ζ) = − L

πR2
LV

∞∑
n=2

bn−1Gn(ζ), (30)
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whence

ψ̃S
m,n(R2) = − R2

2L

πR2
LV

bn−1fm (31)

for any m ∈ Z and n ≥ 2, where we used the linear independence of the
Gegenbauer polynomials.

By the no-slip boundary condition on vθ, recalling (7)2 it follows that

∂ψS
m,n

∂r
(R2, ζ) = 0 ⇒

∂ψ̃S
m,n

∂r
(R2) = 0, (32)

where we used again the linear independence of the Gegenbauer polynomials.
We now write in terms of the stream function the Ochoa-Tapia boundary

conditions on the internal radius R1 [36], using the linear independence of
Legendre and Gegenbauer polynomials:

• Continuity of vr:

vSr,m(R1, ζ) = vBr,m(R1, ζ) ⇒ ψ̃S
m,n(R1) = ψ̃B

m,n(R1). (33)

• Continuity of vθ:

vSθ,m(R1, ζ) = vBθ,m(R1, ζ) ⇒
∂ψ̃S

m,n

∂r
(R1) =

∂ψ̃B
m,n

∂r
(R1). (34)

• Continuity of normal stress:

TS
rr,m(R1, ζ) = TB

rr,m(R1, ζ),

where

Trr,m = −pm + 2µ
∂vr,m
∂r

; (35)

we can write this condition as

− p̃Sm,n(R1, ζ) + 4µ
1

R3
1

ψ̃S
m,n(R1, ζ)− 2µ

1

R2
1

∂ψ̃S
m,n

∂r
(R1, ζ) =

= −p̃Bm,n(R1, ζ) + 4µe
1

R3
1

ψ̃B
m,n(R1, ζ)− 2µe

1

R2
1

∂ψ̃B
m,n

∂r
(R1, ζ). (36)

• The stress jump condition:

TS
rθ,m(R1, ζ)− TB

rθ,m(R1, ζ) =
βµ√
k
vBθ,m(R1, ζ), (37)
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where β is the slip constant which has to be estimated experimentally. Since
the expression of the shear stress is

Trθ,m = µ

[
1

r

∂vr,m
∂θ

− vθ,m
r

+
∂vθ,m
∂r

]
, (38)

in the term
∂vr,m

∂θ = −
√

1− ζ2
∂vr,m
∂ζ there is a second derivative of the

Gegenbauer polynomials, so that we need the following property [37, 38]:

G′′
n(ζ) = −n(n− 1)

1− ζ2
Gn(ζ). (39)

Hence we have:

∂vr,m
∂θ

= −
√

1− ζ2
1

r2
∂2ψm

∂ζ2

= −
√

1− ζ2

r2

∞∑
n=2

ψ̃m,n(r)G
′′
n(ζ) =

√
1− ζ2

r2

∞∑
n=2

n(n− 1)ψ̃m,n(r)Gn(ζ).

After some computations, eq. (37) can be written as

µ

[
n(n− 1)

R3
1

ψ̃S
m(R1)−

2

R2
1

∂ψ̃S
m,n

∂r
(R1) +

1

R1

∂2ψ̃S
m,n

∂r2
(R1)

]

− µe

[
n(n− 1)

R3
1

ψ̃B
m,n(R1)−

2

R2
1

∂ψ̃B
m,n

∂r
(R1) +

1

R1

∂2ψ̃B
m,n

∂r2
(R1)

]

=
βµ√
k

1

R1

∂ψ̃B
m,n

∂r
(R1). (40)

From (31)–(34), (36) and (40), for every m ∈ Z and n ≥ 2 we obtain a

linear system in the unknowns (A
(n)
m , B

(n)
m , α

(n)
m , β

(n)
m , Ā

(n)
m , ᾱ

(n)
m ), which are the

constants of integration of eqs. (21)-(22), and the same holds for the steady

case when m = 0 in the unknowns (A
(n)
0 , B

(n)
0 , C

(n)
0 , D

(n)
0 , Ā

(n)
0 , B̄

(n)
0 ) which

are the constants of integration of eqs. (25)1–(26)1.
Moreover, we fix the value of the pressure in one point to find the constants

in equation (23)–(25) and have a physiological pressure value. By (36), it
follows that CS

m = CB
m and CB

0 = CS
0 . We fix the pressure (with respect to

time) at the exit point (r, ζ) = (R2,−1) by using the same time function
of (27), that is,

p(t) = p̄f(t) = p̄

∞∑
m=−∞

fme
imωt.
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Fig. 1 Pressure distribution in mPa with fixed pressure p = 6.18× 105 mPa at the outlet.

