Marco Antonio Pellegrini

Associate professor in Algebra
Department of Mathematics and Physics, Università Cattolica del Sacro Cuore

Research Interests


  Group Theory


  (2,3)-generation of finite simple groups:

  1. M.A. Pellegrini, M.C. Tamburini Bellani, The (2,3)-generation of the finite simple odd-dimensional orthogonal groups, J. Austral. Math. Soc. 117 (2024), 130--148.
  2. M.A. Pellegrini, M.C. Tamburini Bellani, The (2,3)-generation of the finite 8-dimensional orthogonal groups, J. Group Theory 26 (2023), 333--356.
  3. M.A. Pellegrini, M.C. Tamburini Bellani, On the (2,3)-generation of the finite symplectic groups, J. Algebra 598 (2022), 156--193.
  4. M.A. Pellegrini, M.C. Tamburini Bellani, The (2,3)-generation of the finite unitary groups, J. Algebra 549 (2020), 319--345.
  5. M.A. Pellegrini, The (2,3)-generation of the special linear groups over finite fields, Bull. Austral. Math. Soc. 95 (2017), 48--53.
  6. M.A. Pellegrini, M. Prandelli, M.C. Tamburini Bellani, The (2,3)-generation of the special unitary groups of dimension 6, J. Algebra Appl. 15 (2016), 1650171, 12 pages.
  7. M.A. Pellegrini, The (2,3)-generation of the classical simple groups of dimension 6 and 7, Bull. Austral. Math. Soc., 93 (2016), 61--72.
  8. M.A. Pellegrini, M.C. Tamburini Bellani, The simple classical groups of dimension less than 6 which are (2,3)-generated , J. Algebra Appl. 14 (2015), 1550148, 15 pages.
  9. M.A. Pellegrini, M.C. Tamburini Bellani, Scott's formula and Hurwitz groups, J. Algebra 443 (2015), 126--141.
  10. M.A. Pellegrini, M.C. Tamburini, Finite simple groups of low rank: Hurwitz generation and (2,3)-generation, Int. J. Group Theory 4 (2015), 13--19.
  11. M.A. Pellegrini, M.C. Tamburini Bellani, M.A. Vsemirnov, Uniform (2,k)-generation of the 4-dimensional classical groups, J. Algebra 369 (2012), 322--350.
  12. M.A. Pellegrini, M.C. Tamburini, Hurwitz generation of the universal covering of Alt(n), J. Group Theory 13 (2010), 649--657.

  Regular subgroups:

  1. M.A. Pellegrini, Regular subgroups, nilpotent algebras and projectively congruent matrices, Int. J. Group Theory 7 (2018), 51--56.
  2. M.A. Pellegrini, Isomorphism classes of four dimensional nilpotent associative algebras over a field, Linear Algebra Appl. 533 (2017), 132--160.
  3. M.A. Pellegrini, M.C. Tamburini Bellani, Regular subgroups of the affine group with no translations, J. Algebra 478 (2017), 410--418.
  4. M.A. Pellegrini, M.C. Tamburini Bellani, More on regular subgroups of the affine group, Linear Algebra Appl. 505 (2016), 126--151.

  Characters and representations of finite groups:

  1. N. Grittini, M.A. Pellegrini, Sylow normalizers and irreducible characters with small cyclotomic field of values, J. Algebra 608 (2022), 445--464.
  2. L. Di Martino, M.A. Pellegrini, A.E. Zalesski, Almost cyclic elements in cross-characteristic representations of finite groups of Lie type, J. Group Theory 23 (2020), 235--285.
  3. M.A. Pellegrini, Irreducible p-constant characters of finite reflection groups, J. Group Theory 20 (2017), 911--923.
  4. M.A. Pellegrini, A. Zalesski, Irreducible characters of finite simple groups constant at the p-singular elements, Rend. Sem. Mat. Univ. Padova 136 (2016), 35--50.
  5. M.A. Pellegrini, A.E. Zalesskii, On characters of Chevalley groups vanishing at the non-semisimple elements, Internat. J. Algebra Comput. 26 (2016), 789--841.
  6. M.A. Pellegrini, A description of the Steinberg character using Gelfand-Graev characters, Results Math. 67 (2015), 71--85.
  7. L. Di Martino, M.A. Pellegrini, A.E. Zalesski, On generators and representations of the sporadic simple groups, Comm. Algebra 42 (2014), 880--908.
  8. L. Di Martino, M.A. Pellegrini, Th. Weigel, Minimal irreducibility and the unipotent characters of groups of type B_m and C_m, J. Algebra Appl. 8 (2009), 413--451.
  9. M.A. Pellegrini, On the minimal irreducibility of the unipotent characters of the finite unitary groups, Ischia group theory 2008, 209--232, World Sci. Publ., Hackensack, NJ, 2009.
  10. M.A. Pellegrini, The character table of a split extension of the Heisenberg group H_1(q) by Sp(2,q), q odd, Ricerche mat. 57 (2008), 311--320.
  11. M.A. Pellegrini, Finite simple groups admitting minimally irreducible characters of prime power degree, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), 613--621.
  12. M.A. Pellegrini, A generalized Cameron-Kantor theorem, J. Algebra 304 (2006), 397--418.

