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Abstract. We study concavity properties of positive solutions to the Logarithmic
Schrödinger equation −∆u = u log u2 in a general convex domain with Dirichlet con-
ditions. To this aim, we analyse the auxiliary problems −∆u = σ (uq − u) and build, for

any σ > 0 and q > 1, solutions uq such that u
(1−q)/2
q is convex. By choosing σq = 2/(1− q)

and letting q → 1+ we eventually construct a solution u of the Logarithmic Schrödinger
equation such that log u is concave. This seems one of the few attempts in studying
concavity properties for superlinear, sign changing sources. To get the result, we both
make inspections on the constant rank theorem and develop Liouville theorems on convex
epigraphs, which might be useful in other frameworks.
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1. Introduction

1.1. Overview

Main goal of this paper is to study the following nondispersive Logarithmic Schrödinger
equation

(1.1)


−∆u = u log u2 in Ω

u > 0 in Ω

u = 0 on ∂Ω

on some Ω ⊂ RN bounded, N ≥ 1, together with the following Lane-Emden equation

(1.2)


−∆u = σ (uq − u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

when σ > 0 and q ∈ ]1, 2∗ − 1[, 2∗ := 2N/(N − 2) if N ≥ 3 or 2∗ := ∞ if N ⩽ 2. In
particular, following the heuristic

(1.3) −∆u =
2

1− q
(uq − u) −→ −∆u = u log u2

as q → 1+, we aim to study the convergence of the solutions of (1.2) with σ = 2/(q − 1) to
a solution of (1.1). When the domain Ω is convex, we investigate the concavity properties
of solutions to (1.2) and, as a byproduct of the aforementioned convergence, we obtain
log-concavity for a solution of (1.1), which is our main result.

The logarithmic equation (1.1), mainly introduced in [5], finds applicability in atomic
physics, high-energy cosmic rays, Cherenkov-type shock waves, quantum hydrodynamical
models and many other fields; we refer for instance to [16, 32, 35, 55, 63].

Equation (1.1) enjoys the tensorization property, which amounts to the following: if ui is
a solution of (1.1) on Ωi, i = 1, 2, then (u1⊗u2)(x, y) = u1(x)u2(y) solves (1.1) on Ω1×Ω2.
We highlight that, being Ω bounded, the equation is well defined from a variational point
of view since H1(Ω) ⊂ L1(Ω). The term nondispersive actually refers to evolutive version
of (1.1), namely

i ∂tu+
1

2
∆u = λu log u.

This wave equation is dispersive when λ > 0, while it is nondispersive if λ < 0, as shown
for the first time in [17]. While we will also consider the dispersive version of (1.1) (hence
with the reaction −u log u2 on the right hand side), the most difficult and interesting case
turns out to be the nondispersive one.
On the other hand, the Lane-Emden equation (1.2) which, up to a rescaling, can be

rewritten as

−∆u+ λu = uq in Ω

for some λ > 0, is more classical and has a long history as power type equation related to
the operator −∆+ λ, see e. g. [19, 22].
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The aim of detecting concavity properties for solutions of the general Dirichlet problem

(1.4)


−∆u = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

goes back to [11, 53], who investigated respectively the 1/2-concavity of the solution to the
torsion problem (i. e. for f(u) = 1) and the log-concavity of the first eigenfunction (thus
for f(u) = λ1 u). Here and in the following, by φ-concavity of a function u we mean the
concavity of φ(u), and whenever α ∈ R by α-concavity we mean φ-concavity for φ(t) = α tα,
with the limiting case of 0-concavity being synonym of log-concavity. The corresponding
quasi-concavity property (i.e. convexity of super-level sets) has been widely investigated
in the last decades: we refer to [2, 28] and references therein for an overview on the topic.
Lions [51] conjectured that any solution to (1.4) in a convex domain is quasi-concave, but
the counterexample in [34] shows that (1.4) may have solutions which are not quasi-concave,
even assuming f(u) ⩾ 1 for u > 0, f smooth and Ω convex, smooth and symmetric. It thus
makes sense to weaken Lions’ conjecture, investigating if equation (1.4) in a convex Ω has
at least one quasi-concave solution.

Most of the known results in this direction deal with sub-homogeneous and positive
nonlinearities: for example, [46] studies the case of powers f(u) = uq, q ∈ ]0, 1[, and similar
results have been extended to the p-Laplacian case in [59] for q ∈ ]0, p− 1[. Note that in
these instances, the required behaviour of the reaction f ensures that the solution of (1.4)
is unique, except at most in the limit case q = 1 corresponding to the first eigenfunction of
the Dirichlet Laplacian.
The only instances known to the authors where quasi-concavity is obtained for super-

linear reactions are [48, 49] in the model case f(u) = uq, q > 1 of (1.4). In particular, [49]
showed that in a convex Ω ⊂ R2, for each q > 1 there exists a unique ground state solution
of (1.4), which turns out to be (1− q)/2-concave (see also [28] for some partial result on the
p-Laplacian case). Note that, for this equation, uniqueness of the solution is not ensured for
general Ω and q > 1, while for convex Ω uniqueness is widely conjectured to hold, but still
not known (see Remark 1.7 for some comments). For the same equation, the existence of a
(1− q)/2-concave solution has been proved also in [48, Corollary 4.7] by means of parabolic
techniques.

The case of more general super-homogeneous nonlinearities seems to be nontrivial, as it
escapes the direct applicability of the classical concavity maximum principles in [43, 46];
indeed, the proof by [49] relies on a continuation argument on q and the fact that, when
q → 1, the ground states converge to the first eigenfunction of the Laplacian, which is
strongly log-concave. This is our approach as well.
When passing from f(u) = uq to f(u) = uq − u or f(u) = u log u2 two difficulties arise.

The first one is related to the uniqueness of ground states, which is at present not known
even for convex planar domains (see Remark 1.6 for some further comments on this point).
The second difficulty is related to the sign of f : the fact that f(u) < 0 near ∂Ω rules out
the applicability of most methods to prove quasi-concavity. For example, the approach
of [10, 54], allowing to deal with general reactions f , cannot even set in motion since the
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seeked φ-concavity of a solution to (1.4) would involve the natural transformation

(1.5) φ(t) :=

∫ t

1

1√
F (τ)

dτ, F (t) :=

∫ t

0

f(τ) dτ

which is not even well defined (see also Remark 1.6). The log- (or quasi-) concave envelope
methods [3, 8, 37] requires non-negative reactions.

The parabolic techniques such as the ones in [37, 51] also have issues. They typically
rely on showing that the semilinear parabolic equation

(1.6) ∂tu−∆u = f(u)

preserves log-concavity, which is then inherited by a limiting (for t → +∞) stationary
solution from a suitable initial datum; see Remark 1.10. However, [40, Corollary 4.7] shows
that log-concavity is generally not preserved by (1.6) for f(u) = u log u2 or f(u) = uq − u.

1.2. Main results

We present now our main result, ensuring concavity properties for a solution of (1.1).

Theorem 1.1. Let Ω be bounded and convex. Then there exists a locally strongly log-concave
solution of (1.1).

By local strong concavity of a C2(Ω) function v we mean D2v < 0 in Ω, in the matrix
sense. The proof of Theorem 1.1 is mainly based on concavity properties of solutions of the
Lane-Emden equation, coupled with the heuristics (1.3), as detailed in the following two
results, which have some relevance by themselves.

Theorem 1.2. Let Ω be bounded and convex. Then, for each σ > 0 and q ∈ ]1, 2∗ − 1[,
there exists a locally strongly (1− q)/2-concave solution of (1.2).

Theorem 1.3. Let Ω be bounded and convex, and un solve (1.2) with parameters qn ∈
]1, 2∗− 1[, qn → 1 as n→ +∞, and σn = 2/(qn− 1). Then up to subsequences un converges
in C0(Ω) ∩ C2

loc(Ω) ∩W
1,2
0 (Ω) to a solution of (1.1). Moreover, if the un are ground states

for (1.2), then u is a ground state for (1.1) as well.

We highlight that Theorems 1.1 and 1.2 hold in a general convex bounded Ω. As described
in Section 1.3, this relies on the following Liouville theorem for general convex epigraphs.

Theorem 1.4 (Liouville theorem on convex epigraphs). Let q ⩾ 1 and H ⊆ RN be an
entire convex open epigraph. Then there exists n ∈ RN \ {0} such that any bounded solution
of

(1.7)


−∆u = uq in H

u > 0 in H

u = 0 on ∂H

satisfies ∂nu > 0 in H. Moreover, if q ⩽ 2∗ − 1, no such solution exists.

The dispersive version of problem (1.1) (i. e, with opposite sign on the right hand side)
is easier, since it can be treated by the general theory of [10, 54]. We indeed have the
following result.
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Theorem 1.5. Let Ω be bounded and convex. The following two facts hold.
• The problem

(1.8)


−∆u = σ (u− uq) in Ω

u > 0 in Ω

u = 0 on ∂Ω

for σ > 0 and q > 1 has a unique solution u. Such solution verifies ∥u∥∞ < 1 and the
function

(1.9) φ1(u) := atanh

(√
1− 2

q + 1
uq−1

)
is locally strongly convex.

• The problem

(1.10)


−∆u = −u log u2 in Ω

u > 0 in Ω

u = 0 on ∂Ω

has a unique solution u. Such solution verifies ∥u∥∞ < 1 and the function

(1.11) φ2(u) :=
√

1− log u2

is locally strongly convex. In particular, the mentioned solutions of (1.8) and (1.10) are
strictly quasi-concave.

Note that since ∥u∥∞ < 1 the previous transformations φ1(u) and φ2(u), are well defined.
Moreover, the functions φi are both convex transformations. Note that, as a corollary of
all the previous results, the solutions found in Theorems 1.1, 1.2 and 1.5 actually have a
unique critical point (which is nondegenerate) and their positive super-level sets are strongly
convex.

1.3. Comments on the results

We list now some remarks on the previous theorems, as well as related literature and
open problems.

Remark 1.6 (On Theorem 1.1).

• Theorem (1.1) holds for the more general problem

(1.12)


−∆u = a u log u2 + b u in Ω

u > 0 in Ω

u = 0 on ∂Ω,

for a > 0, b ∈ R. It suffices to consider k u(λx) instead of u for suitable k, λ > 0.
• Theorem 1.1 gives in particular the existence of a positive solution. This can be much
more easily proved by standard variational methods, providing a ground state solution.
Being the reaction u log u2 convex, by [42] any solution to (1.1) must be unstable. In [14]
is conjectured that every stable solution of equations with f ≥ 0 must be quasi-concave;
here we provide an example of quasi-concave solution which is not stable (but f fails to
be non-negative).
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• When Ω is bounded and convex, it is not known whether (1.1) has a unique solution, or
even a unique ground state solution (i.e. a solution to (1.1) of minimal energy). Note
that we are not able to prove that the obtained log-concave solution is a ground state.
This would be the case if the ground state of the auxiliary Lane-Emden problem (1.2)
is unique for all sufficiently small q > 1 independently of σ. See Remark 1.7 for this
uniqueness issue.

• Theorem 1.1 does not easily follow from Korevaar’s convexity function method introduced
in [43] and extended in [10, 46]. If u solves (1.1), then v = log u solves

−∆v = |∇v|2 + 2 v in Ω

and the monotonicity with respect to v of the right hand side is opposite to the one
required to apply the convexity function technique.

• In the entire case Ω = RN of problem (1.1), infinitely many radial solutions are found
in [18], where however it is also proved that there is a unique radial positive solution
vanishing at infinity, which is a non-degenerate ground state, and is usually called the
Gausson:

u(x) = e
N
2 e−

|x|2
2 .

Clearly the Gausson is log-concave on RN .
• In Section 6 we will discuss the optimality of Theorem 1.1, exhibiting for any given
α ∈ ]0, 1/N ] a convex domain Ω ⊆ RN and a solution of (1.1) which is α-concave but
not β-concave for any β > α. Moreover, in one dimension problem (1.1) has a unique
solution, so that log-concavity is the strongest power concavity which can be expected
from solutions to (1.1) in an arbitrary convex domain Ω.

• Other concavity properties for solutions of (1.1), beyond power ones, can be considered.
If u is the Gausson, for example, then

(1.13) φ(u) := −
√

− log(u/∥u∥∞) = −|x|/
√
2

is concave. This concavity property is not artificial and is related to the so called 1/2-
logconcavity introduced in [38], where it is proved that 1/2-logconcavity is the strongest
scale invariant concavity preserved by the Dirichlet heat flow (see also [39, Section 4.2]
and [40] for optimal, scale dependant, concavity preserved by the Dirichlet heat flow).
Since 1/2-logconcavity is strictly stronger than log-concavity, proving 1/2-logconcavity
of a solution of (1.1) would improve Theorem 1.1 (see Figure 2 for some numerical
computation in the ball). In Section 6 we will see that, at least in the one dimensional
case, solutions of (1.1) are indeed 1/2-logconcave, since they are actually φ-concave for φ
given in (1.13).

Remark 1.7 (On Theorem 1.2).

• We do not know whether the solutions constructed in the theorem are ground states.
This can be shown to be true – up to small modifications of the proof – if (1.2) has a
unique ground state. Such uniqueness has been proved by [49] and [12, Section 4] for the
related problem (1.7) when Ω is a bounded convex body in the plane. Under additional
symmetry assumptions on Ω, [19, Theorem 4.1] shows that actually (1.7) always has a
unique solution (which is therefore a ground state). Regarding (1.2), very few results are
known for specific domains Ω or specific values of q, see [52] and references therein. In
this paper, following [19] we will prove in Proposition 4.2 that it has a unique solution
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for q sufficiently near 1 when Ω is a general convex set, but how small q − 1 must be
a-priori depends on σ and Ω. For fixed q > 1, uniqueness for solutions of (1.2) has also
been achieved in [22] when Ω possesses N orthogonal symmetries and σ is sufficiently
large. Still, the size of σ is not given in a quantitative way.

• For a fixed σ > 0, strictly (1− q)/2-concave ground states of (1.2) for all q ∈ ]1, 2∗ − 1[
can be constructed through the method we adopt whenever the multifunction mapping

]1, 2∗ − 1[ ∋ q 7→ Φ(q) := {Ground states of (1.2)} ⊆ W 1,2
0 (Ω)

(which has compact values and locally compact graph) can be proved to be an approximate
lower-semicontinuous multifunction. This property would trivially hold true whenever Φ
is single valued, i.e. if the previously discussed uniqueness of ground states of (1.2) holds
true. Alternatively, one may require that the graph of Φ is connected. As discussed in
Remark 1.6, the validity of any of these statements for q ∈ ]1, q̄] with q̄ > 1 independent
of σ would yield a log-concave ground state of (1.1) as well.
We were not able to prove these properties and resort to a connected subset of

]1, 2∗− 1[ ×W 1,2
0 (Ω) made of general solutions of (1.2), rather than of ground states. The

latter is obtained through degree methods, see Lemma 4.3, and all these solutions have
local degree −1.

• In [49] it is shown that solutions to (1.7) in strongly convex bounded domains of R2

are (1 − q)/2 concave. We thus see that solutions of (1.2) enjoy the same concavity
properties of (1.7), suggesting that a negative perturbation, in some way, does not affect
the concavity properties of the equation. When dealing with sums (see e.g. [28, Corollary
6.6]), we know that the biggest exponent dictates the right transformation, which is
coherent with the fact that here q > 1. Similarly, equation (1.12) with b = λ1

−∆u = λ1u+ a u log u2

enjoys the same concavity properties of the eigenfunction equation, which is recovered by
sending a→ 0; again, u log u2 is negative near the origin.