Hence we can find the pressure constants by imposing

pSm(R2,−1) = p̄fm, m ∈ Z

where pSm(r, ζ) is given in (23) for m ̸= 0, and in (25)2 for m = 0.

2.4 Explicit results

This section is devoted to show some plots related to the explicit solution and
to make some considerations about the proposed model.

Following [39], we choose a time function of the form

f(t) =
1− cosπt

2
. (41)

We notice that in this case the period of a pulsatile flow in the lymph node is
2 s, hence ω = π, and fm = 0 for m ̸= −1, 0, 1.

In this model we do not take into account the inhibition and the autoreg-
ulation of the contractions in the lymphangion, given by several factors like
shear stress and pressure [20, 40]; a further extension of this model can be the
coupling with a lymphangion model for taking into account these phenomena.

In Figure 1, we plot the pressure distribution in the LN with the fixed
constant p̄ = 6.18× 105 mPa (corresponding to the lower limit of the pressure
found in [41]); as we can see, the values of the pressure belong to the range
given in that paper and, due to the incompressibility of the flow, the pressure
translates from a higher value in the inlet zone to a lower value in the outlet
zone. We can choose to fix any pressure at the outlet, and we have the same
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Fig. 2 Shear stress Trθ(r, θ, t) in mPa with respect to the polar angle (θ = 0 near the inlet
flow and θ = π near the outlet flow) calculated at t = 1 s and in the internal radius R1 with
different boundary velocities in mm/s (where vin ≈ 0.22 corresponds to L = 10−3 mm3/s
and vin ≈ 0.58 corresponds to L = 2.2× 10−3 mm3/s).

pressure distribution with different values (for example with the fixed pressure
of p̄ = 4× 105 mPa ≈ 3mmHg as in [13]).

Figure 2 provides the Stokes shear stress given by the formula:

Trθ =
∑

m∈{−1,0,1}

µ

[
1

r

∂vr,m
∂θ

− vθ,m
r

+
∂vθ,m
∂r

]
eimπt,

(in mPa) at time t = 1 s, where we have the maximum value of the velocity
(and, consequently, of the shear stress) and radius r = R1 (this is the shear
stress at the exterior of the LC). We plot the shear stress value with two
different boundary velocities: vin ≈ 0.22 corresponds to the physiological value
of L = 10−3 mm3/s, given in Table 1, found in [32], and vin ≈ 0.58 appears in
[13]. As we can see, the shear stress is similar to the one reported in [10, 13];
that is, higher near the inlet flow and lower near θ = π

2 . The same behavior
occurs in the velocity too (see Figure 3). This trend is interesting because the
cell adhesion to the exterior of the LC is proportional to the shear stress [10],
hence the majority of the cells adhere (and then enter in the LC) near the inlet
zone of the lymphatic vessel. Indeed, in our model the inlet shear stress is the
same as the outlet one due to the choice of the same inlet/outlet velocity and
the incompressibility of the fluid; however, usually a part of the lymph enters
in the blood capillaries in the LC [30, 31], so that the shear stress in the outer
zone reduces.

As we can see in Figure 3 and in Figure 4, for θ > 0 the tangential compo-
nent vθ of the velocity in the SCS is the larger one. From the first picture in
Figure 3 one can see that the fluid flow in the porous medium is flat and starts
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Fig. 3 Tangential component of the velocity in mm/s with respect to the radius at different
angles at t = 1 s. The first picture corresponds to the tangential velocity in the LC (porous
part), and the second corresponds to the tangential velocity in the SCS (free-fluid region).

increasing near the interface that connects the LC to the SCS, showing a non-
differentiable point due to the Ochoa-Tapia boundary conditions (indeed, we
do not impose the continuity of the derivative of vθ).

