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eigenvalues defined by inf sup procedures of Rayleigh ratios for the Luxemburg
norms are all stable under uniform convergence of the exponents.
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1. Introduction and main result

The differential equations and variational problems involving p(x)-growth conditions arise from nonlinear
elasticity theory and electrorheological fluids, and have been the target of various investigations, especially in
regularity theory and in nonlocal problems (see e.g. [1–3,10,16,32] and the references therein). Let Ω ⊂ RN ,
with N ≥ 2, be a bounded domain and let p : Ω̄ → R+ be a continuous function such that

1 < p− := inf
Ω
p ≤ p(x) ≤ sup

Ω
p =: p+ < N for all x ∈ Ω . (1.1)

We also assume that p is log-Hölder continuous, namely

|p(x)− p(y)| ≤ − L

log |x− y| (1.2)

for some L > 0 and for all x, y ∈ Ω , with 0 < |x− y| ≤ 1/2. From now on, we denote by

C :=

p ∈ C(Ω̄) : p satisfies (1.1) and (1.2)


∗ Corresponding author.

E-mail addresses: fracolasuonno@gmail.com (F. Colasuonno), marco.squassina@univr.it (M. Squassina).

http://dx.doi.org/10.1016/j.na.2015.03.023
0362-546X/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2015.03.023
http://www.sciencedirect.com
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2015.03.023&domain=pdf
mailto:fracolasuonno@gmail.com
mailto:marco.squassina@univr.it
http://dx.doi.org/10.1016/j.na.2015.03.023


F. Colasuonno, M. Squassina / Nonlinear Analysis 123–124 (2015) 56–67 57

the set of admissible variable exponents. The goal of this paper is to study the stability of the (variational)
eigenvalues with respect to (uniform) variations of p(·) for the problem

− div

p(x)
 ∇uK(u)

p(x)−2 ∇u
K(u)


= λS(u)p(x)

 uk(u)
p(x)−2

u

k(u) , u ∈W
1,p(x)
0 (Ω), (1.3)

where we have set

K(u) := ∥∇u∥p(x), k(u) := ∥u∥p(x), S(u) :=


Ω

p(x)
 ∇uK(u)

p(x) dx
Ω

p(x)
 uk(u)

p(x) dx
.

Following the argument contained in [21, Section 3], it is possible to derive Eq. (1.3) as the Euler–Lagrange
equation corresponding to the minimization of the Rayleigh ratio

K(u)
k(u) =

∥∇u∥p(x)
∥u∥p(x)

, among all u ∈W 1,p(x)
0 (Ω) \ {0}, (1.4)

where ∥·∥p(x) denotes the Luxemburg norm of the variable exponent Lebesgue space Lp(x)(Ω) (see Section 2).
This minimization problem has been firstly introduced in [21] as an appropriate replacement for the
inhomogeneous minimization problem

Ω

|∇u|p(x)dx
Ω

|u|p(x)dx
, among all u ∈W 1,p(x)

0 (Ω) \ {0},

which was previously considered in [20] to define the first eigenvalue λ1 of the p(x)-Laplacian. In [20],
sufficient conditions for λ1 defined in this way to be zero or positive are provided. In particular, if p(·) has
a strict local minimum (or maximum) in Ω , then λ1 = 0. Arguing as in [21, Lemma A.1], it can be shown
that the functionals k and K are differentiable with

⟨K ′(u), v⟩ =


Ω

p(x)
 ∇uK(u)

p(x)−2 ∇u
K(u) · ∇v dx

Ω

p(x)
 ∇uK(u)

p(x) dx
for all u, v ∈W 1,p(x)

0 (Ω),

⟨k′(u), v⟩ =


Ω

p(x)
 uk(u)

p(x)−2
u

k(u)v dx
Ω

p(x)
 uk(u)

p(x) dx
for all u, v ∈W 1,p(x)

0 (Ω).