  Other works:

  1. M.A. Pellegrini, 2-coverings for exceptional and sporadic simple groups, Arch. Math. 101 (2013), 201--206.
  2. M.A. Pellegrini, P. Shumyatsky, Coprime commutators in PSL(2,q), Arch. Math. 99 (2012), 501--507.

  Combinatorics and Graph Theory


  Heffter arrays, magic rectangles and related problems:

  1. F. Morini, M.A. Pellegrini, Signed magic arrays: existence and constructions, Preprint (2024).
  2. F. Morini, M.A. Pellegrini, S. Sora, On a conjecture by Sylwia Cichacz and Tomasz Hinc, and a related problem, Preprint (2024).
  3. M.A. Pellegrini, T. Traetta, Towards a solution of Archdeacon's conjecture on integer Heffter arrays, Preprint (2024).
  4. F. Morini, M.A. Pellegrini, Magic partially filled arrays on abelian groups, J. Combin. Des. 31 (2023), 347--367.
  5. F. Morini, M.A. Pellegrini, Rectangular Heffter arrays: a reduction theorem, Discrete Math. 345 (2022), 113073, 17 pages.
  6. F. Morini, M.A. Pellegrini, Magic rectangles, signed magic arrays and integer λ-fold relative Heffter arrays, Australas. J. Combin. 80 (2021), 249--280.
  7. S. Costa, M.A. Pellegrini, Some new results about a conjecture by Brian Alspach, Arch. Math. 115 (2020), 479--488.
  8. S. Costa, A. Pasotti, M.A. Pellegrini, Relative Heffter arrays and biembeddings, Ars Math. Contemp. 18 (2020), 241--271.
  9. F. Morini, M.A. Pellegrini, On the existence of integer relative Heffter arrays, Discrete Math. 343 (2020), 112088, 22 pages.
  10. S. Costa, F. Morini, A. Pasotti, M.A. Pellegrini, A generalization of Heffter arrays, J. Combin. Des. 28 (2020), 171--206.
  11. S. Costa, F. Morini, A. Pasotti, M.A. Pellegrini, Globally simple Heffter arrays and othogonal cyclic cycle decompositions, Australas. J. Combin. 72 (2018), 549--593.
  12. S. Costa, F. Morini, A. Pasotti, M.A. Pellegrini, A problem on partial sums in abelian groups, Discrete Math. 341 (2018), 705--712.

  Buratti-Horak-Rosa Conjecture and related problems:

  1. M. Meszka, A. Pasotti, M.A. Pellegrini, The seating couple problem in even case, Discrete Math. 347 (2024), 114182, 13 pages.
  2. M.A. Ollis, A. Pasotti, M.A. Pellegrini, J.R. Schmitt, Growable realizations: a powerful approach to the Buratti-Horak-Rosa conjecture, Ars Math. Contemp. 22 (2022), #P4.04.
  3. M.A. Ollis, A. Pasotti, M.A. Pellegrini, J.R. Schmitt, New methods to attack the Buratti-Horak-Rosa conjecture, Discrete Math. 344 (2021), 112486, 20 pages.
  4. A. Pasotti, M.A. Pellegrini, A Generalization of the Problem of Mariusz Meszka, Graphs Combin. 32 (2016), 333--350.
  5. A. Pasotti, M.A. Pellegrini, On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs, Electron. J. Combin. 21 (2014), #P2.30.
  6. A. Pasotti, M.A. Pellegrini, A new result on the problem of Buratti, Horak and Rosa, Discrete Math. 319 (2014), 1--14.

  Cyclic cycle systems:

  1. A. Pasotti, M.A. Pellegrini, Cyclic uniform 2-factorizations of the complete multipartite graph, Graphs Combin. 34 (2018), 901--930.
  2. F. Merola, A. Pasotti, M.A. Pellegrini, Cyclic hamiltonian cycle systems of the complete multipartite graph: even number of parts, Ars Math. Contemp. 12 (2017), 219--233.
  3. A. Pasotti, M.A. Pellegrini, Symmetric 1-factorizations of the complete graph, European J. Combin. 31, no. 5, (2010), 1410--1418.

  Other works:

  1. A. Zazio, A. Pasotti, M.A. Pellegrini, C. Miniussi, M. Bortoletto, Inter-area communication within the motor network: Prestimulus functional connectivity predicts TMS-evoked responses, Clinical Neurophysiology 131 (2020), Pages e72--e73.