3 Numerical simulation

The explicit model found in the previous section uses several simplifications. In
this section we propose some numerical simulations to describe a more general
fluid flow in a lymph node.

We define two different domains and we call ΩS the domain of the SCS
in which we have the Stokes equation, and ΩB the LC domain in which we
have the Darcy-Brinkman equation. The boundaries of the domain are ∂ΩS =
ΓS
D ∪ ΓS

N , where ΓS
D is the part of the boundary with Dirichlet boundary
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Fig. 4 Normal component of the velocity in mm/s with respect to the radius at different
angles at t = 1 s.

condition and ΓS
N is the one with the Neumann boundary condition and for the

domain ΩB are ∂ΩB = ΓB
D ∪ ΓB

N , where ΓB
D is the part of the boundary with

Dirichlet boundary condition and ΓB
N is the one with the Neumann boundary

condition. We call the boundary interface of the two domains Γ = ∂ΩS ∩∂ΩB .
We define the normal n at the interface Γ as the external normal to ΩB .
Moreover, we define the spaces W I = {w ∈ H1(ΩI) : wΓD

= 0}, W I
g = {v ∈

H1(ΩI) : vΓD
= g}, QI = {q ∈ L2(ΩI), with

∫
ΩI q = 0 if ΓD = ∂ΩI}, where

I = S,B.
The weak formulation of our problem is (supposing a constant density

ρ = ρ0 and viscosity ν = µ/ρ0): find v ∈WS
g , p ∈ QS , vb ∈WB

g and pb ∈ QB

such that∫
ΩS

∂v

∂t
·wdV− 1

ρ0

∫
ΩS

p divwdV+ν

∫
ΩS

D(v) : D(w)dV+
1

ρ0

∫
ΓS
N

Tw·ndS+
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+

∫
ΩB

∂vb

∂t
·wbdV − 1

ρ0

∫
ΩB

pb divwbdV + νe

∫
ΩB

D(vb) : D(wb)dV−

− 1

ρ0

∫
ΓB
N

Tewb·ndS+ν
∫
ΩB

K−1vb·wbdV+

∫
ΩS

div vqdV+

∫
ΩB

div vbqbdV = 0,

(42)

for all w ∈ WS
g , wb ∈ WB

g such that w = wb on Γ, and for all q ∈ QS and

qb ∈ QB . In equation (42) we have that v is the velocity in ΩS , p ∈ Q is the
pressure in ΩS , vb is the velocity in ΩB , pb ∈ Q is the pressure in ΩB , D(v) =
1/2(∇v+∇vT ), T = −pI+µ

[
∇v +∇vT

]
, νe = µe/ρ0, K is the permeability

tensor (in the case of Section 2, K = kI), Te = −pbI+ µe

[
∇vb +∇vT

b

]
.

Now we want to write the weak formulation for the boundary condition
2.3; we have that the continuity of the velocity is verified automatically, and,
for the stress-jump condition, we have [34] (on the interface Γ):∫

Γ

Tw · ndS −
∫
Γ

Tew · ndS =

∫
Γ

µB
√
K−1vb ·wdS,

where B is the slip tensor (in the case of Section 2.3, B = βI).
The boundary conditions in the external wall (inlet condition and no-slip

boundary condition) are imposed by the penalty method. Moreover, we add
the Grad-div stabilization terms

γ1

∫
ΩS/B

div v · divwdV + γ2

∫
ΩS/B

div

(
∂v

∂t

)
· divwdV

in either Stokes and Darcy-Brinkman domains [42–45]. Thanks to this sta-
bilization term, we have the stability for the Darcy-Brinkman equation (see
[46]). For the numerical discretization, we use a BDF2 method for the time
discretization, instead, we use Pd

k − Pk element pairs (where k is the polyno-
mials order and d is the dimension) with the Brezzi-Pitkäranta stabilization,
which consists in adding the term ϵ

∫
ΩS ∇p · ∇qdV + ϵ

∫
ΩB ∇pb · ∇qbdV to the

discretization of the equation (42), with ϵ ≈ h2T , where hT is the maximum
diameter of the triangle of the finite element triangulation. The weak formu-
lation here proposed has been implemented using the open source software
FreeFEM.