Therefore, all the critical values of the quotient (1.4) are eigenvalues of Eq. (1.3) and vice versa. The m-th
(variational) eigenvalue λ(m)

p(x) of (1.3) can be obtained as

λ
(m)
p(x) := inf

K∈W(m)
p(x)

sup
u∈K
∥∇u∥p(x),

whereW(m)
p(x) is the set of symmetric, compact subsets of {u ∈W 1,p(x)

0 (Ω) : ∥u∥p(x) = 1} such that i(K) ≥ m,
and i denotes the Krasnosel’skĭı genus (or, actually, any other index satisfying the properties listed in
Remark 1.4). In [21] existence and properties of the first eigenfunction were studied, while in [7] a numerical
method to compute the first eigenpair of (1.3) was obtained and the symmetry breaking phenomena with
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respect to the constant case were observed. The growth rate of this sequence of eigenvalues was investigated
in [31], getting a natural replacement for the growth estimate for the case p constant (cf. [22,23]),

λ(m)
p ∼ mp/N , λ(m)

p := inf
K∈W(m)

p

sup
u∈K
∥∇u∥pp,

where W(m)
p is the set of symmetric, compact subsets of


u ∈ W 1,p

0 (Ω) : ∥u∥p = 1


having index i greater
than or equal to m.
In this paper we focus on the right continuity of the maps

Em : (C(Ω), ∥ · ∥∞)→ R, Em(p(·)) := λ(m)
p(x), m ≥ 1.

We say that Em is right-continuous if

Em(ph(·))→ Em(p(·)), as h→∞,

whenever p, (ph) ⊂ C , ph → p uniformly in Ω and p(x) ≤ ph(x) for all h ∈ N and x ∈ Ω .
We have the following main result.

Theorem 1.1. Em is right-continuous for all m ≥ 1.

The authors would like to thank Enea Parini for pointing out that the case m = 1, i.e. the stability of the
first eigenvalue, was already treated in [8]. Even if not explicitly stated, also Theorem 1.2 of [8] holds when
(ph)+ < N and p(x) ≤ ph(x) in Ω for all h. Indeed, without the last assumption, the theorem can fail, in
irregular domains, even in the case of constant exponents, as proved in [28, Section 7], see Remark 1.3.

Remark 1.2. For a constant p ∈ (1, N), problem (1.3) reduces to the well-known eigenvalue problem for the
p-Laplacian operator (see e.g. [25,27]), namely

−div(|∇u|p−2∇u) = λ|u|p−2u, u ∈W 1,p
0 (Ω).

In this particular case the continuity of variational eigenvalues has been investigated in [9,24,26,28–30]
and, more recently, in [14] in the presence of a weight function in a possibly unbounded domain Ω . With
exception of [24,26,28], all these contributions tackle the problem by studying the Γ -convergence of the norm
functionals.

Remark 1.3. As pointed out by Lindqvist [28, see Section 7], already in the constant case, the convergence
from below of the (ph) to p does not guarantee the convergence of the eigenvalues, unless the domain Ω is
sufficiently smooth.

Remark 1.4. The same result holds replacing the Krasnosel’skĭı genus with a general index i with the
following properties:

(i) i(K) is an integer greater than or equal to 1 and is defined whenever K is a nonempty, compact and
symmetric subset of a topological vector space such that 0 ̸∈ K;

(ii) if X is a topological vector space and K ⊆ X \ {0} is compact, symmetric and nonempty, then there
exists an open subset U of X \ {0} such that K ⊆ U and i( K) ≤ i(K) for any compact, symmetric and
nonempty K ⊆ U ;

(iii) if X,Y are two topological vector spaces, K ⊆ X \ {0} is compact, symmetric and nonempty and
π : K → Y \ {0} is continuous and odd, we have i(π(K)) ≥ i(K).

Examples are the Krasnosel’skĭı genus and the Z2-cohomological index [17,18].
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The paper is organized as follows. In Section 2 some notions about variable exponent spaces and
Γ -convergence are recalled. Also preliminary results are proved in Section 2, in view of the last section.
Finally, Section 3 contains the proof of Theorem 1.1 and a more general result which can be useful for future
developments.

2. Preliminary results

The variable exponent Lebesgue space Lp(x)(Ω) consists of all measurable functions u : Ω → R having
ϱp(x)(u) <∞, where

ϱp(x)(u) :=

Ω

|u(x)|p(x)dx

is the p(x)-modular. Lp(x)(Ω) is endowed with the Luxemburg norm ∥ · ∥p(x) defined by

∥u∥p(x) := inf

γ > 0 : ϱp(x)(u/γ) ≤ 1


.

The norm ∥ · ∥p(x) is in close relation with the p(x)-modular ϱp(x)(·), as shown for instance by unit ball
property [19, Theorem 1.3] which we report here for completeness.