• In [31] the author shows the existence of a minimiser of the energy functional corresponding
to (1.2), constrained on the subspace of quasi-concave functions. Unfortunately this
would not immediately implies that such a minimiser is a solution of the equation (i.e.
we do not know if this subspace is a natural constraint). A similar approach, with the
same obstacle, could also be pursued for (1.1).

• Finally, it is worth underlining that in both Theorems 1.1 and 1.2 we obtain local strong
concavity without any regularity or strict convexity assumption on Ω, just its convexity
and boundedness. In particular, Ω may have corners and flat parts, but still the positive
super-level sets of the solutions of (1.1) and (1.2) are strictly convex. This is obtained
through the constant rank theorem [45] coupled with a non-trivial argument based on its
level-set counterpart proved in [7] and which has some interest by itself. See Section 2
for further details.

Remark 1.8 (On Theorem 1.3).

• Theorem 1.3 holds true for generic solutions of (1.2). This is actually needed in the proof
of Theorem 1.1 since, as already noted in the previous remarks, the lack of a uniqueness
result for ground states of (1.2) forces us to approximate (1.1) with generic solutions
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rather than ground states. The convergence of radial ground states of (1.2) in RN to
ground states of (1.1) has already been investigated in [62], see also [16].

• The proof of Theorem 1.3 is based, not surprisingly, on rather delicate a-priori estimates
obtained in Lemma 3.5 below. For Theorems 1.1 and 1.2 to hold in general, not
necessarily smooth, bounded convex sets, the a-priori bounds on solutions of (1.2) must
be independent on any smoothness assumption on ∂Ω (compare e. g. with [23], where
a-priori bounds depend on the C2 regularty of ∂Ω) and this is a source of major technical
problems. To prove the a-priori bound, we will employ a contradiction argument and
blow-up procedure in the spirit of [30], coupled with the Liouville Theorem 1.4.

• A related convergence result for (1.2) is contained in [22, Theorem 1], where the author
proves that, if Ω is suitably symmetric and σ = 1/ε → +∞ then solutions uε of the
singularly perturbed equation

(1.14) − ε∆u = uq − u in Ω

converge to a solution in the entire space, or more precisely ∥uε − v(ε−1/2·)∥L∞(Ω) → 0,
where

−∆v = vq − v in RN .

We highlight that, if q is fixed and σ → +∞, equation (1.2) resembles the semiclassical
limit in (1.14).

Remark 1.9 (On Theorem 1.4).

• The main novelty of Theorem 1.4 lies in the fact that the function whose epigraph is H
may fail to be coercive. The coercive case dates back to [26] and for more recent results
on this kind of Liouville problems, we refer to [57, Part I], [25] and the literature therein.

• A typical example, arising as limiting problem through blow-up of solutions to (1.1) in
non-smooth convex domains, is when H = {(x1, x2, x3) ∈ R3 : x3 ⩾ |x1|}. In this case H
is a non-smooth convex cone and there is no direction in which it can be described as a
coercive epigraph.

• We will actually prove the non-existence statement for a larger set of exponents, given
in (B.3) and described for the first time in [27] in the study of entire stable solutions
of the Lane-Emden equation. We chose to state the result for q ⩽ 2∗ − 1 since this the
range of exponents relevant to our framework. To the authors knowledge, nonexistence
of bounded solutions to (1.7) in a general convex epigraph H for arbitrary N ⩾ 1 and
q ⩾ 1 is open.

• The main point in the proof of Theorem 1.4 is a convex analysis result deduced in Lemma
A.2, which has some interest by itself. It ensures that after a suitable rotation, any
convex entire epigraph can be described as the epigraph of a semicoercive function. See
Appendix A for details.

Remark 1.10 (On Theorem 1.5).

• Equations (1.8) and (1.10) has been treated in [51] (and Remark 4 therein), where
log-concavity is proved by means of a parabolic approach. Our result is stronger since,
setting φ1 as in (1.9) we obtain for any function u with 0 < u < 1

φ1(u) convex =⇒ log u concave =⇒ u(1−q)/2 convex
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and the opposite implications do not hold for in general. Similarly, for φ2 as in (1.11) it
holds

φ2(u) convex =⇒ log u concave

and not vice-versa in general.
• Comparing with Theorems 1.1 and 1.2, we see that the opposite sign in, respectively, (1.10)
and (1.8), grants stronger concavity properties for the solution, as expected. Moreover,
uniqueness is restored and the constructed solutions are actually global minimisers of the
corresponding free energy functional.

Remark 1.11 (The case q < 1). Approximating (1.1) by (1.2) as q → 1+ is a natural
choice for several reasons: first, both the equations are superlinear. Moreover, the study of
(1.2) for q > 1 has its own interest, due to the classical literature on the topic discussed at
the beginning of the Introduction.

The question on whether using the approximation (1.3) for q → 1− could yield easier proofs
or better results, on the other hand, arises naturally. Unfortunately, it does not seem so. The
corresponding functional for q < 1 is still not coercive, since the linear term has an arbitrarily
large coefficient. Moreover, for the corresponding reaction f(u) = 2 (uq − u)/(q − 1), the
function t 7→ f(t)/t is actually increasing, thus the Brezis-Oswald uniqueness [13] result do
not apply. Finally, the convexity function technique of [43, 46] still cannot be used: one is
naturally led to consider the convexity of v = −u(1−q)/2, but the transformed equation for
v has the form

−∆v =
1− q

2
v − 1

v

(
q + 1

1− q
|∇v|2 + 1− q

2

)
whose right-hand side is increasing in v, thus having the opposite monotonicity than required.
Finally, and more substantially, the strong maximum principle fails for solutions of (1.2)
(with σ = 2/(q − 1) < 0) when q < 1, allowing for non-negative solutions with dead cores,
and even proving the existence of a positive solution to (1.2) is far from trivial.

1.4. Structure of the paper and sketch of the proof

In Section 2 we discuss conditions ensuring the applicability of the constant rank theorem
of [45] to suitable transformations φ(u) for u being a positive solution of −∆u = f(u) with
Dirichlet conditions.

Section 3 is devoted to a-priori estimates for solutions of the Lane-Emden equation
(1.2) in the subcritical case. In order to use them for varying domains and for q → 1+,
considerable care is devoted to obtain estimates depending only on basic geometric quantities
on the domain (in particular, independent on the smoothness and the curvature of ∂Ω) and
lower bounds on the parameter σ > 0.

In Section 4 we apply these bounds to study the asymptotic behaviour of solutions of
(1.2) in two regimes:

• when σ > 0 is fixed and q → 1+, obtaining convergence after normalisation to the
first eigenfunction of the Dirichlet Laplacian;

• when σ = 2/(q − 1) and q → 1+, proving convergence up to subsequences to a
solution of the Logarithmic Schrödinger equation (1.1).

Moreover, we construct via degree arguments a connected branch of solutions uq for
q ∈ ]1, 2∗ − 1[ of (1.2).
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Section 5 is devoted to the proof of Theorems 1.1, 1.2 and 1.5. Since the proof of the
dispersive case Theorem 1.5 is essentially a refinement of the strategy in [10, 54] through
the results in Section 2, we briefly describe now the path to Theorem 1.1 and 1.2.

We will first prove that in a strongly convex Ω a continuity argument ensures (1− q)/2-
concavity for the solutions of (1.2) constructed in Section 4. To this end, two key points
are:

• the connectedness of the branch of solutions, in order to set-up the continuity
argument directly on the branch;

• the log-concavity of such solutions for q near 1, ensured by the aforementioned
convergence to the first eigenfunction of the Dirichlet Laplacian and the log-
concavity of the latters (note that log-concavity implies (1− q)/2-concavity).

Then the results of Section 2 are used to prove Theorem 1.2 in the smooth strongly convex
setting. To remove this assumption we approximate a general convex Ω with strongly
convex ones. Due to the robustness of the a-priori estimates of Section 3, we can pass to
the limit to obtain a (1− q)/2-concave solution of (1.2) in any convex Ω. Section 2 allows
again to deduce strong (1− q)/2 concavity.

Finally, Theorem 1.1 is obtained through Theorem 1.2 by passing to the limit as q → 1+

and σ = 2/(q − 1) thanks to the asymptotic behaviour proved in Section 4.

Section 6 gathers some results on solutions of the Logarithmic Schrödinger equation.
We will prove in Corollary 6.4 a universal upper bound on solutions of (1.1) in a general
convex domain Ω, depending only on geometric bounds on Ω; then we will consider radial
of solutions in the ball and describe some elementary computations in the one dimensional
case, in order to investigate the sharpness of Theorem 1.1. We will in particular rule out
α-concavity for solutions of (1.1) in Theorem 6.8, for any α > 0.

Two appendices conclude the manuscript. In Appendix A we gather some results from
convex analysis and in Appendix B we prove Theorem 1.4.

Acknowledgments. S.M. would like to thank Fabio Zanolin for suggesting the proof
of Lemma 6.7. M.G. thanks Riccardo Moraschi and Francesco Ballarin for some help in
numerical simulations.

Notations. We will say that an open Ω ⊆ RN is smooth if ∂Ω is locally the graph of
a C2,α function, α ∈ ]0, 1[. We further set R+ := ]0,+∞[ and denote by (v, w) the usual
Euclidean scalar product between v, w ∈ RN and |v| denotes the corresponding Euclidean
norm. For a N × N symmetric real matrix M , we will write M ⩾ 0 meaning that M is
non-negative definite, M > 0 meaning that M is positive definite. By a locally strongly
concave function u ∈ C2(Ω) we mean that the inequality D2u < 0 holds in Ω. If E ⊆ RN is
measurable, |E| stands for its Lebesgue measure. Given a Lebesgue measurable function
u : Ω → Rk and p ∈ [1,∞], ∥u∥p will denote the usual Lp(Ω) norm of |u|, whenever omitting
Ω causes no confusion.

2. Preliminaries on the constant rank theorem

The celebrated constant rank theorem by Caffarelli-Friedman [15] and Korevaar-Lewis
[45] states that if w is a convex solution of

(2.1) ∆w = b(w,Dw) > 0
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in a connected domain Ω and t 7→ 1/b(t, z) is convex for any z ∈ RN , then D2w has constant
rank. Its proof shows that the strict positivity of b(w,Dw) is essential in [45], as well as
in the fully nonlinear counterpart [6]. In fact, the function b(t, z) per se may change sign,
but it is sufficient for the constant rank theorem to hold that b(w,Dw) > 0 and that the
function

btt(w,Dw)− 2
b2t (w,Dw)

b(w,Dw)

is locally bounded in Ω and non-positive there. This indeed amounts to a global positivity
coupled with a local convexity condition, expressed as

(2.2) b(w,Dw) > 0 and
(
∂2t (1/b)

)
(w,Dw) ⩾ 0 in Ω.

Note that, from the convexity of w coupled with the equation ∆w = b(w,Dw), one can
only derive the weaker inequality b(w,Dw) ⩾ 0 in Ω.
We further mention that, in general, the (constant) rank of the Hessian need not to

be full: indeed, in [45, Section 5] the authors construct a convex solution of (2.1) in a
connected domain Ω ⊆ RN with b(t, z) > 0, t 7→ 1/b(t, z) convex but such that the rank of
D2w is constantly equal to k < N . In such example, however, the minimum of the solution
is always attained on the boundary (compare this with the assumption of Proposition 2.6).

In this section we describe some conditions ensuring that:

(i) a convex classical solution of ∆w = b(w,Dw) actually satisfies b(w,Dw) > 0
everywhere;

(ii) if (2.2) holds true, then the rank of D2w is actually full everywhere and w is
strongly convex.

In practical situations, the constant rank theorem is applied to the function w = φ(u),
with u being a solution of

(2.3)


−∆u = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

and a straightforward computation shows that

(2.4) ∆w = −ψ
′′(w) |Dw|2 + f(ψ(w))

ψ′(w)
=: b(w,Dw),

where ψ := φ−1. In this setting, the two questions outlined above are linked by a level-set
version of the constant rank theorem proved in [44] (see [7] for the fully nonlinear version).

To state it we recall some elementary facts on the second fundamental form of level sets
of a v ∈ C2(A), where A is an open subset of RN . Let t ∈ v(A) and x0 ∈ {v = t}; in order
for the level set {v = t} to be a C2 submanifold near x0 we will suppose that Dv(x0) ̸= 0.
We choose a normal vector to {v = t} at x0 as

(2.5) nx0 := − Dv(x0)

|Dv(x0)|
and set the tangent space Tx0 := {z ∈ RN : ⟨nx0 , z⟩ = 0}. The second fundamental form of
the level set of v at x0 is the quadratic form defined on Tx0 as

IIx0(v)(z) := ⟨nx0 , γ̈(0)⟩
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where γ : ]− δ, δ[ → {v = t} is a curve (for some δ > 0) parametrised by arc-length such
that γ(0) = x0 and γ̇(0) = z. This definition is independent of the choice of γ, under the
required constraints. We can differentiate twice the relation v(γ(s)) = v(x0) to get

⟨D2v(γ(s)) γ̇(s), γ̇(s)⟩+ ⟨Dv(γ(s)), γ̈(s)⟩ = 0

for all sufficiently small |s|. Recalling (2.5) (so that ∂nv(x0) = −|Dv(x0)|), it follows that

(2.6) IIx0(v)(z) =
⟨D2v(x0) z, z⟩

|Dv(x0)|
.

The mean curvature Kx0(v) of {v = t} at x0 is the trace of the second fundamental form.
As such, it is the sum of the principal curvatures of {v = t} at x0, each of the latters being
computed as IIx0(v)(zi) where {zi}N−1

i=1 is a family of N − 1 orthonormal eigenvectors in Tx0

for D2IIx0(v). Hence

Kx0(v) :=
N−1∑
i=1

IIx0(v)(zi) =
1

|Dv(x0)|

N−1∑
i=1

⟨D2v(x0) zi, zi⟩;

we complete such system by setting zN := nx0 , to obtain an orthonormal basis of RN . Since
the Laplacian is invariant by unitary change of variables, we obtain

(2.7) ∆v(x0) =
N∑
i=1

⟨D2v(x0) zi, zi⟩ =
⟨D2v(x0)Dv(x0), Dv(x0)⟩

|Dv(x0)|2
+Kx0(v) |Dv(x0)|.

Remark 2.1. Both the second fundamental form and the mean curvature are geometric
objects up to their sign, in the sense that their modulus only depends on the submanifold
{u = u(x0)} and not on the particular function u representing it implicitly. Their sign is
odd with respect to u, meaning

IIx0(−u) = −IIx0(u), Kx0(−u) = −Kx0(u).

The choice (2.5) is arbitrary and the opposite one would give second fundamental form with
opposite sign. The minus in (2.5) is chosen so that, for instance, u(x) = |x|2 has positive
second fundamental form at any nontrivial level set. Note, more generally, that many
functions can share the same level sets, and we underline for future purposes a relevant
consequence of this ambiguity. Given u as above and a smooth φ : R → R such that φ′ < 0,
the function w = φ(u) has the same level sets as u. The normal to the level set of w through
a given x0 is, in accordance with (2.5),

Dw(x0)

|Dw(x0)|
= − Du(x0)

|Du(x0)|
so that in this instance

IIx0(w) = −IIx0(u), Kx0(w) = −Kx0(u).

