Review of calculus and introduction to smooth
manifolds
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1 The differential

Let U C R™ be an open set in R" endowed with the Euclidean topology. Let
f U — R™ be a smooth function. The differential of f is

d.f : R" —R™
v = dof(v) = fi, (v)

and it is explicitly given by
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where the matrix appearing in the last equation is called Jacobian and it
is denoted as Jf(z). Denote with 0/0x; the j-th vector of the canonical
basis in R™ and 0/0y; the j-th vector of the canonical basis in R™. The j-th
column of the Jacobian matrix is 0f/0x? := J f(x) 8/0x;. Thus, making use
of the Einstein summation convention, we have
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where y = f(x).
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Example 1.1 (Geometric interpretation). Let us consider the function f :
R? — R such that f(z,y) := 22+y?>+1. Fix P € R?, themap dpf : R> = R

is given by
deste) = (3P ) ().

It has graph the plane tangent in P at the graph of the function f translated
in the origin.

Example 1.2 (Mechanical interpretation). Let us recall that, given a smooth
function g : R™ — R*, one has (by the chain rule)

da:(g o f) = df(x)g o da:f

Let 7y : [a,b] — R™ be a curve in R™ with v(0) = x and let f be as before;
then the function F' := f o~ is a curve in R™ with

dF  Of dy?
dt 0y dt’
and in particular one has
dF

S(0) = £, (5(0)).

In general, a smooth map f : R” — R™ transforms curves in R" through z
into curves in R™ through f(z), and [, relates their corresponding velocity
vectors.

2 The implicit function theorem and its con-
sequences

Example 2.1. Let f: R? — R be f(z,y) =y — 22 Set
L=[f10)={(x,y) eR* : y =2}
There exists ¢ : R — R such that
(z,y) € f7H(0) &y =o(x).
Example 2.2. Let f: R? = R be f(z,y) = 2% +y? — 1. Set

L=f10)={(x,y) €R*: 2?2 +¢y* =1}.



Fix A := (24, ya) = (0,1) and (—¢,¢) a neighborhood of x4 in R. There
exists ¢ : (—¢,e) = R such that

V(z,y) € (—e,6) x (V1 —¢e2,1+¢)st. (z,y) € f1(0) &y =d).
Clearly ¢(z) = v1 — 22

Example 2.3. Let f: R? — R be the function f(z,y) = 2? — y%. Is there ¢
as in the previous example?

Theorem 2.1 (Implicit Function Theorem). Let U be an open set in R xR™,
(x,y) € U and f : U — R™ a smooth function. Let us suppose that f(x,y) =
0 and that w — d(g4) f(0,w) is an isomorphism.
Then there exist an open neighborhood V' of x and an open neighborhood
W of y and a smooth function ¢ : V. — R™ such that ¢(V) C W, ¢(x) =y
and
VEEV,¥neW 1 f(E) =0 <= n=0(c).

Proof. See Approfondimenti di Analisi Matematica. O

Example 2.4. Let f(x,y) = 2+ y*—1. Consider, for example, the point A4;
we have 0f /0y (A) # 0. The function ¢ : (—¢,e) — R with ¢(z) = V1 — 22
has as graph the circle in a neighborhood of A.

At the point B = (1,0) (see the figure below) one has df/dy (1,0) =
2-(0) = 0 and thus we can not apply Theorem 2.1 (the tangent line to the
circle at B is vertical). Notice that 0f/dz (1,0) # 0. In fact, there exists
¢ : Uy, — Rsuch that ¢(y) = /1 — 42

N
N

Remark 2.1 (Sard’s Theorem). Let f be a smooth function. Define Crit(f)
the subset of points in dom(f) such that the differential is not subjective.
Then f(Crit(f)) has Lebesgue measure 0.

Definition 2.1 (Submersion). Let U € R™ be an open set and n > m. A
smooth function f : U — R™ is called submersion at x if d; f is surjective.
If it is true for all x € U, we say simply submersion.

Example 2.5 (Canonical submersion). Let 7 : R""* — RF the projection
into the first k factors. It is a submersion.



3 Constant rank theorem

A necessary condition for f : U — R” to be a local diffeomorphism at 7 is
that dzf be an isomorphism. The following theorem states that this linear
condition is also sufficient.

Theorem 3.1 (Inverse Function Theorem). Let z € U CR", f: U — R"”
be smooth and let us suppose that dz f is an isomorphism.