Proposition 2.1. Let p ∈ L∞(Ω) with 1 < p− ≤ p+ <∞. Then, for all u ∈ Lp(x)(Ω) the following equivalence
holds

∥u∥p(x) < 1 (= 1; > 1)⇐⇒ ϱp(x)(u) < 1 (= 1; > 1).

The variable exponent Sobolev space W 1,p(x)(Ω) consists of all Lp(x)(Ω)-functions having distributional
gradient ∇u ∈ Lp(x)(Ω), and is endowed with the norm

∥u∥1,p(x) = ∥u∥p(x) + ∥∇u∥p(x).

Under the smoothness assumption (1.2), we denote by W 1,p(x)
0 (Ω) the closure of C∞c (Ω) with respect to

the norm ∥ · ∥1,p(x) and we endow W 1,p(x)
0 (Ω) with the equivalent norm ∥∇ · ∥p(x). For further details on

the variable exponent Lebesgue and Sobolev spaces, we refer the reader to [16]. We now recall from [13] the
notion of Γ -convergence that will be useful in the sequel.

Definition 2.2. Let X be a metrizable topological space and let (fh) be a sequence of functions from X to
R. The Γ -lower limit and the Γ -upper limit of the sequence (fh) are the functions from X to R defined by

Γ − lim inf
h→∞

fh


(u) = sup

U∈N (u)


lim inf
h→∞


inf{fh(v) : v ∈ U}


,

Γ − lim sup
h→∞

fh


(u) = sup

U∈N (u)


lim sup
h→∞


inf{fh(v) : v ∈ U}


,

where N (u) denotes the family of all open neighborhoods of u in X. If there exists a function f : X → R
such that

Γ − lim inf
h→∞

fh = Γ − lim sup
h→∞

fh = f,

then we write Γ − limh→∞ fh = f and we say that (fh) Γ -converges to its Γ -limit f .

For any p ∈ C , we define Ep(x) : L1(Ω)→ [0,∞] as

Ep(x)(u) :=

∥∇u∥p(x) if u ∈W 1,p(x)

0 (Ω),
+∞ otherwise

(2.1)
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and gp(x) : L1(Ω)→ [0,∞) as

gp(x)(u) :=

∥u∥p(x) if u ∈ Lp(x)(Ω),
0 otherwise.

Proposition 2.3. The following properties hold:

(a) gp(x) is even and positively homogeneous of degree 1;
(b) for every b ∈ R the restriction of gp(x) to {u ∈ L1(Ω) : Ep(x)(u) ≤ b} is continuous.

Proof. (a) follows easily from the definition of gp(x). (b) Let (un) ⊂ {u ∈ L1(Ω) : Ep(x)(u) ≤ b} converge
to u in L1(Ω) and consider a subsequence (uhn). By (2.1), we know that (uhn) is bounded in W 1,p(x)

0 (Ω)
which is reflexive, hence there exists a subsequence (uhnj ) that converges weakly to ū in W 1,p(x)

0 (Ω). Since
W

1,p(x)
0 (Ω) is compactly embedded in Lp(x)(Ω), cf. [15, Proposition 2.2 and Lemma 5.5], (uhnj ) converges

strongly to ū in Lp(x)(Ω). By the arbitrariness of the subsequence (uhn), we get that the whole sequence
un → ū in Lp(x)(Ω) and also in L1(Ω). Therefore, u = ū and the proof is concluded. �

Lemma 2.4. Let p, (ph) ⊂ C be such that ph → p pointwise. Then, for all w ∈ C1
c (Ω)

lim
h→∞
∥∇w∥ph(x) = ∥∇w∥p(x).

Proof. By means of [16, Corollary 3.5.4], we know that

∥∇w∥p(x) ≤ lim inf
h→∞

∥∇w∥ph(x).

It remains to prove that

∥∇w∥p(x) ≥ lim sup
h→∞

∥∇w∥ph(x).

If ∇w = 0 in Ω , the conclusion is obvious, so we can assume that ∥∇w∥p(x) > 0. By hypothesis, ph → p
pointwise and ph(x) < N for all h ∈ N and x ∈ Ω , hence for all α ∈ (0, 1) α∇w∥∇w∥p(x)

ph(x) →  α∇w∥∇w∥p(x)

p(x) for all x ∈ Ω , α∇w∥∇w∥p(x)

ph(x) ≤ 1 +

α∇w
∥∇w∥p(x)

N
∈ L1(Ω) for all h ∈ N.