We can now state a particular case of [44, Theorem 1], which fits to our purposes.

Proposition 2.2 (Quasiconcave constant rank theorem). Let f ∈ C2(R) and v ∈ C4(Ω)
solve ∆v = f(v) ⩽ 0 in a connected domain Ω ⊆ RN . If Dv(x) ̸= 0 and IIx(v) ⩾ 0 for all
x ∈ Ω, then x 7→ rank

(
IIx(v)

)
is constant.



POWER LAW CONVERGENCE AND LOGARITHMIC SCHRÖDINGER EQUATION 13

The following lemma shows that in many instances the rank in the Proposition 2.2 is
actually (always) full.

Lemma 2.3 (Positive definite second fundamental form). Let A ⊆ RN be open, v ∈ C2(A)
and t ∈ v(A). If Dv ̸= 0 in A and {v ⩽ t} ⋐ A, there exists x0 ∈ {v = t} such that IIx0 (v)
is positive definite.

Proof. Since {v ⩽ t} is a compact subset of RN , we can let BR be a ball of smallest radius
containing {v < t}. Up to a translation, we suppose that the center of BR is 0, so that

(2.8) |x|2 ⩽ R2 in {v ⩽ t}.

By compactness there exists x0 ∈ {v = t} ∩ ∂BR and we claim that IIx0(v) is positive
definite. By assumption there exists G ∈ C2 and r > 0 such that

∂A ∩Br(x0) = {x ∈ Br(x0) : G(x) = 0}

and DG ̸= 0 in Br(x0), G > 0 in A ∩ Br(x0). Since x0 is a point of maximum norm of
{v ⩽ t}, Lagrange multiplier’s rule yields Dv(x0) = λx0 for some λ > 0. Then the function

F (x) := v(x0)− v(x)− λ

2

(
R2 − |x|2

)
is non-positive on {v = t} by (2.8) and v(x0) = t, vanishes at x0 and DF (x0) = 0. Thus,
for any γ : ]− δ, δ[ → {v = t} with γ(0) = x0, φ := F ◦ γ has a maximum in 0 and hence
φ′′(0) ⩽ 0. Computing φ′′(0) yields through DF (x0) = 0

φ′′(0) = ⟨D2F (x0) γ̇(0), γ̇(0)⟩+ ⟨DF (x0), γ̈(0)⟩ = ⟨
(
λ I−D2v(x0)

)
γ̇(0), γ̇(0)⟩.

Finally, since z := γ̇(0) is arbitrary on Tx0 , φ
′′(0) ⩽ 0 reads through (2.6)

IIx0(v)(z) ⩾
λ

|Dv(x0)|
|z|2 ∀z ∈ Tx0 .

□

We next give the following version of the strong maximum principle for semilinear
equations. Even if it appears to be folklore, we report its short proof for completeness.

Lemma 2.4 (Strong maximum principle). Let Ω be open, f ∈ C0,1
loc (R+), and u ∈ C2(Ω) ∩

C0(Ω) solve (2.3). Then f(maxΩ u) ̸= 0.

Proof. Let x0 ∈ Ω be a point of (positive) maximum for u and assume by contradiction
that f(u(x0)) = 0. Setting v := u− u(x0), we rewrite the equation for u as

∆v + c(x) v = 0 in Ω

with

c(x) :=


f(u(x))− f(u(x0))

u(x)− u(x0)
if u(x) ̸= u(x0)

0 if u(x) = u(x0).

Note that v ≤ 0 = v(x0), i.e. v has a zero maximum in x0. Let Ω′ be the connected
component of Ω containing x0. Then c is locally bounded in Ω′ due to the local Lipschitz
continuity of f . Thus we can apply [56, Theorem 2.1.2] to conclude that v ≡ 0 in Ω′.
However this contradicts u ≡ 0 (and thus v ≡ −u(x0) < 0) in ∂Ω′ ⊆ ∂Ω. □
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The following theorem provides a large class of nonlinearities b(w,Dw) for which convexity
of a solution w of ∆w = b(w,Dw) automatically ensures ∆w > 0. This answers to question
(i) at the beginning of the section.

Theorem 2.5 (Strict superhamonicity). Let Ω be open, bounded and convex, f ∈ C2(R+)
and u ∈ C4(Ω) ∩ C0(Ω) solve (2.3). Suppose that for a suitable φ ∈ C2(R+) fulfilling
φ′ ⩽ 0 < φ′′ in u(Ω), the function w := φ(u) is convex in Ω. Then ∆w > 0 in Ω.

Proof. We start observing that the assumption φ′ ⩽ 0 < φ′′ in u(Ω) implies in particular
that φ is strictly decreasing on the interval u(Ω) (since otherwise φ would be constant on
a subinterval of u(Ω), and thus φ′′ ≡ 0). As a consequence, Argmin (w) = Argmax (u).
Moreover, since w is convex, its gradient vanishes only at its minimum points, thus
{Dw = 0} = Argmin (w). These facts, combined with Dw = φ′(u)Du, give

(2.9) {Du = 0} ⊆ {Dw = 0} = Argmin (w) = Argmax (u) ⊆ {Du = 0}.
We move now to the main proof. By convexity it holds ∆w ⩾ 0, so suppose by

contradiction that ∆w(x0) = 0 at some x0 ∈ Ω. By (2.7) we have

(2.10) 0 = ∆w(x0) =
⟨D2w(x0)Dw(x0), Dw(x0)⟩

|Dw(x0)|2
+Kx0(w) |Dw(x0)|.

Since w is convex, the first term on the right is non-positive; thus, to get a contradiction,
we want to show that Dw(x0) ̸= 0 together with Kx0(w) > 0.

We claim first that f(u(x0)) < 0. Indeed, since

∆w = φ′′(u) |Du|2 + φ′(u)∆u = φ′′(u) |Du|2 − φ′(u) f(u),

from φ′′ ⩾ 0 ⩾ φ′ we infer that f(u(x0)) ⩽ 0. If the claim is false and f(u(x0)) = 0, then

0 = ∆w(x0) = φ′′(u(x0)) |Du(x0)|2

and since φ′′ > 0, we must have Du(x0) = 0 and thus, x0 ∈ Argmax (u) by (2.9). Hence
f(maxu) = f(u(x0)) = 0, and Lemma 2.4 gives a contradiction.

Next, choose δ ∈ ]0, u(x0)[ so that f(t) < 0 on I := ]u(x0)− δ, u(x0) + δ[. Set

C :=
{
x ∈ Ω : u(x) ∈ I

}
=
{
x ∈ Ω : w(x) ∈ φ(I)

}
,

the last equality due to the strict monotonicity of φ. Being ∆u = −f(u) > 0 on C, the
latter does not contain maximum points for u; thus from (2.9) we infer that Du and Dw
never vanish on C. The function v = −u solves ∆v = f(−v) < 0 in C, Dv ̸= 0 in C and
{v ≤ t} = {w ≤ φ(−t)} is convex for each t ∈ R when non-empty, which in particular
implies that IIx(v) ⩾ 0 everywhere in the convex ring C. Thus Proposition 2.2 ensures that
IIx(v) has constant rank in C.
To show that IIx(v) > 0 everywhere in C we apply Lemma 2.3: indeed, given t ∈

]u(x0) − δ, u(x0)[, the convex set {v ⩽ −t} = {u ⩾ t} is closed, nonempty and strictly
contained in Ω thanks to u ∈ C0(Ω), u > 0 in Ω and u ≡ 0 on ∂Ω. By the boundedness of
Ω, Lemma 2.3 ensures that IIx(v) is positive definite at some x ∈ {u = t} ⊆ C, and thus
everywhere. In particular, by Remark 2.1, we have

IIx0(v) = −IIx0(u) = IIx0(w)

so that Kx0(w) > 0. Being also Dw(x0) ̸= 0 we reach a contradiction by (2.10). This
concludes the proof. □
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We finally mention the following result, contained in a paper by Basener [4]. This is
a variant of Lemma 2.3 which deals with definite positivity of the Hessian matrix of a
function near the local minimum. This gives a first answer to question (ii) at the beginning
of the section. For the reader’s convenience, we provide here the proof.

Proposition 2.6 (Positive definite Hessian [4]). Let u ∈ C2(Ω) be such that ∅ ≠ Argmin (u) ⋐
Ω. Then in any open neighbourhood U of Argmin (u) there is point x̄ ∈ U where D2u(x̄) is
positive definite.

Proof. Suppose without loss of generality that 0 ∈ Argmin (u) ⊂ U ⋐ Ω. Fix δ > 0 and
consider

λδ := sup
{
λ ∈ R : δ |x|2 + λ ⩽ u(x) for all x ∈ U

}
.

Since U is compact there exists xδ ∈ U such that

δ |xδ|2 + λδ = u(xδ).

We claim that, for sufficiently small δ > 0, xδ ∈ U . This implies that u(x)− (δ |x|2 + λδ)
has an interior global minimum at xδ, forcing D

2u(xδ) ⩾ 2 δ I and proving the proposition
by setting x̄ := xδ. To prove the claim, let

m := u(0) M := min
∂U

u, r := max
∂U

|x|.

Note that m < M since by assumption 0 ∈ Argminu ⊂ U and that r > 0 since 0 /∈ ∂U . If
xδ ∈ ∂U , then{

δ |xδ|2 + λδ = u(xδ) ⩾M

λδ ⩽ u(0) = m
=⇒ M −m ⩽ δ |xδ|2 ⩽ δ r2

giving a contradiction if δ < M−m
r2

. Hence for such δ the claim is proved. □

We can now sum up and state some conditions ensuring that concavity can be improved
to strong concavity, concluding the discussion on issue (ii) at the beginning of the section.

Corollary 2.7 (Improving concavity). Let Ω be open, bounded and convex, f ∈ C2(R+)
and u ∈ C4(Ω) ∩ C0(Ω) solve (2.3). Suppose that for a suitable φ ∈ C4(R+) the following
conditions hold true:

• φ′ < 0 < φ′′ in u(Ω);
• φ(u) is convex in Ω;
• set ψ := φ−1 and for any t ∈ R+, z ∈ RN

b(t, z) := −ψ
′′(t) |z|2 + f(ψ(t))

ψ′(t)
,

it holds
(
∂2t (1/b)

)
(t, z) ⩾ 0 on {t ∈ R+ : b(t, z) > 0}.

Then φ(u) is locally strongly convex in Ω.

Proof. It suffices to note that, under the stated assumptions on φ, w := φ(w) is a C4(Ω)
solution of ∆w = b(w,Dw). Then by Theorem 2.5 we have b(w,Dw) > 0 and [45]
applies, ensuring that D2w has constant rank everywhere in Ω. Since φ is decreasing
Argmin (w) = Argmax (u) and since u ∈ C0(Ω) is positive in Ω and vanishes on ∂Ω,
Argmin (w) ⋐ Ω. Then the Proposition 2.6 applies, giving that D2w(x̄) is positive definite
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for some x̄ ∈ Ω, and thus everywhere in Ω. The strong convexity follows by the continuity
of D2w. □

3. The Lane-Emden equation

3.1. Ground states and energy estimates

We start by constructing ground states of (1.2) and deriving basic a-priori estimates.
Later on, in Section 4.2, we will deal with uniqueness when q is close to 1.

Definition 3.1. Let q > 1, σ > 0. A ground state for (1.2) is a W 1,2
0 (Ω) ∩ C2(Ω) solution

of (1.2) minimising

Jq,σ(v) :=

∫
Ω

|Dv|2

2
dx− σ

∫
Ω

|v|q+1

q + 1
− v2

2
dx

over the Nehari set

Nq,σ :=
{
v ∈ W 1,2

0 (Ω) \ {0} : ⟨J ′
q,σ(v), v⟩ = 0

}
.

The set of all ground states for Jq,σ will be denoted by GSq,σ.

We note that for all v ∈ Nq,σ it holds

(3.1) Jq,σ(v) = σ

(
1

2
− 1

q + 1

)∫
Ω

|v|q+1 dx,

so that the energy of a ground state is strictly positive. Existence of ground states is quite
standard, but we provide here a sketch for reader’s convenience and future reference.

Lemma 3.2 (Existence of ground states). Let Ω be bounded. For any q ∈ ]1, 2∗ − 1[, σ > 0
there exists a ground state uq,σ for (1.2).

Proof. Ground states can be obtained as mountain pass critical points of the C1
(
W 1,2

0 (Ω)
)

functional Jq,σ. It can be checked that 0 is a strict local minimum for Jq,σ and that Jq,σ
fulfils all the assumptions of the mountain pass theorem, so that a critical point u can be
found at the energy level cq,σ > 0 defined as

cq,σ := inf
γ∈Γ

sup
t⩾0

Jq,σ(γ(t)), Γ :=
{
γ ∈ C0

(
[0, 1];W 1,2

0 (Ω)
)
: γ(0) = 0, J̃σ,q(γ(1)) < 0

}
.

Through a standard fibering method, we show that the energy level cq,σ is characterised as

(3.2) cq,σ = inf
{
Jq,σ(v) : J

′
q,σ(v) = 0, v ̸= 0

}
= inf

Nq,σ

Jq,σ.

Indeed, the inequalities ⩾ trivially hold in the previous chain because cq,σ is a critical level
and any non-negative critical point for Jq,σ belongs to Nq,σ. On the other hand, if v ∈ Nq,σ,
then for any t ⩾ 0

Jq,σ(t v) =
t2

2

∫
Ω

|Dv|2 + σ v2 dx− tq+1

q + 1
σ

∫
Ω

vq+1 dx = σ

(
t2

2
− tq+1

q + 1

)∫
Ω

vq+1 dx.
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The maximum on [0,∞[ of the right hand side in the previous display is uniquely found at
t = 1 and for t large Jq,σ(t v) < 0. Hence if v minimises Jq,σ on Nq,σ, suitably rescaling the
curve t 7→ t v yields an element of γ ∈ Γ for which

sup
t⩾0

J̃q,σ(γ(t)) = sup
t⩾0

Jq,σ(γ(t)) = Jq,σ(v) = inf
N+

q,σ

Jq,σ,

thus cq,σ ⩽ infNq,σ Jq,σ. Note that if v ∈ W 1,2
0 (Ω) is a sign changing critical point of Jq,σ,

then both v+ and v− belong to Nq,σ, and it holds

Jq,σ(v) = Jq,σ(v+) + Jq,σ(v−),

so that one of v+ or v− has less energy than v. Therefore any minimiser u of Jq,σ over
Nq,σ is a constant sign weak (and also C2(Ω), by standard elliptic regularity) solution of
−∆u = f(u) with f(t) = σ t (|t|q−1 − 1). Since Jq,σ is even we can suppose that u ⩾ 0 and
the strong maximum principle of Vazquez-Pucci-Serrin [56, Theorem 1.1.1] ensures that
actually u > 0 in Ω. □

We continue with the following bound on the minimal energy of ground states in terms
of suitable test functions.

Lemma 3.3 (Energy estimate). Let cq,σ as in (3.2). Then for all φ ∈ W 1,2
0 (Ω) \ {0} such

that

(3.3)

∫
Ω

φ2 dx >
1− q

2

∫
Ω

φ2 logφ2 dx

it holds
(3.4)

cq,σ ⩽
q − 1

2 q + 2

(
∥Dφ∥22 + σ ∥φ∥22

) (
1 +

∥Dφ∥22
σ ∥φ∥22

) 2
q−1

1 + q − 1

2

∫
Ω

φ2 logφ2 dx

∥φ∥22


− 2

q−1

.