3.1 Numerical Test

In this section we want to qualitatively compare the results obtained with the
numerical simulation with the explicit results exposed in Section 2. For that,
we use the same geometry and parameters exhibited in Section 2.2; hence, in
the external boundary we will impose only Dirichlet boundary condition (ΓN

is empty), subdivided as ΓD = Γin ∪ Γout ∪ ΓBC, where we are imposing the
inlet and the outlet flow in Γin and Γout, respectively, given by the equation
(27) with L = 10−3 mm3/s, and the no-slip boundary condition in ΓBC. The
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Fig. 5 Tangential component of the velocity in mm/s with respect to the radius at different
angles at t = 1 s. The first graph corresponds to the tangential velocity in the LC (porous
part), and the second corresponds to the tangential velocity in the SCS (free-fluid region).

numerical stabilization parameters are estimated as γ2 = 0, while γ1 = 300 in
ΩS and γ1 = 106 in ΩB .

In Figure 5, Figure 6 and Figure 7, we can see the tangential and radial
velocity, and the shear stress, respectively. We can see that the results are very
similar to the ones explicitly in Section 2.4: in order to remove some small
oscillations in the internal velocity near R1, we needed to use a finer mesh,
which meant a greater computational cost for every time step. We can do only
a qualitative comparison between the numerical solution of this section and the
explicit solution in Section 2.4 because we do not have available and precise
physiological data of the lymph node and we have an error in both cases: in
the explicit result from the truncation of the sum, and here due to the finite
element approximation. Qualitatively, we have the same behavior and values
here and in the explicit result.
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Fig. 6 Normal component of the velocity in mm/s with respect to the radius at different
angles at t = 1 s. The first graph corresponds to the tangential velocity in the LC (porous
part), and the second corresponds to the tangential velocity in the SCS (free-fluid region).

3.2 Numerical results

In this Section we want to show a more complete numerical simulation using
the method given in Section 3.

We use a spherical idealized 2D geometry with the same parameters given in
Section 2.2; hence we suppose that the permeability tensor K is homogeneous
and constant (this is not a limiting assumption, see [4, 13, 18]) and the same
with the slip tensor B = βI. Moreover, we add to the simulation domain a
part to the inlet and outlet lymphatic vessel (see Figure 10 and Figure 8).

As we mention in Section 2.2, more than 90% of the lymph takes a periph-
eral path; the lymph that enters in the LC does not remain in the LC but gets
out due to the incompressibility of the lymph, because we are not taking into
account the fluid exchange behavior given by the blood vessels inside the LN.
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Fig. 7 Shear stress in mPa with respect to the polar coordinates calculated at a fixed radius
r = R1 in different times.

The inlet condition is imposed in the upper lymphatic vessel as a uniform
pulsatile flow in the y direction with the equation (27).

For the outlet condition, we need to fix the stress. For clarity and for a
simpler interpretation, we fix the pressure p̄(t) in this way:[∫

ΓS
N

Tw · ndS

]
|p̄

=

[∫
ΓS
N

(
−pI+ µ

[
∇v +∇vT

])
w · ndS

]
|p̄

=

=

∫
ΓS
N

(
−p̄I+ µ

[
∇v +∇vT

])
w · ndS.

We use the numerical parameters given in Section 3.1. In Figure 8, we
can see the pressure distribution in the LN with p̄ = 6.18 × 105f(t)mPa (=
6.3 cmH2O as the inferior limit in the range of pressure found in [41] and as in
the explicit results in Section 2.4), where f(t) is the one given by the equation
(41). As we can see, the pressure distribution is similar to the one in Figure 1
and it is in range with the corresponding results. If one has p̄ = 4×105f(t)mPa
(= 3mmHg as in [13]), the behavior of the pressure is similar to the one showed
in Figure 8 (so that we omit the picture), with a range of values comparable
to [13].