Therefore, by the dominated convergence theorem, we obtain

lim
h→∞
ϱph(x)


α∇w
∥∇w∥p(x)


= ϱp(x)


α∇w
∥∇w∥p(x)


≤ αϱp(x)


∇w

∥∇w∥p(x)


= α < 1.

Thus, for h sufficiently large ϱph(x)

α∇w/∥∇w∥p(x)


< 1, which in turn givesα∇w/∥∇w ∥p(x)

ph(x)
< 1

by Proposition 2.1. Whence

lim sup
h→∞

∥∇w∥ph(x) ≤
∥∇w∥p(x)
α

for all α ∈ (0, 1)

and by the arbitrariness of α the assertion is proved. �
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Theorem 2.5. Let p, (ph) ⊂ C be such that ph → p pointwise. Then

Ep(x)(u) ≥

Γ − lim sup

h→∞
Eph(x)


(u) for all u ∈ L1(Ω). (2.2)

Proof. Suppose that Ep(x)(u) < ∞ (otherwise (2.2) is obvious) and take b ∈ R such that b > Ep(x)(u). Let
δ > 0 and w ∈ C1

c (Ω) with ∥w − u∥1 < δ and ∥∇w∥p(x) < b, then ∥∇w∥ph(x) → ∥∇w∥p(x) by Lemma 2.4.
Therefore,

b > lim
h→∞

Eph(x)(w),

and in turn

b > lim sup
h→∞

(inf{Eph(x)(v) : ∥v − u∥1 < δ}).

By the arbitrariness of δ > 0 we get

b ≥

Γ − lim sup

h→∞
Eph(x)


(u)

and since b > Ep(x)(u) is arbitrary, we obtain (2.2). �

Lemma 2.6. Let p, q : Ω → [1,∞) be measurable functions with p(x) ≤ q(x) for a.a. x ∈ Ω . Then Lq(x)(Ω)
↩→ Lp(x)(Ω) with embedding constant less than or equal to

C(|Ω |, p, q) :=

p

q


+

+


1− p
q


+


max{|Ω |(1/p−1/q)+ , |Ω |(1/p−1/q)−}. (2.3)

In particular, C(|Ω |, p, qj)→ 1 whenever qj → p uniformly in Ω .

Proof. For all u ∈ Lq(x)(Ω), by Hölder’s inequality [16, cf. (3.2.23)]

∥u∥p(x) ≤
p
r


+

+

p

q


+


∥1∥r(x)∥u∥q(x),

where 1/r := 1/p− 1/q a.e. in Ω . Moreover, by [16, Lemma 3.2.5], we get

∥1∥r(x) ≤ max{|Ω |1/r− , |Ω |1/r+},

which concludes the proof. �

Theorem 2.7. Let p, (ph) ⊂ C be such that p(x) ≤ ph(x) for all h ∈ N and x ∈ Ω , and ph → p uniformly in
Ω . Then

Ep(x)(u) ≤

Γ − lim inf

h→∞
Eph(x)


(u) for all u ∈ L1(Ω). (2.4)

Proof. If

Γ − lim infh→∞ Eph(x)


(u) = +∞ there is nothing to prove. In the other case, take b ∈ R such that

b >

Γ − lim infh→∞ Eph(x)


(u). By virtue of [13, Proposition 8.1-(b)] there exists a sequence (uh) ⊂ L1(Ω)

such that uh → u in L1(Ω) and
Γ − lim inf

h→∞
Eph(x)


(u) = lim inf

h→∞
Eph(x)(uh).

Hence, there is a subsequence (phn) for which

sup
n∈N

Ephn (x)(uhn) < b.
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Let (vn) ⊂ C1
c (Ω) verify

∥vn − uhn∥1 <
1
n
, Ephn (x)(vn) < b for all n ∈ N.

Then vn → u in L1(Ω) and, by the embedding W 1,phn (x)
0 (Ω) ↩→W 1,p(x)

0 (Ω),

b > ∥∇vn∥phn (x) ≥
∥∇vn∥p(x)
C(|Ω |, p, phn) for all n ∈ N,

where C(|Ω |, p, phn) is given in (2.3) with q = phn and C(|Ω |, p, phn) ≤ 2(1 + |Ω |) <∞ for all n. Therefore,
(vn) is bounded in the reflexive space W 1,p(x)

0 (Ω) and so there exists a subsequence (vnj ) such that vnj ⇀ u
in W 1,p(x)

0 (Ω). By Lemma 2.6 and the uniform convergence of (phnj ) to p,

lim
j→∞
C(|Ω |, p, phnj ) = 1,

and, together with the weak lower semicontinuity of the norm, we get

b ≥ lim inf
j→∞

∥∇vnj∥p(x)
C(|Ω |, p, phnj )

≥ ∥∇u∥p(x) = Ep(x)(u).