Then there exists an open neighborhood V- C U of x such that f(V') is
open in R™ and f|y : V — f(V) is a diffeomorphism. Furthermore for each
y € f(V) one has

_ —1
dy(f ™) = (A f) -
Proof. See Approfondimenti di Analisi Matematica. O

Remark 3.1. The differential d;f is simply a single linear map, which we
may represent by matrix of numbers and it is nonsingular when its deter-
minant is nonzero. Thus the Inverse Function Theorem tells us that it is
sufficient to check if a single number is nonzero to know whether f is a
diffeomorphism in a neighborhood of z.

Theorem 3.2 (Constant Rank Theorem). Let z € U CR", f: U — R™ be
smooth and let us suppose that d, f has constant rank k for each x € U.

Then there exist two open sets V. C R™ and W C R™, and two diffeomor-
phisms F : V. — F(V) CR" and G : W — G(W) C R™ such that z € V
and

(GofoF ) (x)=(x1,...,74,0,...,0),
for each x € U.

Proof. Let £ € R¥ and n € R"* such that (£,7) € U; there exist f; : U —
R™* and f, : U — R¥ such that

f(f)”) = (fl(ga’r})v f2(£an))

and dz f; has rank k (dzf; is represented by a k x n matrix).
Define F': U — R" as

by Theorem 3.1 there exists a neighborhood V' C U of Z such that F|y :
V — F(V) is a diffeomorphism and F(V') can be chosen connected.
There exists a smooth function g : F(V) — R™* such that

FIETHE ) = (&, 9(,m).
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Since d(foF ™) = df odF~! and dF is bijective, it follows that rk (d(f o F7!)) =
rk (df) = k on F (V). Explicitly one has

» I 0
J(f oF ) = * (QZS)T:;H_l 77777 n on F(V),
s=k+1,....m

then necessarily g; = 0 on F (V') and thus g does not depend on 7. We write
G : R¥ — R™ % for the restriction of g to the first k& components. It is now
sufficient to define G : W — G(W) where G(u,v) := (u,v — g(u)).

0

Definition 3.1. Let U C R" be an open set. The set

S ={(x1, - g, Tha1, - Tp) EU : Thy1 = Chst, -+, Tn = Cn},
for some constants ¢; € R, is called k-slice.
Remark 3.2. Instead of saying “there exist two open sets V. C R™ and
W C R, and two diffeomorphisms ¢ : V. — ¢(V) C R" and v : W —
(W) C R™” we will write “there exist coordinates (x1,...,x,) centered in

x and (y1,...,Yyn) centered in y”.

Example 3.1 (Curves in R?). Let f : R?> — R be a smooth function. We
would like to study the cases when the O-level set of f is a curve in R2.
Assume 0f /0y # 0. Then locally there exists a unique ¢ : I — R such that

[t 0(t)) = 0.
Let us consider the function ¢ : I — R2, o(t) = (¢, ¢(t)). The function
F :p(U) - R?
(1, 22) = (21, f (21, 72))
is a diffeomorphism on an open set V' C o(U), since
det(JF) = det (1 0) # 0.
fac Yy

Notice that F o ¢(t) = (¢,0), and thus we found coordinates as in Theorem
3.2.

For example, if f is as in Example 2.4, the function F' is given by
F(z,y) := (z,2* + y* — 1), see the figure below.




Example 3.2 (Surfaces in R?). In a similar way as in the previous example
let us consider the level set of a smooth function f : R® — R with f,(z) # 0,
where © = (z1, 79, 23) € R? is such that f(x) = 0. Then, locally around =,
there exists a function ¢ : R?* — R such that f(&;, &, ¢(&1,&)) = 0.

The function

F :p(U) > R?
(51752753) = (§1a€27 f(§1a§2a€3))

has non-singular Jacobian in x, and thus locally (in a neighborhood of z) is
a diffeomorphism. If we set ¢ : R? — R? with ¢((z,y)) = (2,9, ¢(z,y)), we
obtain the same result as in Theorem 3.2:

F(p(&1,&)) = (&1,&,0).

4 Immersion and Embedding

Definition 4.1 (Immersion). Let U € R™ be an open set and m > n. A
smooth function f : U — R™ is called immersion at z if dz f is injective. If
it is true for all x € U, we say simply immersion.

Example 4.1 (Canonical Immersion). Let us consider ¢ : R® — Rk
xy, ... xn) = (21,...,2,,0,...,0) is an immersion. The Theorem 3.2 states
that an immersion is equivalent (in the sense of Remark 3.2) to the canonical
immersion.

Example 4.2. The curve v : R — R?, ¢ — (¢, |t|) is not smooth in ¢t = 0 and
thus it is not an immersion.