In Figure 9, we can see the shear stress over time (in mPa). At time t = 1 s,
we have the maximum value of the velocity (and, consequently, of the shear
stress) and the shear stress is similar to the one found in the explicit result
(the blue curve with vin ≈ 0.22 plotted in Figure 2), that is in range with the
values found in [10, 13].

We can see the norm and the velocity behavior in more details in Figure
10. The tangential velocity (the most relevant one) is shown in Figure 11. As
expected, the maximum velocity is in the SCS near the inlet and the outlet
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Fig. 8 Pressure distribution in mPa with fixed pressure p̄ = 6.18× 105 mPa at outlet.
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Fig. 9 Shear stress in mPa with respect to the polar angle (θ = 0 near the inlet flow and
θ = π near the outlet flow) calculated at different times.

region. In particular, we can see that the maximum velocity is between the
connections of the SCS with the afferent/efferent vessel; then the velocity
decrease with respect to the polar coordinate θ, reaching the minimum at
θ = π/2. Moreover, even if we do not impose the outlet velocity equal to the
inlet one, we have that this is true due to the incompressibility; hence our
assumption used to find the explicit solution is not too limiting in this case.

Conclusion

We proposed a model that describes the pulsatile lymph flow inside a simplified
spherical lymph node (LN), using the Darcy-Brinkman equation to describe
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Fig. 10 Velocity magnitude in mm/s at t = 1 s (maximum velocity).

the lymph flow in the lymphoid compartment (LC, the porous part) and the
Stokes equation to describe the flow inside the subcapsular sinus (SCS, the free
fluid region). We found the explicit solution in terms of Gegenbauer polynomi-
als and we showed the trend of the velocity, the pressure and the shear stress
inside the LN; after that, we used this explicit solution to validate the numer-
ical simulations of the model. Finally, we performed a more general numerical
simulation with finite elements.

This model allows to better understand the fluid behavior inside the LN and
how it changes with respect to time. The results obtained by our model are in
agreement with the literature [10, 13–15, 18]. We remark that the Ochoa-Tapia
boundary condition minimally affects the fluid behavior in the SCS. Still, it
affects the flow in the LC, inducing a velocity profile which is not smooth at
the interface between the LC and SCS regions.

Particular attention was paid to the shear stress, because a lot of biological
phenomena in the LN depend on it. Among them is the cell adhesion to the
exterior of the LC, which is proportional to the shear stress: this is important
because inside the LC there is a connection between the lymphatic system
and the blood system, and some cells can get access from here to the blood
circulation (for instance, tumor cells [10]). Moreover, shear stress drives drug
delivery and can affect pathologies like B-cell lymphoma [8, 9]. In our model
we found that the shear stress is higher near the inlet and the outlet regions,
and decreases with respect to the polar angle θ, reaching the minimum at
θ = π/2; hence we believe that the majority of the cell adhesion is located
near these two critical regions, which are the connections of the SCS with the
afferent/efferent vessels.

Let us now make some considerations that can be interesting to improve
the model in future. Here we have proposed to use a spherical geometry, but
in general the LNs have a spheroidal shape [13–15, 17].
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Fig. 11 Tangential component of the velocity in mm/s with respect to the radius at different
angles at t = 1 s. The first graph corresponds to the tangential velocity in the LC (porous
part), and the second corresponds to the tangential velocity in the SCS (free-fluid region).

For simplicity, we did not take into account the fluid exchange inside the
LN between the lymph in the fibroblastic reticular cells FRC and the blood in
the capillaries, although it is important for the fluid regulation of the LN [47];
a further extension of this work could take this phenomenon into account.

Moreover, in order to close our model and to find the unknown constants in
the explicit solution, we used the Ochoa-Tapia boundary conditions, although
other boundary conditions can be taken into consideration. For instance, a
common choice is to impose the continuity also of the shear stress at the
interface, which is tantamount to choose β = 0 in eq. (40). Using the same
technique, one can address the more general conditions given in [48, 49], where
there is a discontinuity also of the tangential velocity and the normal stress.

Another interesting and important extension of this model would be to
couple the flow in the lymph node with the flow in the lymphangion, in order
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to have more realistic time pulsation and see how the lymph node affects and
regulates the global lymph circulation [20, 39, 40].
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