In conclusion, by the arbitrariness of b, we obtain (2.4). �

Lemma 2.8. Let p, (ph) ⊂ C be such that ph → p pointwise, u ∈ Lp(x)(Ω), uh ∈ Lph(x)(Ω) for all h, and
uh → u a.e. in Ω . Then

∥u∥p(x) ≤ lim inf
h→∞

∥uh∥ph(x).

Proof. Suppose that lim infh→∞ ∥uh∥ph(x) < ∞ (otherwise there is nothing to prove) and take any α ∈ R
such that α > lim infh→∞ ∥uh∥ph(x). Then there exists a subsequence (phn) for which ∥uhn∥phn (x) < α for
all j. Hence, ϱphn (x) (uhn/α) < 1 and by Fatou’s Lemma

Ω

u
α

p(x) dx ≤ lim inf
n→∞


Ω

uhn
α

phn (x)
dx ≤ 1.

Thus, by Proposition 2.1, ∥u/α∥p(x) ≤ 1, that is ∥u∥p(x) ≤ α. The conclusion follows by the arbitrariness of
α. �

Lemma 2.9. Let p, (ph) ⊂ C and ph → p uniformly in Ω . Then, for every sequence (uh) such that uh ∈
W

1,ph(x)
0 (Ω) for all h, and suph∈N ∥∇uh∥ph(x) <∞, there exists a subsequence (uhn) for which

lim
n→∞
ϱphn (x)(uhn) = ϱp(x)(u).

Proof. Let ε > 0 be such that ε < p− − 1 and ε2 + 2Nε < p2−, then there is h̄ ∈ N for which

p(x)− ε < ph(x) < p(x) + ε for all x ∈ Ω and h ≥ h̄.

By Lemma 2.6,

uh ∈W 1,p(x)−ε
0 (Ω),

∥∇uh∥p(x)−ε ≤ 2(1 + |Ω |)∥∇uh∥ph(x) ≤ 2b(1 + |Ω |) <∞
for all h ≥ h̄,

where b := suph∈N ∥∇uh∥ph(x). Since W 1,p(x)−ε
0 (Ω) is reflexive, there exists a subsequence (uhn) such that

uhn ⇀ u in W 1,p(x)−ε
0 (Ω). Now, it is easy to see that

ε2 + 2Nε < p2− ⇐⇒ p(x) + ε < N(p(x)− ε)
N − (p(x)− ε) = (p(x)− ε)∗ for all x ∈ Ω ,
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therefore W 1,p(x)−ε
0 (Ω) is compactly embedded in Lp(x)+ε(Ω) (see [15, Theorem 5.7]) and so uhn → u in

Lp(x)+ε(Ω). Now, by [3, Lemma B.1], there exist a subsequence, still denoted by (uhn), and a function
v ∈ Lp(x)+ε(Ω) for which uhn → u and |uhn | ≤ |v| a.e. in Ω . Whence, a.e.,

lim
n→∞
|uhn |phn (x) = |u|p(x),

|uhn |phn (x) ≤ 1 + |v|p(x)+ε ∈ L1(Ω) for all n ∈ N.

In conclusion, by the dominated convergence theorem we obtain

lim
n→∞


Ω

|uhn |phn (x)dx =

Ω

|u|p(x)dx,

namely the assertion. �

Theorem 2.10. Let p, (ph) ⊂ C , ph → p uniformly in Ω . Then, for every subsequence (phn) and for every
sequence (un) ⊂ L1(Ω) verifying

sup
n∈N

Ephn (x)(un) <∞,

there exists a subsequence (unj ) such that, as j →∞,

unj → u in L1(Ω),
gphnj (x)

(unj )→ gp(x)(u).