Proof. Fix p ∈ ]2, 2∗[ and, correspondingly, Cp > 0 such that

t2 | log t2| ⩽ Cpmax{1, |t|p}.

Since Ω is bounded, Hölder and Sobolev inequality ensure that any φ ∈ W 1,2
0 (Ω)\{0} fulfils

φ2 logφ2 ∈ L1(Ω). For any such φ obeying (3.3), set

λ :=
∥Dφ∥22
∥φ∥22

, t̄ :=

[(
1 +

λ

σ

)
∥φ∥22
∥φ∥q+1

q+1

] 1
q−1

one obtains t̄ |φ| ∈ N+
q,σ and thus

(3.5) cq,σ ⩽ Jq,σ(t̄ φ) = t̄2 ∥φ∥22 (λ+ σ)

(
1

2
− 1

q + 1

)
.
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Being es − 1 ⩾ s for all s ∈ R, we have

∥φ∥q+1
q+1

∥φ∥22
= 1 +

∫
Ω

φ2 (|φ|q−1 − 1) dx

∥φ∥22
= 1 +

∫
Ω∩{φ ̸=0}

φ2 (e(q−1) log |φ| − 1) dx

∥φ∥22

⩾ 1 +
q − 1

2

∫
Ω

φ2 logφ2 dx

∥φ∥22
.

Inserting this estimate into t̄ in (3.5), we obtain

cq,σ ⩽ ∥φ∥22 (λ+ σ)
q − 1

2 q + 2

(
1 +

λ

σ

) 2
q−1

1 + q − 1

2

∫
Ω

φ2 logφ2 dx

∥φ∥22


− 2

q−1

for all q > 1 and φ ∈ W 1,2
0 (Ω) \ {0} such that the last factor is positive, which amounts to

(3.3). Recalling the definition of λ we finally get (3.4). □

3.2. Uniform bounds

This section is devoted to the proof of suitable a-priori estimates for solutions of (1.2),
which will have multiple applications throughout the paper.

We first recall some known regularity estimates up to the boundary in convex domains,
which may be bounded or unbounded.

Lemma 3.4. Let Ω ⊆ RN be open and convex, f ∈ C0(R) and and v ∈ C2(Ω) ∩ C0(Ω) be
a classical bounded solution of {

−∆v = f(v) in Ω

v = 0 on ∂Ω

and M , γ > 0 such that

(3.6) ∥v∥∞ ≤M, 1 + ∥f(v)∥∞ ≤ γ.

Then there exists α ∈ ]0, 1[ and C depending on N , M and γ, such that

∥v∥Cα(Ω) ⩽ C.

Proof. By [47, Ch. 3, Lemma 14.1] any such solution v belongs to the class B2(Ω,M, γ,∞, 0)
(see [47, Ch. 2, sec. 7]), where M and γ are any numbers fulfilling (3.6). By convexity, for
any x0 ∈ ∂Ω, Ω is contained in a suitable half space through x0, so that for any r > 0

|Ω ∩Br(x0)|
|Br|

⩽
1

2
.

Thus condition (A) of [47, p. 6] is fulfilled with parameters independent of f and v and [47,
Ch. 2, Theorem 7.1] ensures that

∥v∥Cα(Ω∩B1(x))
⩽ C

for constants α and C as in the statement but independent of x. The global Cα(Ω) bound
follows from the latter and the boundedness of v. □
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Recall that the eccentricity of a bounded convex body Ω is defined by

ecc (Ω) :=
inf{R > 0 : Ω ⊆ BR(x) for some x ∈ Ω}
sup{r > 0 : Br(x) ⊆ Ω for some x ∈ Ω}

.

We are now ready to prove our uniform bounds.

Lemma 3.5 (Uniform estimates). Let σ̄ > 0, q̄ ∈ [1, 2∗ − 1[, R̄, θ̄ > 0. Then there exist
positive constants C1(q̄, σ̄, R̄, θ̄) and C2(q̄, R̄, θ̄) such that

(i) any solution uq,σ of (1.2) for σ ⩾ σ̄, q ∈ [1, q̄] in a convex domain Ω with

(3.7) diam (Ω) ⩾ 2 R̄, ecc (Ω) ⩽ θ̄

satisfies

(3.8) 1 < ∥uq,σ∥q−1
∞ ⩽ C1(q̄, σ̄, R̄, θ̄);

(ii) any solution uq to (1.2) with q ∈ [1, q̄] and σ ⩾ 1/(q − 1) in a convex domain Ω
fulfilling (3.7) satisfies

(3.9) ∥uq∥∞ ⩽ C2(q̄, R̄, θ̄).

Proof. First we observe that, testing (1.2) with uq,σ yields∫
Ω

|Duq,σ|2 dx = σ

∫
Ω

(
uq+1
q,σ − u2q,σ

)
dx

so that it cannot hold ∥uq,σ∥∞ ⩽ 1, since otherwise the right hand side would be non-positive,
forcing uq,σ ≡ 0. Thus ∥uq,σ∥∞ > 1. We prove (i) by contradiction.

Step 1: Setting up the blow up.
Consider a sequence un solving (1.2) for qn ∈ [1, q̄], σn ⩾ σ̄ in convex domains Ωn fulfilling
(3.7) but such that

(3.10) ∥un∥qn−1
∞ → ∞.

By taking a subsequence, we may assume qn → q ∈ [1, q̄]. By considering un(αn (· − x̄n)),
for x̄n being the center of a ball containing Ωn of minimal radius and αn = 2 R̄/diam (Ωn),
we can suppose that diam (Ωn) = 2 R̄ for all n, since in doing so the corresponding factor σ
in (1.2) does not decrease. By translation invariance of the equation, we can also suppose
that

(3.11) BR̄/θ̄(0) ⊆ Ωn ⊆ B2R̄(0) for all n.

Choose xn ∈ Ωn such that

Mn := ∥un∥∞ = un(xn)

so that Mn > 1 for all n. For λ > 0 the function

(3.12) vn,λ(x) :=
1

Mn

un(xn + λ (x− xn)),

solves

−∆v = λ2 σnM
qn−1
n vqn − λ2 σn v

in (Ωn − xn) /λ with Dirichlet boundary conditions and satisfies

0 ⩽ vn,λ ⩽ 1 = vn,λ(0).
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Choose λ = λn > 0 obeying

λ2n σnM
qn−1
n = 1,

so that vn := vn,λn solves

(3.13) −∆v = vqn − v

M qn−1
n

=: fn(v), 0 ⩽ v ⩽ 1 = v(0)

in Ω̃n := (Ωn − xn) /λn. From (3.10), the bound σn ⩾ σ̄ > 0 and the definition of λn we
infer that λn → 0. Moreover, for t ∈ [0, 1], an explicit computation yields

1− qn

M qn
n q

qn
qn−1
n

⩽ fn(t) ⩽ 1

so that, noting that qq/(q−1) ⩾ e for q ∈ ]1, q̄], it holds

1− qn
eM qn

n
⩽ fn(t) ⩽ 1, ∀t ∈ [0, 1].

By the assumption M qn−1
n → +∞ and qn ⩽ q̄, we infer that

sup
t∈[0,1]

|fn(t)| ⩽ γ <∞

for a constant γ independent of n. Applying Lemma 3.4, we thus find α ∈ ]0, 1[ and C > 0
independent of n such that

(3.14) ∥vn∥Cα(RN ) ⩽ C,

where we extended each vn as zero outside Ω̃n.

Step 2: Convergence.
Thanks to (3.11), Proposition A.1 ensures that there exists a not relabelled subsequence

such that Ω̃n → H locally in the Hausdorff sense, where H is either RN or the closed
epigraph of a convex function. By (3.14) and Ascoli-Arzelá theorem, we may suppose that
(vn) has a not relabelled subsequence converging locally uniformly to some v in Cα(RN)
fulfilling 0 ⩽ v ⩽ 1 = v(0) and v ≡ 0 in RN \H. Using (3.10) to pass to the limit in (3.13),
standard arguments ensure that v solves

−∆v = vq 0 ⩽ v ⩽ 1 = v(0)

in H and v = 0 on ∂H. If H = RN this is impossible due to [57, Theorem 8.1], while if
H is the closed epigraph of a convex function Theorem 1.4 gives again a contradiction,
concluding the proof of the first statement. We then proceed to prove the second one.

Step 3: Proof of (ii).
We claim that for any solution uq of (1.2) in some convex Ω fulfilling (3.7) with q ∈ [1, q̄]
and σ ⩾ 1/(q − 1), it holds

(3.15) ∥uq∥q−1
∞ ⩽ 1 + C(q̄, R̄, θ̄) (q − 1).

Suppose this is not true for sequences (qn), (σn), (Ωn) as above and, with the previous
notations, solutions

un := uqn,σn .
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This amounts to

(3.16) lim
n

∥un∥qn−1
∞ − 1

qn − 1
= +∞

and we can again assume (3.11) by eventually increasing σn. Choose again xn ∈ Ωn such
that ∥un∥∞ =Mn = u(xn). For σ̄ := 1/(q̄− 1), it always holds σn ⩾ 1/(qn − 1) ⩾ σ̄ and by
the previous point (3.8) holds true for C = C1(q̄, 1/(q̄ − 1), R̄, θ̄), i. e.

(3.17) M qn−1
n ⩽ C(q̄, R̄, θ̄).

Given λ > 0, define vn,λ as in (3.12) and rewrite the equation satisfied by vn,λ as

−∆v = λ2 σnM
qn−1
n (vqn − v) + λ2 σn (M

qn−1
n − 1)v.

We choose λ = λn fulfilling (recall that Mn > 1)

λ2n σn (M
qn−1
n − 1) = 1,

so that vn := vn,λn solves

(3.18) −∆v =
(qn − 1)M qn−1

n

M qn−1
n − 1

vqn − v

qn − 1
+ v =: fn(v)

in Ω̃n = (Ωn − xn)/λn, as well as 0 ⩽ vn ⩽ 1 = vn(0).
Assumption (3.16) and σn ⩾ 1/(qn − 1) force λn → 0 while (3.16) and (3.17) ensure

(3.19)
(qn − 1)M qn−1

n

M qn−1
n − 1

→ 0.

An elementary computation similar to the one in Step 1 shows that for t ∈ [0, 1]

1

eMn

1− qn

M qn−1
n − 1

⩽ fn(t) ⩽ 1

hence by (3.16) andMn ⩾ 1, we find that (3.14) holds true again. Moreover, the elementary
inequality

0 ⩾
tq − t

q − 1
⩾ −q

q
1−q ⩾ −q̄

q̄
1−q̄

holds for all t ∈ [0, 1], q ∈ [1, q̄] and implies through (3.19) that fn(t) → t uniformly on
[0, 1]. As in Steps 2 and 3 we can select a not relabelled subsequence and pass to the limit
in (3.18) using (3.19), to get that vn converges to a solution of

−∆v = v, 0 ⩽ v ⩽ 1 = v(0)

on RN or in the open epigraph H of a convex entire function, in which case v = 0 on ∂H.
This again contradicts Theorem 1.4, completing the proof (3.15). Finally, (3.15) rewrites as

∥uq∥∞ ⩽ exp

[
log(1 + C (q − 1))

q − 1

]
for a constant C = C(q̄, R̄, θ̄). Since t 7→ log(1 + t)/t is decreasing and bounded by 1 on
]0,+∞[, we infer ∥uq∥∞ ⩽ eC , proving (3.9). □
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Remark 3.6. As already mentioned, the uniformity with respect to the domain is here
obtained in order to extend our result to a general, possibly not regular convex Ω. If one
is interested in a fixed smooth domain Ω, the above proof simplifies. Indeed, if ∂Ω ∈ C1,

then standard theory implies that Ω̃n converge to the half space or the entire space, thus
more standard Liouville theorems apply. Still, the so-obtained a priori bound will depend
unexplicitly on Ω, and may in principle blow up when approximating non-smooth convex
domains with smooth ones.

4. Asymptotic behaviour of Lane-Emden

In this section we will construct a connected branch of solutions to (1.2) and then show
the behaviour of solutions to (1.2) when q → 1+ and σ is considered fixed or varying with
the law σ = 2/(q − 1).

4.1. Convergence to the first eigenfunction

We show now that the ground states of (1.2) for fixed σ and q → 1+ converge up to
normalisation to the first eigenfunction of the Laplacian.

Proposition 4.1 (Convergence to eigenfunction). Let Ω be bounded and convex, σ > 0, and
un a solution of (1.2) for a sequence qn → 1+. Denote by φ1 the first positive eigenfunction
of the Dirichlet Laplacian normalised so that ∥φ1∥∞ = 1 and λ1 the corresponding first
eigenvalue. Then

(4.1)
un

∥un∥∞
→ φ1 in C2

loc(Ω) ∩ C0(Ω).

(4.2) ∥un∥qn−1
∞ → 1 +

λ1
σ
,

(4.3) uqn−1
n → 1 +

λ1
σ

in C0
loc(Ω).

Moreover, if ∂Ω is smooth, then the convergence in (4.1) holds in C2(Ω) as well.

Proof. If Mn := ∥un∥∞, then ūn := un/Mn solves

−∆ūn = σ
(
M qn−1

n ūqnn − ūn
)
=: gn(x) in Ω.

By Lemma 3.5 we have, up to not relabelled subsequences, that M qn−1
n → M ⩾ 1 and

hence (gn) is uniformly bounded in L∞(Ω). Lemma 3.4 then ensures that (ūn) is bounded
in Cα(Ω) for a suitable α ∈ ]0, 1[. Since [0, 2] ∋ t 7→ a tq − b t is Lipschitz continuous,
uniformly for bounded a, b, q ⩾ 1, we infer that (gn) is uniformly bounded in Cα(Ω). Local
elliptic estimates then ensure that (ūn) is bounded in C2,α(Ω′) for any Ω′ ⋐ Ω. All in all,
up to a not relabelled subsequence, we can suppose that (ūn) converges in C

2
loc(Ω) ∩ C0(Ω)

to a non-negative solution ū of

−∆ū = σ (M − 1) ū in Ω



POWER LAW CONVERGENCE AND LOGARITHMIC SCHRÖDINGER EQUATION 23

with ∥ū∥∞ = 1. In particular ū ̸= 0 and by the maximum principle it must hold M > 1.
Hence ū must be a first Dirichlet eigenfunction, i. e. ū = φ1, proving (4.1). Moreover, it
must hold

σ (M − 1) = λ1 ⇐⇒ M = 1 +
λ1
σ
,

giving (4.2). Assertion (4.3) follows from (4.2), since

uqn−1
n

M qn−1
n

= ūqn−1
n → 1

locally uniformly in Ω (here we use again that u, and thus ū, are positive in Ω by assumption).
Finally, the smoothness of ∂Ω grants boundedness of (ūn) in C

2,α(Ω) by the global C2,α-
estimates for the Poisson equation, so that the previously proved convergence ūn → φ1

improves to C2(Ω) in this case.
□

4.2. Uniqueness and connected component of solutions

Given σ > 0, it is unfortunately unknown whether the set of ground states{
(q, u) : q ∈ ]1, 2∗ − 1[, u ∈ GSq,σ

}
⊆ ]1, 2∗ − 1[×W 1,2

0 (Ω)

is connected, a pivotal property to perform the final continuity argument. As mentioned in
the Introduction, and as we show now in Proposition 4.2, connectedness is certainly true
when in the previous set we restrict q to be sufficiently near 1. We can then resort to a
degree argument to construct from there the seeked connected component.

