STABILITY OF AN ALGORITHM, FROM THEORY TO
PRACTICE

MAURIZIO PAOLINI

In teoria la pratica corrisponde alla
teoria, in pratica no.

Alfio Quarteroni

1. PRELIMINARIES

The model problem that we choose in order to show concepts like “stability”
and “well-conditioning” is the computation of log(l 4+ z). We studied in class
its condition number, and concluded that the problem is ill-conditioned only for
x &~ —1. In particular it is well-conditioned for small values of z, i.e. |z| << 1, the
case in which we are particularly interested.

When studying the condition number we assume that the elementary functions
involved are computed exactly. This is not the case when we practically perform
the computation with some device, either when manually performing the operations
one by one with a pocket calculator or when the computation is part of a computer
program.

Indeed, when we speak of “algorithm” we also conventionally take into account
the errors generated by each elementary operation as a result of the roundoff to
a machine number. As we saw, all generated errors are bounded by eps, a small
constant that depends on the floating point system that we are using. We might
have control on the floating point system when using a high level language on a
computer (chosing between single or double precision, for example), but often the
floating point system is given for a given device. This is the case of the pocket
calculators.

An algorithm can be described as, for example,

flt(log(l + 2)) (1)

by which we mean that in the expression given as argument to f1t all elemen-
tary operations must be substituted by the corresponding approximated operation
performed by the computer, moreover, the quantity z is itself approximated (by
rounding) into a machine number. It is important to note that we are not allowed
to apply the usual arithmetic properties of the elementary functions inside the ex-
pression, since the approximated counterpart of the elementary operations do not
usually satisfy these properties. For example, the algorithm above is different

from the algorithm
1t (xlog(l +3:)) @)
(I+2)—1
although the two expressions are mathematically equivalent (at least for = # 0).
As we saw, the first algorithm (1]) is unstable for |z| << 1. Tt is ill-conditioned
because the logarithm greatly amplifies the (small) error generated by the sum; on
the contrary we already said that the problem is well-conditioned: Karg >> K.
The first algorithm is stable for all other values of : = >> 0 and = =~ —1.
What is the conditioning of the problem and of the algorithm in these two regimes?
1

2 MAURIZIO PAOLINI

Strangely (this was the first assignment of the homework) the second algorithm
is stable also in the critical regime |z| << 1.

Ok, This is the theory. But what happens in practice? Did we only make a weird
theoretical analysis, or is this what really happens during real computations?

Remark 1.1. The algorithm does not work when £1t(1 + z) = 1, which is
possible even for nonzero (but very small) values of . In this event the algorithm
is required to simply return £1t(x) (can you justify this?) We shall however deal
with cases when this does not happen.

2. CHOOSING THE DEVICE

I grabbed an old pocket calculator and used it to actually perform the compu-
tations above. For the records: it is a Texas Instruments “TI-30Xa” model. It
uses scientific notation (this is common for almost all pocket calculators) and in
particular it is able to compute natural logarithms (the button labelled) It
also has a few memory registers; they are useful to store the z value (registry 1)
and the result of £1t(1 + z) (registry 2).

Of course I do not expect that you posses the same calculator, however I urge
you to perform the calculations shown below on various devices. They could be:

e a pocket calculator (having at least the possibility to compute the log);

e a desktop pc or a laptop, using a computer program, or through some
computational environment, such as matlab, or octave, or scilab or others
(R?);

e a desktop pc or a laptop, through an emulated calculator (such as kcalc
of KDE;

e a smartphone, using an app;

e a web emulator.

Each choice has it’s own floating point system, in particular a base S and a
precision p, however we can safely assume that 8 is either 10 or 2 (or perhaps a
power of 2), and that p is at least 10 if 5 = 10.