Proof. For ε ∈ (0, p− − 1) and for hn sufficiently large, W 1,phn (x)
0 (Ω) ↩→ W 1,p(x)−ε

0 (Ω), with embedding
constant less than or equal to 2(1 + |Ω |) (cf. [16, Corollary 3.3.4]), then

∥∇un∥p(x)−ε ≤ 2(1 + |Ω |)∥∇un∥phn (x) ≤ 2b(1 + |Ω |),

where

b := sup
n∈N

Ephn (x)(un).

Since W 1,p(x)−ε
0 (Ω) is reflexive, (un) admits a subsequence (unj ) weakly convergent to u in W 1,p(x)−ε

0 (Ω).
Thus, unj → u in L1(Ω) and up to a subsequence unj → u a.e. in Ω . For the second part of the statement,
we have to prove that ∥unj∥phnj (x) → ∥u∥p(x). By Lemma 2.8 we know that

∥u∥p(x) ≤ lim inf
j→∞

∥unj∥phnj (x).

Now, for every real number

α < lim sup
j→∞

∥unj∥phnj (x),

there exists a subsequence, still denoted by (phnj ), for which α < ∥unj∥phnj (x) for all j, and so

1 <

Ω

unj
α

phnj (x) dx,
by Proposition 2.1. Therefore, Lemma 2.9 yields

1 ≤ lim
j→∞
ϱphnj (x)

unj
α


= ϱp(x)

u
α


up to a subsequence, that is ∥u∥p(x) ≥ α again by unit ball property. The conclusion follows by the
arbitrariness of α. �
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We need to show that the minimax values with respect to the W 1,p(x)
0 (Ω)-topology are equal to those with

respect to the weaker topology L1(Ω). To this aim, let W(m)
p(x) be the family of those subsets K of

{u ∈W 1,p(x)
0 (Ω) : gp(x)(u) = 1}

which are compact and symmetric (i.e. K = −K), for which i(K) ≥ m with respect to the norm topology of
W

1,p(x)
0 (Ω), where i denotes the Krasnosel’skĭı genus. Furthermore, denote by K(m)

s,p(x) the family of compact
and symmetric subsets K of

{u ∈ L1(Ω) : gp(x)(u) = 1}

such that i(K) ≥ m, with respect to the topology of L1(Ω).

Theorem 2.11. Let p ∈ C and fp(x) : L1(Ω)→ [0,∞] be convex, even and positively homogeneous of degree 1.
Suppose that there exists ν > 0 such that

fp(x)(u) ≥ νEp(x)(u) for all u ∈ L1(Ω).

Then, for every integer m ≥ 1, we have

inf
K∈K(m)

s,p(x)

sup
K
fp(x) = inf

K∈W(m)
p(x)

sup
K
fp(x). (2.5)

In particular, for all m ≥ 1

inf
K∈K(m)

s,p(x)

sup
K

Ep(x) = inf
K∈W(m)

p(x)

sup
K

Ep(x). (2.6)

Proof. By Proposition 2.3-(b) we know that for all b ∈ R the restriction of gp(x) to the set {v ∈ L1(Ω) :
Ep(x)(v) ≤ b/ν} ⊇ {v ∈ L1(Ω) : fp(x)(v) ≤ b} is L1(Ω)-continuous. A fortiori the restriction of gp(x)
to the same set is continuous with respect to the stronger topology W 1,p(x)

0 (Ω) and (2.5) follows by
[14, Corollary 3.3]. Finally, by definition, the function Ep(x) is convex, even and positively homogeneous
of degree 1. Therefore, the second part of the statement follows immediately by taking ν = 1. �

3. Proof of Theorem 1.1

Due to Proposition 2.3 and the first part of Theorem 2.11, the functionals Ep(x), gp(x), Eph(x) and gph(x)
for all h ∈ N satisfy all the structural assumptions required in Section 4 of [14]. Moreover, by Theorems 2.5
and 2.7, we know that

Ep(x)(u) =

Γ − lim

h→∞
Eph(x)


(u) for all u ∈ L1(Ω).

Therefore, together with Theorem 2.10, all the hypotheses of [14, Corollary 4.4] are verified and so we can
infer that

inf
K∈K(m)

s,p(x)

sup
u∈K

Ep(x)(u) = lim
h→∞


inf

K∈K(m)
s,ph(x)

sup
u∈K

Eph(x)(u)

.