The following uniqueness result has been proved in [19] when Ω is symmetric. With the
same argument and with Proposition 4.1 at hand, we can remove the symmetry assumption.

Proposition 4.2 (Uniqueness). Let Ω be bounded and convex and σ > 0. Then there exists
q0 = q0(σ,Ω) > 1 such that for any q ∈ ]1, q0], (1.2) has a unique solution.

Proof. Suppose the claim is false and pick two sequences (un) and (vn) of solutions of (1.2)
for suitable qn → 1+ with un ̸= vn. We start observing that, from

0 =

∫
Ω

un (−∆vn + σvn)− vn(−∆un + σun) dx

= σ

∫
Ω

un vn (v
qn−1
n − uqn−1

n ) dx,

the function vn − un must be sign changing. The functions

wn :=
vn − un

∥vn − un∥∞
fulfil

(4.4) −∆wn + σ wn = σ gnwn, wn⌊∂Ω≡ 0

where

gn(x) :=


vqnn (x)− uqnn (x)

vn(x)− un(x)
if vn(x) ̸= un(x)

1 + λ1/σ if vn(x) = un(x).
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Let x be such that wn(x) ̸= 0. Then by the intermediate value theorem, gn(x) = qn ξn(x)
qn−1

for some ξn(x) in the interval with extrema vn(x) and un(x). Since both ∥vn∥qn−1
∞ and

∥un∥qn−1
∞ are uniformly bounded in n by (4.2), we see that ∥gn∥∞ is bounded in n. It follows

from Lemma 3.4 that (wn) is precompact in Cα(Ω) and in W 1,2
0 (Ω), thus it converges up

to a not relabelled subsequence to some w in these topologies. Moreover, for any x ∈ Ω
either gn(x) = 1 + λ1/σ or gn(x) belongs to the interval with extrema qn vn(x)

qn−1 and
qn un(x)

qn−1. By (4.3), we have that in any case gn(x) → 1 + λ1/σ, hence by dominated
convergence it holds

gn → 1 +
λ1
σ

in L2(Ω).

Passing to the limit in (4.4) and recalling that ∥wn∥∞ ≡ 1, we get that the limit w is either
φ1 or −φ1. Let

Ω±
n := {±wn > 0}

which are nonempty since wn is always sign changing. By Poincaré inequality

(4.5)

∫
Ω

∣∣w±
n

∣∣2 dx ⩽ C
∣∣Ω±

n

∣∣ 2
N

∫
Ω

∣∣Dw±
n

∣∣2 dx
while testing (4.4) with w±

n we get∫
Ω

∣∣Dw±
n

∣∣2 + σ
∣∣w±

n

∣∣2 dx = σ

∫
Ω

gn
∣∣w±

n

∣∣2 dx
so that by the uniform bound on gn we get∫

Ω

∣∣Dw±
n

∣∣2 dx ⩽ C

∫
Ω

∣∣w±
n

∣∣2 dx.
Inserting the latter into (4.5), we obtain∫

Ω

∣∣w±
n

∣∣2 dx ⩽ C
∣∣Ω±

n

∣∣ 2
N

∫
Ω

∣∣w±
n

∣∣2 dx
so that |Ω±

n | is uniformly bounded from below. This implies that the limit w is sign changing
as well, contradicting the fact that w is either φ1 or −φ1. □

Exploiting the uniqueness of the solutions given by Proposition 4.2, we conclude this
section by detecting a connected component of solution through a classical application of
Leray-Schauder continuation theorem. See [23, Corollary 2.1] for a version with positive
nonlinearities.

Lemma 4.3 (Connected component of solutions). Let q1 ∈ ]1, 2∗ − 1[, σ̄ > 0 and Ω be
convex bounded. For any sufficiently small (depending on σ̄ and Ω) q0 ∈ ]1, q1[, there exists
a closed connected set C ⊆ W 1,2

0 (Ω)× [q0, q1] such that for any (u, q) ∈ C, u solves (1.2) for
the given q and σ = σ̄, and the map

C ∋ (u, q) 7→ q ∈ [q0, q1]

is onto.

Proof. Define the nonlinear operator

T (q, u) := σ̄ (−∆)−1 (uq+ − u+)
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where (−∆)−1 : W 1,2
0 (Ω) → W 1,2

0 (Ω) is the inverse Dirichlet Laplacian, which is therefore
compact by Rellich-Kondrachov theorem (see also [41, Lemma 7.1] for some details).
Correspondingly, the functional equation

Φ(q, u) := u− T (q, u) = 0

is fulfilled at u ∈ W 1,2
0 (Ω) if and only if u solves (1.2) (the positivity condition being

satisfied thanks to the truncation and the strong maximum principle). To get the claim,
we check the assumptions of [1, Theorem 4.3.4]. By Proposition 4.2, for any sufficiently
small q0 > 1, problem (1.2) has a unique solution u0, which is therefore an isolated zero of
Φ(q0, ·). Thanks to the mountain pass character of u0, [36, Theorem 2 and pp. 310-311]
ensures that

deg (Φ(q0, u0), A) = −1 ̸= 0

for any open bounded A ⊆ W 1,2
0 (Ω) containing u0. Given such a q0 > 1, (3.8) in Lemma 3.5

ensures an a-priori L∞-bound for any solution of (1.2) in Ω with q ∈ [q0, q1] and σ = σ̄. In
turn, by testing the equation with u itself and applying the L∞-bound, we find a constant
C = C(q0, q1, σ̄,Ω) > 0 such that any solution of (1.2) for σ = σ̄ and q ∈ [q0, q1] fulfils
∥Du∥2 < C. We can then choose the open set A ⊆ W 1,2

0 (Ω) to be the ball of radius C, so
that

Φ(q, u) ̸= 0 for all q ∈ [q0, q1], u ∈ ∂A.

The existence of the connected C with the claimed properties then follows from Leray-
Schauder continuation theorem, see [1, Theorem 4.3.4]. □

We remark that, similarly to [41, Lemma 7.3] we should be able to extend C in such a
way the second projection covers ]1, 2∗ − 1[. This however goes beyond our scopes.

4.3. Convergence to the Logarithmic Schrödinger equation

Next we analyse the asymptotic behaviour as q → 1+ of solutions uq to the Lane-Emden
equation (1.2) with the choice σ = 2/(q− 1). We will show that these solutions converge to
a solution of the Logarithmic Schrödinger equation (1.1) and that ground states converge
to ground states, without needing a normalisation. As in Definition 3.1, ground states of
the Logarithmic Schrödinger equation are defined as a solution of (1.1) minimising

J(v) :=

∫
Ω

|Dv|2

2
dx−

∫
Ω

v2 (log v2 − 1)

2
dx

over the Nehari set

N+ :=

{
v ∈ W 1,2

0 (Ω) : v ⩾ 0 and

∫
Ω

|Dv|2 dx =

∫
Ω

v2 log v2 dx

}
.

Note that if Ω is bounded (as we will suppose in the following) the functional J is C1

on W 1,2
0 (Ω), but in a general unbounded domain u2 log u2 may fail to be summable for

u ∈ W 1,2
0 (Ω). Testing (1.1) with u ensures that any W 1,2

0 (Ω) solution of (1.1) lies in N+.
Moreover, J(v) = ∥v∥22/2 on N+, so that a ground state minimises the L2-norm among
all solutions of (1.1). The converse is also true: if u ∈ N+ is of minimal L2-norm, then it
solves (1.1).
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Proposition 4.4 (Convergence to logarithmic equation). Let Ω be bounded and convex and
q̄ ∈ ]1, 2∗ − 1[. Then the set of positive solutions of (1.2) for σ = 2/(q− 1) and q ∈ ]1, q̄] is
relatively compact in C0(Ω), W 1,2

0 (Ω) and in C2
loc(Ω), and any limit point for q → 1+ of

such solutions solves (1.1). Moreover, if the chosen solutions uq are ground states for (1.2),
then the limit is a ground state for (1.1).

Proof. We let uq denote an arbitrary positive solution of (1.2) for σ = 2/(q − 1) and
q ∈ ]1, q̄]. From (3.9) in Lemma 3.5 we find that ∥uq∥∞ is bounded in q for q ∈ ]1, q̄]. By
testing (1.2) with uq we readily get that ∥uq∥∞ > 1. The function

fq(t) :=
2

q − 1

(
tq − t

)
is convex, has minimum in tq := q−

1
q−1 and it is thus increasing on [tq,+∞[, hence

−2 q−
q

q−1 = fq(tq) ⩽ fq(uq) ⩽ fq(∥u∥∞) ⩽ C.

Since q 7→ q−
q

q−1 is decreasing and bounded by e−1 for q ∈ ]1,+∞[, we get that ∥∆uq∥∞ is
bounded uniformly for q ∈ ]1, q̄]. It follows by Lemma 3.4 that {uq}q∈]1,q̄] is bounded in

Cα(Ω) for some α ∈ ]0, 1[ thus precompact in C0(Ω).
We claim that, given M > 1, {fq}q∈]1,q̄] is bounded in C1/2([0,M ]). Indeed,

sup
[1,M ]

|f ′
q| =

2

q − 1

(
qM q−1 − 1

)
and the right hand side is non-decreasing in q, so that {fq}q∈]1,q̄] is actually equi-Lipschitz
on [1,M ]. On the interval [0, 1] an explicit computation shows that∫ 1

0

|f ′
q|2 dτ =

4

2 q − 1
,

hence for 0 ⩽ s ⩽ t ⩽ 1

|fq(t)− fq(s)| ⩽
∫ t

s

|f ′
q| dτ ⩽

(∫ t

s

|f ′
q|2 dτ

)1/2 √
t− s ⩽

2
√
t− s√

2 q − 1

and {fq}q∈]1,q̄] is bounded in C1/2([0, 1]), proving the claim. From the bound of {uq}q∈]1,q̄]
in Cα(Ω), we thus infer that {fq(uq)}q∈]1,q̄] is bounded in Cα/2(Ω). The precompactness of

{uq}q∈]1,q̄] in C2
loc(Ω) now follows from local C2,α/2 elliptic estimates.

Let u be a limit point in the aforementioned topologies of a sequence uqn , qn → 1+.
Since fq converges to f(t) := t log t2 as q → 1+ locally uniformly, u is a weak (and thus
classical) solution of the equation in (1.1). From ∥uqn∥∞ ⩾ 1 we obtain ∥u∥∞ ⩾ 1, hence u
is non-trivial and non-negative and by the strong maximum principle [56, Theorem 1.1.1] it
follows that u > 0 in Ω. In particular, from (1.1) tested with u, we get

(4.6)

∫
Ω

|Du|2 dx =

∫
Ω

u2 log u2 dx.

Since, up to not relabelled subsequences,

∥Duqn∥22 = ∥fqn(uqn)uqn∥22 → ∥f(u)u∥22 = ∥Du∥22,
it follows from uniform convexity that Duqn → Du in L2(Ω), proving that {uq}q∈]1,q̄] is
precompact in W 1,2

0 (Ω) as well.
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Let us finally discuss the variational characterization of u in the case where uqn are
ground states of (1.2). From the stated convergence and (3.1), we have

lim
q→1+

Jq, 2
q−1

(uq) = lim
q→1+

1

q + 1

∫
Ω

uq+1
q dx =

1

2
∥u∥22.

On the other hand, if φ ∈ W 1,2
0 (Ω) \ {0} then (3.3) holds true for any sufficiently small q

and passing to the limit in (3.4) in Lemma 3.3 for σ = 2/(q − 1) as q → 1+ yields

lim
q→1+

Jq, 2
q−1

(uq) ⩽
∥φ∥22
2

exp

[
∥Dφ∥22
∥φ∥22

]
exp

−
∫
Ω

φ2 logφ2 dx

∥φ∥22

 .
Therefore

∥u∥22 ⩽ ∥φ∥22 exp


∫
Ω

|Dφ|2 − φ2 logφ2 dx

∥φ∥22


for any

φ ∈ K(Ω) :=

{
φ ∈ W 1,2

0 (Ω) \ {0} :

∫
Ω

|Dφ|2 dx ⩽
∫
Ω

φ2 logφ2 dx

}
,

so that u minimises the L2(Ω)-norm over K(Ω) and in particular on N+. Noting that by
(4.6) it holds J(u) = 1

2
∥u∥22 on N+, we have that u is indeed a ground state solution of

(1.1). □

5. Concavity properties

We can show now that, for q small – depending on σ – the ground state solution of (1.2)
has some concavity property. We exploit here the convergence to the eigenfunction given
by Proposition 4.1.
The following theorem holds for Ω smooth and strongly convex, which means that the

second fundamental form of ∂Ω with respect to its interior normal is always positive
definite. More precisely, in the setting of Section 2, suppose that ∂Ω = {w = 0} for some
w ∈ C∞(RN) such that Dw ̸= 0 in a neighbourhood ∂Ω (this is always true if Ω is convex
and smooth). For any such w with the additional property that w < 0 in Ω, the normal
defined in (2.5) is actually pointing to the interior to Ω and we can set

IIx(∂Ω) := IIx(w) for all x ∈ ∂Ω

independently (see Remark 2.1) of w obeying the prescribed conditions. Strong convexity
of Ω then amounts to the existence of θ > 0 such that

IIx(∂Ω)(z) ⩾ θ |z|2

for all x ∈ ∂Ω and all tangent vectors z at x.

Theorem 5.1 (Concavity near q = 1). Let Ω be bounded, smooth and strongly convex, and
σ > 0. Then there exists q0 = q0(σ,Ω) ∈ ]1, 2∗ − 1[ such that, for q ∈ ]1, q0[ the solution
uq,σ to (1.2) is unique (indeed, it is a ground state uq,σ ∈ GSq,σ), strongly log-concave, and
thus strongly (1− q)/2-concave in Ω.
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Proof. Note that for q ∈ ]1, 2∗ − 1[ any solution uq,σ of (1.2) produces, by considering
uq,σ(

√
σ ·), a solution of (1.2) for σ = 1 on the domain Ω/

√
σ. Being σ fixed, we can

suppose that σ = 1 and omit henceforth the dependence on σ.
We set vq := uq/∥uq∥∞ and note that

D2 log uq = ∥uq∥∞D2 log vq =
∥uq∥∞
vq

[
D2vq −

1

vq
Dvq ⊗Dvq

]
.

Thus we focus on the matrix

(5.1) M(vq) :=
1

vq
Dvq ⊗Dvq −D2vq,

which we will prove to be positive definite.

Step 1: Bound in the normal directions.
For sufficiently small δ > 0 let Φt : [0, δ[×∂Ω → Ω be a C1 (in both t and x) family of
diffeomorphisms from ∂Ω to {dist(x, ∂Ω) = t}, and let n denote the corresponding C1

extension of the interior normal to ∂Ω, defined on

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ}.
Note that any ξ ∈ RN such that (n(x), ξ) = 0 is the image of a unique tangent vector ξ′ to
∂Ω at the point Φ−1

dist(x,∂Ω)(x) and the corresponding map is C1.