Example 4.3. The curve v : R — R? ¢ s (#3,¢%) is not an immersion at
t = 0. Indeed +'(0) = (0,0).

Definition 4.2 (Embedding). An embedding f : U — R™ is an immersion
which is also an homeomorphism onto its image.



Example 4.4. The curve v : R — R? ¢+ (3 — 4¢,t* — 4) is an immersion,
since its derivative 7/(t) = (3t? — 4,2t) # 0 for each ¢ € R; but it is not an
embedding since v(2) = y(—2).

Example 4.5. The curve v : (—3,0) — R?,

0,—(t+2) ifte(-3,-1)
y(t) = { regular curve ifte (—1,—1%)
(—t,—sint) ifte(—21,0)

is an immersion without self intersections (see the figure below). Neverthe-
less, 7y is not an embedding. Let us consider a neighborhood V' of the point p
in R?, see the figure below; the blue set V' N ~v((—3,0)) is a neighborhood of
the point p in the topology on v(I), induced from R? and it is not connected.
Now, notice that v(—1) = p. Take the interval (-1 — €, —1 +¢€) in I,

an open interval containing —1. The pre-image via y~! of this set is not a
neighborhood of p. Thus 4! is not continuous.

4

m[\ /\ q = (I/m 0)
0 X
p =10, -1)

\

Example 4.6. Let us consider the map exp : R — R. Its differential is
given by
d.f :v—e" v

and it is an isomorphism. Thus exp is an embedding and a submersion.
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5 Submanifolds of R”

Definition 5.1. A subset M C R” is a submanifold if for each x € M
there exist an open neighborhood U of x in X, m > 0 and a smooth map
g : U — R™ such that

o MNU={{eU : g(§) =0},
e ¢ is a submersion in p, for each p € M NU.

Example 5.1 (Surfaces in R?). We can define a surface S in R? as the zero
level set of a function f € C*(R?,R) which is a submersion for each x € S.
For example, let us consider

f((CCl,ZL‘Q,ZE;),)) = ZE% —f—l’% —|—ZE§ - 1.

The zero level set of this function is the sphere S2. The differential of f is
given by

de f(v) = 22101 + 22909 + 22303 = 2 (2, V) .
For each x € S? we have d, f(z) = 2]|z||? # 0.

Definition 5.2. Let M be a submanifold. For each z € M we denote with
T, M the set of v € T,R" such that there exist 6 > 0 and a smooth map
v : (=9,6) — R™ such that

Vi e (=0,0): v(t) e M, ~(0)==x and ~'(0)=w.

Theorem 5.1. Let M be a submanifold of R™ and g be a smooth map. We
have
T.M = ker (d,g) .

Proof. First let us prove
T.M C ker (dg) .
Let v € T, M and ~ as in the previous definition. Since g oy = 0, one has
dog(v) = d,(0)9(+'(0)) = (g0 7)'(0) = 0.
Vice-versa let us prove the inclusion

ker (d,g) C T, M.



There exists V such that R = T,R" = ker (d,g) @V, v = 2 4+ 22 where
() € ker (d,g) and 2® € V. Thus

dag, 1 V= R™
is bijective. We need the following Lemma, which is a consequence of the
Dini’s theory.

Lemma 5.1. Let V,W two vector subspace of R™ such that R" = W @ V.
We write © = 2 + 2 where 2N € W and 2® € V. Let us suppose that
g(x) =0 and that the linear map

dagy V= R™
1s bijective.
Then there exist an open set Uy of V) in W, Uy of 2@ in'V and a smooth
map ¢ : Uy — W such that ¢(zV)) = 2@ ¢(U;) C U, and

vg(l) e U, Vf(g) cl, : g(é(l) + 5(2)) =) — 5(2) — ¢(§(1)).
Furthermore, for each €V € Uy and for each v € W

det 1 g(c0)9 (den 9(v™)) = —dea  gemyg (v1)

Let v € ker(d,g) = W, let § > 0 such that (z() + tv) € U, for each

t € (—0,0). Then
v(t) = 2V 4 tv + ¢z 4 tv)
defines a curve with v(0) =z, y(t) € M and
7/(0) =v+d,mo (U) =v.
O]

Example 5.2 (Curves in R?). We have already seen how to define a curve
in R? as the zero level set of a function f € C*(R? R) with f, # 0. This last
condition ensures that f is a submersion.

The tangent space at a point p = (xg, o) is given by those vectors v =
(x,y) such that

fe(p) (& = x0) + fy(P)(y — v0) = 0,
which means v € ker(d,f).
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