Finally, by (2.6) the last equality reads as

λ
(m)
p(x) = inf

K∈W(m)
p(x)

sup
u∈K

Ep(x)(u) = lim
h→∞


inf

K∈W(m)
ph(x)

sup
u∈K

Eph(x)(u)


= lim
h→∞
λ

(m)
ph(x)

which proves the assertion. �
Actually, the results presented in Section 2 allow us to prove a more general theorem. In order to state

it, we need to recall the notion of asymptotic equicoercitivity.
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Definition 3.1. A sequence (Fh) of functions from a metrizable topological space X to R is said to be
asymptotically equicoercive if, for every strictly increasing sequence (hn) in N and every sequence (un) in X
satisfying

sup
n∈N
Fhn(un) < +∞,

there exists a subsequence (unj ) converging in X.

We also introduce K, the family of nonempty compact subsets of L1(Ω), and dH, the Hausdorff distance
induced on K by the usual norm of L1(Ω), that is

dH(K1,K2) = max


max
u∈K1

d(u,K2),max
v∈K2

d(v,K1)

.

The H-topology is the topology on K induced by dH.

Theorem 3.2. Let p, (ph) ⊂ C be such that ph → p uniformly in Ω . Let f, fh : L1(Ω)→ [0,∞] be such that

(h1) f is even;
(h2) fh is convex, even, and positively homogeneous of degree 1 for all h ∈ N;
(h3) there exists ν > 0 such that fh(u) ≥ νEph(x)(u) for all h ∈ N and u ∈ L1(Ω).

For every integer m ≥ 1, let F (m)
h , F (m) : K → [0,∞] be defined as

F (m)
h (K) :=


sup
K
fh if K ∈ K(m)

s,ph(x),

+∞ otherwise,
F (m)(K) :=


sup
K
f if K ∈ K(m)

s,p(x),

+∞ otherwise.

If furthermore

f(u) =


Γ − lim inf
h→∞

fh


(u) for all u ∈ L1(Ω), (3.1)

then for all m ≥ 1, the sequence (F (m)
h ) is asymptotically equicoercive and we have

F (m)(K) =


Γ − lim inf
h→∞

F (m)
h


(K) for all K ∈ K, (3.2)

inf
K∈K
F (m)(K) = lim

h→∞


inf
K∈K
F (m)
h (K)


, (3.3)

inf
K∈K(m)

s,p(x)

sup
K
f = lim

h→∞

 inf
K∈K(m)

s,ph(x)

sup
K
fh

 , (3.4)

inf
K∈W(m)

p(x)

sup
K
f = lim

h→∞

 inf
K∈W(m)

ph(x)

sup
K
fh

 . (3.5)

Proof. By (h3), Theorem 2.10, (3.1), and Corollary 4.4 of [14], (F (m)
h ) is asymptotically equicoercive and

(3.2)–(3.4) hold. Now, by (h2), (h3) and Theorem 2.11

inf
K∈K(m)

s,ph(x)

sup
K
fh = inf

K∈W(m)
ph(x)

sup
K
fh for all h ∈ N.
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Furthermore, by virtue of (3.1), [13, Theorem 11.1] and [13, Proposition 11.6], also f is convex and positively
homogeneous of degree 1, thus Theorem 2.11 applies also to f , namely

inf
K∈K(m)

s,p(x)

sup
K
f = inf

K∈W(m)
p(x)

sup
K
f.

Therefore, (3.5) follows immediately by (3.4). �

Remark 3.3. Variable exponent spaces and the underlying energy functionals with p(x)-growth, such as
u →


Ω
|∇u|dx, can be considered as a particular case of Musielak–Orlicz spaces and non-autonomous

energy functionals. Recently, significant progresses were achieved in the framework of regularity theory
for minimizers of a class of double phase integrands of the Calculus of Variations, see [4–6,11,12] and the
references therein. The model case is

u →

Ω

(|∇u|p + a(x)|∇u|q)dx, q > p > 1, a(·) ≥ 0,

and it can be studied in the class of Musielak–Orlicz spaces, with Orlicz-type norm

∥u∥LH := inf

γ > 0 :


Ω

H

x,
|u(x)|
γ


dx ≤ 1


, H(x, s) := sp + a(x)sq, s ≥ 0, x ∈ Ω .

For a given topological index, such as the Krasnosel’skĭı genus or the Z2-cohomological index, we plan to
investigate in a forthcoming paper the basic properties of the first eigenvalue, the asymptotic growth, and
the stability of the nonlinear eigenvalues λ(m)

a,p,q of the double phase variational eigenvalue problem arising
in this setting.
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