Let φ1 be the first positive eigenfunction of the Dirichlet Laplacian such that ∥φ1∥∞ = 1.
The Hopf Lemma ensures that there exists δ, θ > 0 such that

inf
Ωδ

∂φ1

∂n
⩾ 3 θ

where n is the interior normal to ∂Ω. Let q0 ∈ ]1, 2∗ − 1[, given in Proposition 4.2, be such
that, for any 1 < q ⩽ q0, (1.2) has a unique solution uq (which is a ground state). By the
C1(Ω) convergence vq → φ1 as q → 1+ proved in Proposition 4.1, there exists 1 < q′0 ⩽ q0
such that

(5.2) inf
Ωδ

∂vq
∂n

⩾ 2 θ for all q ∈ ]1, q′0].

Since, again by Proposition 4.1, there exists C > 0 such that

(5.3) ∥vq∥C2(Ω) ≤ C for all q ∈ ]1, q′0],

inequality (5.2) gives

(5.4) (M(vq)n, n) ⩾
1

vq

(
∂vq
∂n

)2

− |D2vq| ⩾
4 θ2

vq
− C ⩾

4 θ2

C δ
− C

in Ωδ.

Step 2: bound in the tangential directions.
Let IIx(∂Ω) be the second fundamental form of ∂Ω with respect to the inner normal direction
nx at a point x ∈ ∂Ω, so that by assumption there exists k0 > 0 such that

(5.5) IIx(∂Ω)(ξ) ⩾ k0 |ξ|2, ∀x ∈ ∂Ω, ξ⊥nx.

Since ∂Ω = {−vq = 0} and −vq < 0 in Ω, it holds

IIx(∂Ω) = IIx(−vq) = −IIx(vq)
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for all x ∈ ∂Ω. From the latter, (2.6), (5.5) and (5.2) we have(
D2vq(x) ξ, ξ

)
= |Dvq(x)| IIx(vq)(ξ) = −∂vq(x)

∂n
IIx(∂Ω)(ξ) ⩽ −2 k0 θ |ξ|2

for all x ∈ ∂Ω, ξ⊥nx and q ∈ ]1, q′0].
Since Dvq ⊗Dvq ⩾ 0, n ∈ C1(Ωδ) and vq is uniformly bounded in C2(Ω) we infer that

for any sufficiently small δ it holds

(5.6) (M(vq)(x) ξ, ξ) ⩾ k0 θ |ξ|2

for any q ∈ ]1, q′0], x ∈ Ωδ and ξ = ξ(x) such that ξ(x)⊥n(x).
Step 3: bound in the mixed directions.

Finally, since (Dvq(x0), ξ) = 0 for all x0 ∈ ∂Ω and ξ⊥nx0 with |ξ| = 1 and the boundedness
of vq in C

2(Ω) for all q ∈ ]1, q′0], we deduce through the Lipschitz character of ξ 7→ ξ′ ∈ T∂Ω
the uniform bound

|(Dvq(x), ξ(x))| ⩽ C dist(x, ∂Ω)

for all x ∈ Ωδ and ξ⊥n(x) with |ξ| = 1. In particular, since by (5.2) it holds

dist(x, ∂Ω) ⩽ C vq(x)

in Ωδ, for a constant C independent of q ∈ ]1, q′0], we get

(5.7) (M(vq) ξ, n) ⩽ |D2vq| |ξ|+
1

vq

∣∣∣∣∂vq∂n

∣∣∣∣ |(Dvq, ξ)| ⩽ C |ξ|

for all x ∈ Ωδ, ξ⊥n(x) and q ∈ ]1, q′0].

Step 4: convexity in Ωδ.
Writing any vector as ξ + t n for ξ⊥n and t ∈ R, it follows from (5.4), (5.6) and (5.7), that
in Ωδ we have

(M(vq) (ξ + tn), ξ + tn) = (M(vq) ξ, ξ) + 2 t (M(vq) ξ, n) + t2 (M(vq)n, n)

⩾ k0 θ |ξ|2 − C t |ξ|+ t2
(
4 θ2

C δ
− C

)
for all q ∈ ]1, q′0]. It suffices to choose δ > 0 sufficiently small (depending only on the
parameters and thus not on q) to obtain a positive constant θ′0 such that

(M(vq) z, z) ⩾ θ′0 Id |z|2 in Ωδ,

for all q ∈ ]1, q′0]. Then since vq ⩽ C δ in Ωδ, we find

D2 log vq = −M(vq)

vq
⩽ − θ′0

C δ
Id

in Ωδ, for all q ∈ ]1, q′0].

Step 5: Conclusion.
Recall that log vq → logφ1 in C

2(Ω\Ωδ) by Proposition 4.1. Note that D2 logφ1 is positive
definite everywhere in Ω by a classical application of the constant rank theorem, hence
logφ1 is locally strongly concave in any Ω. By C2-convergence, this ensures that for a
sufficiently small q′′0 > 1 and θ′′0 > 0 it holds

D2 log vq ⩽ −θ′′0 Id
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in Ω\Ωδ for all q ∈ ]1, q′′0 ]. All in all we have proved that for a constant θ0 = min{θ′0, θ′′0} > 0
and q0 = min{q′0, q′′0} > 1, the inequality

(5.8) D2 log uq = D2 log vq ⩽ −θ0 Id
holds true in Ω for all q ∈ ]1, q0].
To prove the final assertion, we compute

D2u
1−q
2

q =
q − 1

2u
q+1
2

q

(
q + 1

2

Duq ⊗Duq
uq

−D2uq

)
=

q − 1

2u
q+1
2

q

(
q − 1

2

Duq ⊗Duq
uq

− uqD
2 log uq

)
and note again that the first matrix term is non-negative definite. Thus from (5.8) we have

D2u
1−q
2

q ⩾ −q − 1

2
u

1−q
2

q D2 log uq ⩾ θ0
q − 1

2
∥uq∥

1−q
2∞ Id

and u
(1−q)/2
q is strongly convex on Ω for all q ∈ ]1, q0]. □

For the next proof, it is important to inspect more closely the behaviour of the matrix
M(vq) in (5.1). What we actually obtained in the previous proof is that M(vq) fulfils

(5.9) M(vq) ⩾ θ Id in Ωδ

for some θ, δ > 0 depending only on Ω, a positive lower bound on ∂nvq on ∂Ω and an upper
bound on ∥vq∥C2(Ω) (see (5.2), (5.3) and (5.5)).
We are now ready to extend the concavity property detected in Theorem 5.1 to all the

values of q, by means of the connected set of solutions given in Lemma 4.3.

Theorem 5.2 (Concavity of solutions, q > 1). Let Ω be bounded, smooth and strongly
convex, q ∈ ]1, 2∗ − 1[ and σ > 0. Then there exists a solution uq,σ of (1.2) such that

u
(1−q)/2
q,σ is strongly convex on Ω.

Proof. As in the proof of Theorem 5.1, we can restrict to σ = 1. Let q0 be as in Theorem

5.1, so that for q ∈ ]1, q0] we know there exists a unique solution such that u
1−q
2 is strongly

convex.
Fix q̄ ∈ ]q0, 2

∗− 1[ and let C ⊆ W 1,2
0 (Ω)× [q0, q̄] be the connected set provided by Lemma

4.3. We will prove that any (uq, q) ∈ C is strongly (1− q)/2-convex. To this end, set

E :=
{
(uq, q) ∈ C : u(1−q)/2

q is strongly convex in Ω
}
.

To show that E coincides with the whole C, thanks to the connectedness of C, it is sufficient
to show that E is nonempty, open and closed; we show this in the following steps.
We start by observing that C ∩

(
W 1,2

0 (Ω)× {q0}
)
contains the unique solution of (1.2)

which is strongly (1− q0)/2-convex thanks to Theorem 5.1. Therefore E ̸= ∅.
For any (uq, q) ∈ C we set in the following wq := u

(1−q)/2
q and note that for any such wq

D2wq =
q − 1

2u
q+1
2

q

[
q + 1

2uq
Duq ⊗Duq −D2uq

]
⩾
q0 − 1

2u
q+1
2

q

M(wq)

where M(vq) is given in (5.1). Note that C is bounded in C2,α(Ω)× [q0, q̄] by the uniform
bound (3.9) in Lemma 3.5 and elliptic estimates. This grants compactness of C in C2(Ω)×
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[q0, q̄] and Hopf’s Lemma ensures a uniform lower bound on ∂nuq, which in turn ensure
(5.9) for all (uq, q) ∈ C. By (5.9), we thus find constants θ, δ > 0 depending only on Ω and
C such that

(5.10) D2wq > θ Id in Ωδ, for any (uq, q) ∈ C.

We show now that E is open. Let (uq, q) ∈ E, so that wq is strongly convex. Given a
sequence (uqn , qn) ∈ C verifying (uqn , qn) → (uq, q), note that uqn → uq in C2(Ω). By the
strong convexity of wq there exists θ′ > 0 such that

D2wq > θ′ Id in Ω

and since wqn → wq in C
2(Ω \ Ωδ), D

2wqn ⩾ θ′ Id in Ω \ Ωδ for all sufficiently large n. By
using (5.10), we thus see that wqn is strongly convex in the whole Ω for all sufficiently large
n. It follows that, for such n, (uqn , qn) ∈ E, proving that E is open in C.
Finally we prove that E is closed in C. Let (uqn , qn) be a sequence in E converging to

some (uq, q) ∈ C. Then uqn → uq point-wise and wq = u
(1−q)/2
q , being the point-wise limit

of convex proper functions, is convex. Note again that (5.10) grants strong convexity of wq

in Ωδ for some δ > 0. Moreover, wq is a convex solution of

∆v =
1

v

(
q + 1

q − 1
|Dv|2 + q − 1

2

)
− q − 1

2
v =: b(v,Dv)

and t 7→ b(t, z) is harmonic concave whenever it is positive, hence Corollary 2.7 ensures that
wq is strongly convex in Ω \Ωδ as well. Therefore (uq, q) ∈ E and E is also closed in C. □

We are now ready to pass to the limit (1.2) and get a log-concave solution of (1.1),
i.e. prove Theorem 1.1.

Proof of Theorem 1.1. Choose a sequence Ωn ⊇ Ω of smooth strongly convex sets converging
in the Hausdorff sense to Ω (see [28, Proposition 2.1]). On such a sequence (3.7) holds true
uniformly in n. Fix a corresponding sequence qn → 1+ and for each n ⩾ 1 apply Theorem

5.2 for σ = 2/(qn − 1) to get a solution un of (1.2) such that u
(1−qn)/2
n is convex in Ωn. By

(3.9) in Lemma 3.5 and arguing as in Proposition 4.4, we get that up to subsequences un
converges to a solution u of (1.1) in C0(Ω), in W 1,2

0 (Ω) and in C2
loc(Ω).

In order to prove that u is log-concave, set εn := qn−1
2

> 0 and note that the function

wn :=
u−εn
n − 1

εn
=
e−εn log un − 1

εn

is convex. Since wn converges point-wise in Ω to − log v, the latter is convex. Finally, the
function w := − log u, satisfies

∆w = |Dw|2 − 2w =: b(w,Dw) in Ω

and (
∂2t (1/b)

)
(t, z) = 8/b(t, z)3 > 0

as long as b(t, z) > 0. Thus Corollary 2.7 ensures the strict convexity of w in Ω. □

To conclude the main proofs, similarly to what we just did for problem (1.1), we remove
the additional assumptions in Ω for problem (1.2).
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Proof of Theorem 1.2. As in the proof of Theorem 1.1 we choose Ωn → Ω in the Hausdorff
sense, Ωn smooth and strongly convex sets fulfilling (3.7) uniformly in n. By Theorem 5.2

we get a solution un of (1.2) such that u
(1−q)/2
n is convex in Ωn. By (3.8) in Lemma 3.5

the functions un are equi-bounded and, arguing as in Proposition 4.4, we get that up to
subsequences un converges in C0(Ω), in W 1,2

0 (Ω) and in C2
loc(Ω) to a solution u of (1.2).

Thus u is a (1− q)/2-concave solution. Strict concavity follows by the same argument of
the proof of Theorem 1.1. □

Finally we study the equations with opposite sign (1.8), (1.10).

Proof of Theorem 1.5. Let us consider f(t) = σ (t − tq) or f(t) = −t log t2; in the first
case, by considering x 7→ u(

√
σ x) instead of u, we can assume that σ = 1. Existence

of a positive solution u can be obtained through standard methods, as minimiser of the
corresponding coercive functional. Since t 7→ f(t)/t is strictly decreasing, we have that
such solution is unique (see [13]). Moreover, in both cases f(t) ≤ 0 for t ≥ 1, so that by
the weak comparison principle 0 < u ≤ 1 in Ω. By Lemma 2.4 we actually have ∥u∥∞ < 1,
thus u(Ω) ⊂ ]0, 1[ and f(u) > 0. We thus proceed to check the assumptions of [10] (see also
[54]) for t ∈ ]0, 1[, for both the reactions f(t) = t − tq (with q > 1) and f(t) = −t log t2,
setting as usual F (t) :=

∫ t

0
f(τ)dτ.

The computations to check that
√
F is concave and F/f is convex in ]0, 1[ are in both

cases straightforward and omitted. The transformation φ is defined as (1.5), which belongs
to C∞(]0, 1[) and [10, Theorem 1.2] ensures that φ(u) is convex in both cases. Explicit
integration gives for f(t) = t− tq, q > 1

φ1(t) ∝ atanh

(√
1− 2

q + 1
tq−1

)
(where ∝ means equal up to positive multiplicative constants and additive constants), while
when f(t) = −t log t2

φ2(t) ∝
√

1− log t2.

Let us discuss the strict convexity of φ(u), still denoting with φ both φ1 and φ2. Note that
φ′ < 0 < φ′′ on ]0, 1[, hence also on u(Ω). The previous choices of φ are made in such a
way that

ψ′ = −
√
F (ψ), ψ′′ =

1

2
f(ψ)

and w = φ(u) satisfies (see (2.4))

∆w =
f(ψ(w))√
F (ψ(w))

(
1 +

1

2
|Dv|2

)
=: b(w,Dw).

In [10, page 95] it is shown that the convexity of t 7→
√
F (ψ(t))/f(ψ(t)) is implied by the

convexity of s 7→ F (s)/f(s), which has already been noted to hold in ]0, 1[. Thus Corollary
2.7 applies, giving the strict convexity of φ(u) in Ω in both cases. □
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6. Further results

6.1. Bounds for solutions

Here we will derive some a-priori estimates on solutions of the Logarithmic Schrödinger
equation (1.1). We start with a lower bound, which is a straightforward application of
the Pohozaev identity. Such an information could be useful to study possible branches
of solutions, which are generally parametrised by u(0) = ∥u∥∞, see [22, Remark 5], [19,
Theorem 3.3].

Lemma 6.1. Let Ω ⊆ RN be bounded, star-shaped and with C2 boundary. Then any
solution of (1.1) satisfies

(6.1) ∥u∥∞ > eN/4.

Proof. By Pohozaev identity

(6.2)
N − 2

2

∫
Ω

|Du|2 dx = N

∫
Ω

u2 (log u2 − 1)

2
dx+

1

2

∫
∂Ω

(x, n) (Du, n)2 dHN−1

where n is the interior normal to ∂Ω. By the star-shapedness of Ω it holds (x, n) ⩽ 0 on
∂Ω, while by the Nehari identity we have∫

Ω

|Du|2 dx =

∫
Ω

u2 log u2 dx.

Inserting these relations into (6.2), we find

N − 2

2

∫
Ω

u2 log u2 dx ⩽ N

∫
Ω

u2 (log u2 − 1)

2
dx

so that ∫
Ω

u2
(
N

2
− log u2

)
dx ⩽ 0.