3. CHOOSING x

We are interested in the || << 1 regime, so we shall select a specific small
nonzero value of x > 0. It cannot be too small, otherwise £1t(1 +) = 1 and
we cannot use algorithm . Moreover we want the rounding error of the sum
to be nonzero, otherwise there would be no error to be amplified by the log (the
ill-conditioned operation). In other words we want 2 such that its floating point
representation is not finite (i.e. it has an infinite number of nonzero digits). Given
that § = 10 or 8 = 2 (or a power of 2), a fraction like 1/3 has such an infinite
floating point representation.

Furthermore we can assume that the calculator has at least 10 decimal digits
in its mantissa (for pocket calculators); ambients like those mentioned above all
use double precision, with a machine error much smaller than that of a pocket
calculator.

The choice
1

r=3- 1078 (3)

satisfies the above criteria, so we shall stick with that choice.

STABILITY OF AN ALGORITHM, FROM THEORY TO PRACTICE 3

4. EXACT VALUE

We could be tempted to simply ask a computer to compute the value of log(1+x)
with = given by (3)). Just to give an example, here is the result obtained using
python

$ python

Python 2.7.10 (default, Sep 8 2015, 17:21:32)
[...]

>>> from math import *

>>> x=1./3. * le-8

>>> x

3.3333333333333334e-09

>>> log(1+x)

3.333333381534409e-09

One is tempted to take for granted all the displayed digits (exept possibly the
last one), however the result is wrong already in its ninth decimal place (digit ‘8’).
Indeed, the log function is concave (negative second derivative), so that the value
is always below the value of the tangent at 1. In our case this means log(1l + z) <
x = 3.33333333333... - 107°. This inaccuracy is not surprising: it is exactly the
instability of the first algorithm that is causing such a large error.

Since z is quite small, we can use the Taylor expansion

1 1

to obtain the much more accure value z ~ 3.333333327777778 - 10~2:

$ python

Python 2.7.10 (default, Sep 8 2015, 17:21:32)
[...]

>>> x=1.0/3.0*1e-8

>>> x-1.0/2.0*%x*x+1.0/3.0*x*x*X
3.333333327777778e-09

the same result would have been obtained also with one less term in the Taylor
expansion.
We can test with python the correctness of the second algorithm (2))

$ python

Python 2.7.10 (default, Sep 8 2015, 17:21:32)
[...]

>>> from math import *

>>> x = 1./3%1e-8

>>> x*log(1+x)/((1+x)-1)
3.3333333277777775e-09

and indeed we see an error only in the last place (the 16-th), which is compatible
with the underlying double-precision floating point system and the stability of the
second algorithm .

5. UsING THE TI-30XA...

The sequence of keystrokes [=] produces

for = a displayed value of 3.333333333 - 10~° which we store in the first memory
register. It is quite common that the internal precision of a pocket computer is a

4 MAURIZIO PAOLINI

bit larger than what is apparent looking at the display, we can expect a few more
digits of precision, usually two or three.

Without entering into the detail of keystroke sequences, here is the final result
given by the two algorithms

algorithm (T): 3.330366975 - 10~
algorithm (2): 3.333700676 - 10~°

The second algorithm is indeed slightly better than the first. However, stability
of the algorithm should lead to a result with an error comparable with the machine
error, which in our case means about 10 decimal places. On the contrary, we obtain
only 4 correct digits!

6. EXERCISES

Problem for you: is there an explanation for this bad performance of the
second algorithm?

Hint 1: Computing the expression £1t((1 + x) — 1) with the pocket calculator
gives

£f1t((1+x) — 1) — 3.33-107°

Can you deduce from this the values of 5 and p of the floating point representation
used by the pocket calculator?

Hint 2: Compute the exact value (at least the first 12 significant digits) of
log(1+ 3.33 - 1079).

Hint 3: Does the pocket calculator adhere to the IEEE standard about the
computed value of the elementary operation log?

If possible, try to perform the same computations with a different device and
compare the results with those obtained with the TI-30Xa.

	1. Preliminaries
	2. Choosing the device
	3. Choosing x
	4. Exact value
	5. Using the TI-30Xa...
	6. Exercises