It follows that log u2 − N/2 (which is not constant) must be positive somewhere in Ω,
implying (6.1). □

Regarding the upper bound, the key point is that the reaction f(t) = t log t2 is superlinear
and regularly varying, meaning that

lim
t→+∞

f(t s)

f(t)
exists and is finite for every s > 0.

Karamata’s theory [9, Theorems 1.2.1 and 1.4.1] ensures that, if f is regularly varying,
continuous and definitely positive, then the previous limit is uniform on bounded intervals
and there exists q ∈ R such that

(6.3) lim
t→+∞

f(t s)

f(t)
= sq for all s > 0.

In this case q is called the index of f . The superlinear reactions f(t) = t log t2 and
f(t) = tq − t (q > 1) considered in this manuscript are indeed regularly varying, with index
1 and q respectively.
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We next report an a-priori upper bound for solutions of

(6.4)


−∆u = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

for regularly varying, superlinear reactions f .

Theorem 6.2. Let R̄, θ̄ > 0 and Ω ⊆ RN be convex and such that

(6.5) diam (Ω) ⩾ 2 R̄, ecc (Ω) ⩽ θ̄.

Suppose f ∈ C0([0,+∞[) is superlinear at infinity and regularly varying with index q ∈
[1, 2∗ − 1]. Then there exists a constant C = C(R̄, θ̄, f) > 0 such that any C2(Ω) ∩ C0(Ω)-
solution of (6.4) has L∞-norm bounded by C.

Proof. The proof is a slight modification of Lemma 3.5, so we briefly sketch it, adopting the
same notations. Let (un) be a sequence of solutions of (6.4) in (Ωn) as in the assumptions.
Thanks to (6.5), by rescaling and suitably translating the solutions, we can suppose that
BR̄/θ̄(0) ⊆ Ωn ⊆ B2R̄, and un solves (6.4) in Ωn with reaction βn f(u) instead of f(u), for
some βn ⩾ 1. Set Mn := ∥un∥∞ = un(xn), xn ∈ Ωn, and suppose by contradiction that
Mn → +∞. Then, defining λn > 0 through

λ2n
Mn

=
1

βn f(Mn)

we see that vn := 1
Mn

un(xn + λn(· − xn)) solves (6.4) in Ω̃n := (Ωn − xn)/λn, with reaction

fn(v) :=
f(Mn v)

f(Mn)

and fulfils 0 < vn(x) ⩽ vn(0) = 1 for all x ∈ Ω̃n. Since f is superlinear and βn ⩾ 1, it holds

λn → 0 as n→ +∞, hence Proposition A.1 ensures that Ω̃n → H locally in the Hausdorff
sense, where H is either RN or a convex epigraph. On the other hand, since fn(t) → tq

uniformly on [0, 1], we see that

∥fn∥L∞([0,1]) ⩽ C(f) <∞
for all n. Since ∥vn∥∞ ⩽ 1, Lemma 3.4 ensures that ∥vn∥Cα(RN ) is uniformly bounded, for
a given α ∈ ]0, 1[ depending on f alone (here as usual we extend each vn as 0 outside

Ω̃n). Thus, up to subsequences, vn converges to some v locally uniformly, with v(0) = 1
and v ≡ 0 outside H. Since the limit in (6.3) is uniform on bounded intervals, we can
pass to the limit in the equations satisfied by vn to get that v satisfies weakly (and thus
strongly, by local elliptic estimates) (1.7) with 0 ≤ v ≤ 1. Theorem 1.4 gives the seeked
contradiction. □

Remark 6.3. By making use of Theorem B.2 instead of Theorem 1.4 in the conclusion we
can actually obtain the same statement for all indexes q ∈ [1, qc[, with the critical exponent
qc given in (B.3).
Exploiting ideas similar to the proof of Theorem 1.2, Theorem 6.2 turns out to be a

basic tool allowing to transfer, for superlinear regularly varying reactions f , existence
of φ-concave solutions to (6.4) in smooth strongly convex domains to existence of such
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solutions in arbitrary convex domains, by allowing to pass to the limit through domain
approximations. Additional minimal hypotheses on the reaction, granting for instance
a universal lower bound on the L∞-norm of such solutions or the validity of the strong
minimum principle (see e.g. [56, Theorem 1.1.1]), would ensure non-triviality of the limiting
solution.

Note that if f is a sublinear reaction, this can be more easily done by selecting solutions
minimising the energy (which is coercive) and employing, during the domain approximation,
Γ-convergence type arguments as is done in [10, 54]; similar arguments works also in the
linear case [28, 5.1.1].

Corollary 6.4. Any solution of (1.1) in a convex domain Ω is bounded by a constant
depending only on a lower bound on diam (Ω) and an upper bound on ecc (Ω).

We will see in Remark 6.9 below that Corollary 6.4 is optimal in its geometric constraints.

6.2. Radial symmetry

In this Section we briefly discuss the symmetry and monotonicity of solutions to (1.1).
We start noting that, being f(t) = tq − t locally Lipschitz, one can apply standard results

to get radial symmetry and monotonicity with respect to axis in symmetric domains. On
the other hand, f(t) = t log t2 is not positive near the origin, neither sum of a locally
Lipschitz and non-decreasing function, which means that [29] cannot be directly applied.
We further mention that, in general, a merely continuous reaction f does not lead to

the symmetry of nonnegative solutions of −∆u = f(u): see for example [20, Section 6.1.3]
where they present a counterexample with f(t) = tq − tr with 0 < r < q < 1 and a solution
with compact support.

On the other hand u cannot have a plateau (i. e. a level set of positive measure) at t = 0
due to the strong maximum principle, which holds for non-negative solutions of −∆u = f(u)
as long as f(0) = 0, f is decreasing on [0, δ[ for some δ > 0 and∫ δ

0

1√
−F (t)

dt = +∞,

(see again [56, Theorem 1.1.1]). The latter condition is readily checked for f(t) = t log t2.
Moreover, f(t) = t log t2 is regular at t = 1, which is its only vanishing point, hence u
cannot have plateaus at positive values. Therefore we can apply [24, Theorem 2] and obtain
the following.

Theorem 6.5. Let Ω = B ⊂ RN , be a ball centred at 0 and let u ∈ C2(B) ∩ C(B) be a
non-negative, nontrivial weak solution of (1.1). Then u is radially symmetric and radially
decreasing.

While radial monotonicity readily implies quasi-concavity of solutions to (1.1), a precise
functionally quantitative concave behaviour is not clear even in the radial case. To clarify
this point recall that, exploiting the radial symmetry of the solution, log-concavity of the
first eigenfunction of the Laplacian has been obtained in an elementary way in [50]. Indeed,
if u is radial and solves −∆u = f(u) in B, then v(r) := log u(r) verifies

−rN u2 v̈ = rN (f(u)u− 2F (u)) +

∫ r

0

tN−1u̇2 dt+

∫ r

0

tN−1
(
2N F (u)− (N − 1) f(u)u

)
dt.
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Figure 1. Graphs of u and
√
u, u solution of −∆u = u log u2 in B2(0).

Thus v is concave if

f(u)u− 2F (u) ≥ 0 and 2N F (u)− (N − 1) f(u)u ≥ 0.

If f(u) = λ1 u (as in [50]) the above are clearly satisfied. If f(u) = u log u2, the first one
holds true but the second one is equivalent to log u2 ≥ N . Thus, at least in this way, we
cannot directly obtain log-concavity even in the ball.
In the ball, additionally, Lindqvist [50] shows that eigenfunctions are more than log-

concave, actually α-concave for some implicit α > 1/N (e.g., α > (
√
3 + 2)/4 ≈ 0.93 for

N = 2): it remains open the question if, in the unit ball, the solutions of (1.1) are more
than log-concave (see also Theorem 6.6 below for the one dimensional case). Numerical
computations suggest that indeed the solution of the logarithmic equation is α-concave for
some α > 0 (see Figure 1); contrary to the case of the eigenfunction, the optimal α-concavity
exponent seems to decrease as the radius of the ball increases. Similar computations hold
also for rectangles (recall, in this case, that the best exponent for the eigenfunction is 1/2):
in this case we will actually show that in plurirectangles the solutions are α-concave, even
if such α is not explicit, and α depends on size of Ω; see Theorem 6.8 below.

6.3. The one-dimensional case: optimality

In this Section we make an elementary analysis of the one-dimensional case. Namely, let
b > 0 and consider

(6.6)

{
−u′′ = u log u2 in ]− b, b[,

u(−b) = 0 = u(b).

Theorem 6.6. There exists a unique positive solution of (6.6), which is radial and radially
decreasing, u(0) = ∥u∥∞ >

√
e, concave in ]0, x∗[ and convex in ]x∗, b[ for some x∗ ∈ ]0, b[

where u(x∗) = 1. Moreover, for α ∈ ]0, 1[, u is α-concave if and only if

(6.7) (1− α) |u′(b)|2 ⩾ α e−1/α

where, in addition, |u′(b)|2 = ∥u∥2∞ (log ∥u∥2∞ − 1). Moreover, the function

φ(u) := −
√

− log
u

∥u∥∞
is concave.
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Proof. Existence and uniqueness follow from [60], while symmetry and strict monotonicity
from Theorem 6.5. Multiplying the equation by u′ and integrating we obtain

(6.8)
|u′|2

2
+ F (u(t)) ≡ C;

where as usual

(6.9) F (t) :=

∫ t

0

τ log τ 2 dτ =
1

2
t2 (log t2 − 1).

By Hopf lemma

C =
|u′(b)|2

2
> 0

so that u′(0) = 0 and u(0) = ∥u∥∞ satisfies

F (u(0)) = C > 0

implying that ∥u∥∞ >
√
e (improving (6.1) for N = 1). The concavity statement follows

from the monotonicity and symmetry of u since

u′′ ≥ 0 ⇐⇒ u ≤ 1

so that u changes convexity only at the two symmetric points ±x∗, where u(±x∗) = 1.
Let us focus on φ-concavity of u, for an increasing concave transformation φ. Setting

v := φ(u) and using (6.8), we have

v′′ = φ′′(u) |u′|2 + φ′(u)u′′

= 2φ′′(u) (C − F (u))− φ′(u) f(u)(6.10)

= φ′′(u)

(
2C + u2

(
1−

(
1 +

φ′(u)

φ′′(u)u

)
log u2

))
.

If φ′′ ⩽ 0 , then v is concave if and only if

2C + u2
(
1−

(
1 +

φ′(u)

φ′′(u)u

)
log u2

)
⩾ 0.

For φ(t) = tα, α ∈ ]0, 1[ the previous condition reads

2C + u2
(
1− α

α− 1
log u2

)
⩾ 0.

The minimum of the so-defined function is achieved at u0 = e−1/(2α), which is assumed by
u since u0 ∈ [0,

√
e]. Therefore the concavity of v is equivalent to

2C + e−
1
α

α

α− 1
⩾ 0

which, recalling the definition of C, rewrites as (6.7).
Finally, observed that the transformation

φ(t) := −
√
− log

t

m
, m := ∥u∥∞,
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Figure 2. Graph of −
√

− log(u/∥u∥∞), u solution of −∆u = u log u2 in B2(0).

is not concave in the whole ]0,m], we compute the first identity in (6.10) directly, obtaining
that concavity of v is equivalent to (recall C = F (m) and m >

√
e)(

log
t2

m2
+ 1

)
t2

m2
− 1 ≤ 0

which is indeed verified for each t ∈ ]0,m]. □

We do not know whether the radial solutions u of (1.1) in balls of arbitrary dimension

have the property that −
√

− log(u/∥u∥∞) are concave, but numerical simulations suggest
this is the case. See Figure 2.

Lemma 6.7. Let ub be the unique positive solution of (6.6). Then b 7→ u′b(−b) and
b 7→ ∥ub∥∞ are non-increasing and

lim
b→∞

u′b(−b) = 0, lim
b→0+

u′b(−b) = +∞, lim
b→∞

∥ub∥∞ =
√
e, lim

b→0+
∥ub∥∞ = +∞.

As a consequence, the optimal value α(b) ∈ ]0, 1[ granting equality in (6.7) verifies

lim
b→∞

α(b) = 0, lim
b→0+

α(b) = 1.

Proof. Set for brevity m(b) = ub(0) = ∥ub∥∞ and F (t) = t2 (log t2 − 1)/2 as the proof of
Theorem 6.6. We solve equation (6.8) (with C = |u′(−b)|2/2) at x = 0 to get

(6.11) F (m(b)) = |u′(−b)|2/2.
Note that m(b) ⩾

√
e for all b > 0 by Theorem 6.6 and that F is strictly increasing on

[
√
e,+∞[. Since u′(−b) > 0 for all b > 0, F vanishes only at

√
e and F (t) → +∞ for

t→ +∞, it suffices to prove the limits

(6.12) lim
b→∞

m(b) =
√
e, lim

b→0
m(b) = +∞

to obtain the claimed limits for u′b(−b).
For x ∈ ]− b, 0[ we also have from (6.8)

1

u′(x)
= (2F (m(b))− 2F (u(x)))−1/2 .

By changing variable t = u(x) – which is regular and increasing on ]− b, 0[ – we thus obtain

(6.13) b =

∫ 0

−b

dx =

∫ m(b)

0

(2F (m(b))− 2F (t))−1/2 dt.
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The previous integral (up to the factor 1/
√
2) can be rewritten by changing variable

t = m(b)s and recalling the definition (6.9) of F as∫ m(b)

0

(F (m(b))− F (t))−1/2 dt = m(b)

∫ 1

0

(F (m(b))− F (m(b)s))−1/2 ds

=

∫ 1

0

(
(1− s2) logm(b)− F (s)− 1/2

)−1/2
ds

which shows through (6.13) that b 7→ m(b) is non-increasing. From (6.11) and the strict
monotonicity of F on [

√
e,+∞[, we infer that b 7→ u′b(−b) is non-increasing as well. Let

then b→ +∞ so that m(b) → m. By (6.13) we have

+∞ = lim
b→+∞

∫ m(b)

0

(F (m(b))− F (t))−1/2 dt,

but if F (m) ̸= 0 we can apply dominated convergence to get

lim
b→+∞

∫ m(b)

0

(F (m(b))− F (t))−1/2 dt =

∫ m

0

(F (m)− F (t))−1/2 dt < +∞

reaching a contradiction. Hence F (m) = 0 and m =
√
e, giving the first limit in (6.12).

Finally, suppose m(b) → M < ∞ as b → 0+. Then taking the limit in (6.13) for b → 0
forces, again by dominated convergence,

0 =

∫ M

0

(F (M)− F (t))−1/2 dt

which is still a contradiction. Thus the second limit in (6.12) is proved as well. □

As a consequence of Theorem 6.6, Lemma 6.7 and the tensorization property, we obtain
the following result.

Theorem 6.8 (Optimality). For any α ∈ ]0, 1/N [ there exists a convex bounded domain
Ω = Ω(α) ⊆ RN and a solution of (1.1) which is α-concave but not β-concave for any
β > α.

Proof. The one dimensional case follows from the fact that α-concavity is equivalent to
(6.7) and by Lemma 6.7 and the intermediate value theorem there is exactly one b(α) > 0
for which equality holds in (6.7). The corresponding solution of (6.6) on ]− b(α), b(α)[ is
therefore α-concave but, since the function

α 7→ α

1− α
e−1/α

is increasing on ]0, 1[, such solution is not β-concave for any β > α. For N ⩾ 2 and
α ∈ ]0, 1/N [, choose with the previous notations b = b(N α) (note that N α < 1) and set

u(x1, . . . , xN) :=
N∏
i=1

ub(xi)

which, by the tensorization property, solves (1.1) in Ω =]− b, b[N . Restricting u to the line
{t n : t ∈ ]− b, b[} with n = (1, 1, . . . , 1), we see that

u(t n) = uNb (t), ∀ t ∈ ]− b, b[.
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Since by construction ub is not γ-concave for any γ > N α, it follows that u cannot be
β-concave for any β > α. Moreover, we claim that u is α-concave. Indeed the geometric
mean

G(y1, . . . , yN) :=
N∏
i=1

y
1/N
i

is concave in the octant yi ⩾ 0 and increasing with respect to each variable separately.
Since

uα(x1, . . . , xN) = G
(
uN α(x1), . . . , u

N α(xN)
)
,

and each xi 7→ uN α
b (xi) is concave, the claim follows. □

Remark 6.9. The previous construction also proves the optimality of the geometric
constraints in Corollary 6.4. Again by the tensorization property of (1.1), one can consider
the more general solution

(6.14) u(x1, . . . , xN) :=
N∏
i=1

ubi(xi)

in the plurirectangle Ω =
∏N

i=1]− bi, bi[ for arbitrary choices of bi > 0, i = 1, . . . , N , which
will obey

∥u∥∞ =
N∏
i=1

∥ubi∥∞.

For any such choice, the domain Ω fulfils the geometric constraints

diam (Ω) ≃ max{bi}, ecc (Ω) ≃ max{bi}/min{bi}.

If we choose all bi = b and let b → 0, we can keep the eccentricity bounded while the
solutions (6.14) blow up in L∞, thanks to Lemma 6.7. On the other hand, by choosing
bi = 1 for i ⩾ 2 and b1 → 0, the diameter of the corresponding rectangles is bounded from
below, but the eccentricity blows up, and again the solutions (6.14) blow up in L∞ as
b1 → 0.

Appendix A. Convex epigraphs

To deal with general convex domains Ω, in the paper we exploit an approximation
argument Ωn → Ω, where Ωn are smooth (and strongly convex); in this framework the usual
blow up argument does not ensure that a proper rescaling and translation of Ωn converges
to the half space or the entire space and the best one can hope is that the limiting domain
will be either RN or a convex epigraph. In general this convex epigraph may not be coercive
and the main point of this section is the proof of Lemma A.2 below. Roughly speaking, it
says that any convex epigraph becomes, after a carefully chosen rotation, a semicoercive
convex epigraph, as defined below.

We will say that H ⊆ RN is a (closed) convex entire epigraph in direction v ∈ RN \ {0}
if, setting v⊥ := {x ∈ RN : (v, x) = 0}, there exists a convex g : v⊥ → R such that

H =
{
x ∈ RN : (x, v) ⩾ g

(
x− (x, v) v)

)}
.
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We will furthermore say that g : RN−1 → R is semicoercive if there exists an M -dimensional
vector subspace V ⊆ RN−1, with M ∈ {0, . . . , N − 1}, such that

i) g⌊V is coercive

ii) g(x+ y) = g(x) for all x ∈ V , y ∈ V ⊥.
(A.1)

Note that if M = 0 then g as above is constant.
As a first result, we study the possible blows-up of a convex domain. Given K ⊆ RN

and a sequence (Kn) of subsets of RN , we will say that Kn → K locally in the Hausdorff
sense if for any open ball B ⊆ RN such that B ∩K ̸= ∅,

lim
n

dH(Kn ∩B,K ∩B) = 0

where dH denotes the Hausdorff distance. As usual, limits with respect to local Hausdorff
convergence are defined up to closure, because dH(K ∩B,K ∩B) = 0 for any K ⊆ RN and
open ball B such that K ∩B ̸= ∅.

Proposition A.1 (Blow-up convergence). Let (Ωn) be a sequence of convex domains such
that, for some R̄ > r̄ > 0 we have

(A.2) Br̄(0) ⊆ Ωn ⊆ BR̄(0).

Let λn > 0 and xn ∈ Ωn be such that λn → 0. Then there exists a not relabelled subsequence
such that

Ω̃n := (Ωn − xn) /λn → H

locally in the Hausdorff sense, where H is either RN or the epigraph in some direction of a
globally Lipschitz convex function.

Proof. We first prove the theorem under the additional assumption

(A.3) xn = (0, . . . , 0,−|xn|).

Set

rn := r̄/λn, Rn := R̄/λn, zn := −xn/λn
and note that (A.2) ensures

(A.4) Brn(zn) ⊆ Ω̃n ⊆ BRn(zn)

while 0 ∈ Ω̃n. Let zn = (0, . . . , 0, tn) for tn ⩾ 0. If (tn) is bounded on a subsequence, then

the previous display readily implies that Ω̃n → RN locally in the Hausdorff sense. So to
prove the claim we can suppose that

(A.5) lim
n
tn = +∞.

Set in the following B′
r := {x ∈ Br(0) : xN = 0} for all r > 0. For any x′ ∈ B′

rn , the set

{x′+ t eN : t ∈ R}∩ Ω̃n is an open segment In(x
′) ⊆ RN which by convexity is either wholly

contained in ∂Ω̃n or disjoint from ∂Ω̃n. Since x′ + tn eN ∈ Brn(zn) ⊆ Ω̃n the first case
cannot occur, hence the two extrema of In(x

′) are the only points of ∂Ωn on {x′ + t eN},
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and only one of them satisfies xN < tn. Its N -th coordinate thus defines a unique convex
function gn : B′

rn → R. The Lipschitz constant of gn on B′
rn/2

is bounded by

Lip (gn, B
′
rn/2) ⩽

2

rn

(
sup
B′

rn

gn − inf
B′

rn

gn

)
.

Using (A.4), we infer that

sup
B′

rn

gn − inf
B′

rn

gn ⩽ diam (Ω̃n) ⩽ 2Rn.

All in all, recalling that by definition of Rn/rn = R̄/r̄, we have proved that

∂Ω̃n ∩ {|x′| ⩽ rn/2 : xN < tn} = Gr (gn) with Lip(gn, B
′
rn/2) ⩽ 4

R̄

r̄
.

Note that from 0 ∈ Ω̃n we infer that gn(0) < 0. We are thus reduced to study two cases.
Case 1. If gn(0) is unbounded, then gn(0) → −∞ on a not relabelled subsequence. By

the uniform Lipschitz bound, we have in B′
rn/2

gn(x
′) ⩽ gn(0) +

4 R̄

r̄
|x′|.

Setting C̄ = 4 R̄/r̄ and

r̃n := min

{
rn
2
,
−gn(0)
2 C̄

}
,

it follows that

gn(x
′) ⩽ gn(0) + C̄ r̃n ⩽ gn(0)−

gn(0)

2
=
gn(0)

2
in Br̃n ,

implying that

Ω̃n ⊇ B′
r̃n× ]gn(0)/2, tn[.

Since rn, tn → +∞ (recall (A.5)) and gn(0) → −∞ (so that r̃n → +∞ as well), the previous

display implies that Ω̃n → RN locally in the Hausdorff sense.
Case 2. If gn(0) is bounded, then (gn) is locally equi-bounded and equi-Lipschitz. A

diagonal argument employing Ascoli-Arzelá’s theorem ensures that gn possesses a not
relabelled subsequence locally uniformly converging to some Lipschitz g : RN−1 → R. Such
g is therefore an entire convex function and it is readily checked that Ω̃n → {xN ⩾ g(x′)}
locally in the Hausdorff sense. This concludes the proof of the claim under assumption
(A.3).

To remove assumption (A.3), note that (A.2) ensures compactness of (xn), so we may
as well suppose xn → x̄. We can change coordinate axis so that x̄ = (0, . . . , 0,−|x̄|),
without altering (A.2). Moreover, we can define a sequence of rotations (On) sending xn to
(0, . . . , 0,−|xn|) and consider the sequence of convex sets

(
On(Ωn)

)
.

Note again that (A.2) is unaltered, while for the sequence (λn) and the points (On(xn)),
it holds (

On(Ωn)−On(xn)
)
/λn = On(Ω̃n).

Thus we can apply the claim to On(Ω̃n) to get local Hausdorff convergence of the latter
(up to subsequences) to some H as in the statement. Let B be an open ball such that
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H ∩ B ̸= ∅, so that it actually has nonempty interior. Since On(Ω̃n) ∩ B → H ∩ B in

Hausdorff distance, On(Ω̃n)∩B is open and nonempty for sufficiently large n, in which case

Ω̃n ∩B is nonempty as well. By the convergence xn → x̄, we infer that On → Id, and the
inequality

dH(O(A) ∩B,A ∩B) ⩽ C diam (B) ∥O − Id∥
holds with a constant C only depending on N , as long as the sets involved are nonempty,
hence

lim
n

dH
(
On(Ω̃n) ∩B, Ω̃n ∩B

)
= 0.

Since dH
(
On(Ω̃n) ∩B,H ∩B

)
→ 0, the triangle inequality ensures that Ω̃n → H locally in

the Hausdorff sense. □

Let us now recall some general notions of convex analysis which we will use, referring to
[58].

If K ⊆ RN is convex, its relative interior rint (K) is the interior of K as a subset of the
smallest affine space containing it. By

rec (K) :=
{
n ∈ RN : K + R+ n ⊂ K

}
, lin (K) :=

{
n ∈ RN : K + Rn ⊂ K

}
we denote respectively the recession cone and the lineality space of K, also related by

lin (K) = rec (K) ∩ rec (−K).

Any closed convex set K can be expressed as

(A.6) K = SK ⊕ lin (K), SK = K ∩ (lin (K))⊥

with SK closed convex and lin (SK) = {0}. Moreover

(A.7) rint (K) = rint (SK)⊕ lin (K).

We say that K is a cone if λx ∈ K for all x ∈ K and λ > 0. Suppose in the following
that K is a closed convex cone. In this case the section SK given in (A.6) is a pointed cone,
meaning SK ∩ (−SK) = {0} and clearly K is a vector subspace if and only if SK = {0}.
Hence from (A.7) we get

rint (K) ∩ lin (K) ̸= ∅ ⇐⇒ 0 ∈ rint (SK).

Since SK is pointed, 0 ∈ rint (SK) if and only if SK = {0}, and the previous display can be
rewritten as

(A.8) rint (K) ∩ lin (K) ̸= ∅ ⇐⇒ K is a vector subspace.

Lemma A.2. Let H ⊆ RN be a closed convex entire epigraph. Then there exists n ∈ RN\{0}
such that H is the closed epigraph of a semicoercive g : n⊥ → R. Moreover, if the initial
epigraph is globally Lipschitz, then g is globally Lipschitz as well.

Proof. Our aim is to prove that a suitable n ∈ rint (rec (H)) does the job. Suppose H is a
closed convex epigraph in direction v with |v| = 1. Then v ∈ rec (H) but −v /∈ rec (H), so
that rec (H) is not a linear subspace and (A.8) for K = rec (Ω) ensures that

(A.9) rint (rec (H)) ∩ lin (H) = ∅.
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Step 1: a set of admissible directions.
We claim that

(A.10) n ∈ rint (rec (H)) =⇒ H is an epigraph in direction n.

To prove (A.10), we may assume that v ̸= n and |n| = 1. Note that since −v /∈ rec (H) we
get that v ̸= −n as well. More generally, (A.9) gives that

(A.11) n ∈ rint (rec (H)) =⇒ −n /∈ rec (H).

Let now x ∈ RN be arbitrary; we wish to define g(x) such that H = Epi (g) in the
direction n. To this aim, we show that H ∩ (x+ Rn) is a closed half line, unbounded from
above.

Since H is an epigraph in direction v, there exists a henceforth fixed λ > 0 such that

x0 := x+ λv ∈ H.

Since n ∈ rint (rec (H)) and v ∈ rec (H), there exists ε > 0 small such that (see [58,
Theorem 6.4])

nε := (1 + ε)n− ε v ∈ rec (H);

in particular, x0+R+ nε ⊆ H. Being v ̸= ±n by (A.11), n and nε are not proportional. Thus
x0 +Rnε and x+Rn are two non-parallel lines, lying on the plane through x, x+ v, x+ n.
These lines must meet at a point x̄ such that

x̄ := x0 + t nε = x+ s n

for some t, s ∈ R. Recalling the definition of x0 and nε, we thus find

s n = (λ− t ε) v + t (1 + ε)n;

but since n and v are linearly independent we must have λ− t ε = 0. Being λ and ε positive
by assumption, we conclude that t > 0 and x̄ = x0 + t nε ∈ x0 + R+ nε ⊆ H.
Since n ∈ rec (H) and x̄ ∈ H we have that {x+ r n : r > s} = x̄+ R+n ⊂ H, thus the

interval H ∩ (x+Rn) is unbounded. On the other hand, it is not a line by (A.11): indeed,
by [58, Theorem 8.3], being −n /∈ rec (H), the set H ∩ (x − R+n) cannot be unbounded
not even for the fixed x. As a consequence, the minimal time function

(A.12) g(x) := min
{
r ∈ R : x+ r n ∈ H

}
, x ∈ n⊥,

is well defined, convex and its (closed) epigraph is H, proving claim A.10. Unfortunately,
explicit examples show that not every n ∈ rint (rec (H)) produce semicoercive function, so
we are not done yet.

Step 2: choice of a particular direction.
Set L := lin (H)⊥ and SH := H ∩ L fulfilling (A.6). We will consider henceforth SH as a
closed convex subset of L. The cone C := rec (SH) ⊆ L is closed and does not contain lines.
Moreover, C is nontrivial, because

rec (H) = rec (SH)⊕ lin (H)

and again rec (SH) = {0} would imply that rec (H) = lin (H), contradicting the fact that
rec (Ω) is not a vector subspace. We can thus apply [61, Corollary 3.1] and obtain the
seeked n, fulfilling the additional property

n ∈ rint (C) ∩ rint (C+)
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where C+ := {v ∈ L : (v, c) ⩾ 0 ∀c ∈ C} is the dual cone of C. Note that, since C does
not contain lines and n belongs to rint (C+), then [61, Proposition 2.4, (6)] ensures

(A.13) (n,w) > 0 ∀w ∈ C.

From (A.7) we have

(A.14) rint (rec (H)) = rint (rec (SH))⊕ lin (H)

so that n ∈ rint (rec (H)) and by (A.10) H is a convex epigraph in direction n, given by a
convex function g : n⊥ → R as in (A.12). From the decomposition H = H ′ ⊕ lin (H) we
see that g(x+ z) = g(x) for all z ∈ lin (H), so that actually g is a function of

M := N − 1− dim (lin (H)) = dim (L)− 1

variables. We thus set V := L ∩ n⊥ (which has dimension M) and set in the following
g̃ := g⌊V . Note that Epi (g̃) = SH .

Step 3: properties of g̃.
We now prove that g̃ is coercive, which is equivalent to check whether all its sub-level sets are
bounded. Suppose that the convex closed set Kλ := {x ∈ V : g̃(x) ⩽ λ} is unbounded for
some λ ∈ R. Then by [58, Theorem 8.4] there is a nonzero recession direction w ∈ rec (Kλ).
In particular, for a given x0 ∈ Kλ it holds x0 + R+w ⊆ Kλ, which implies

x0 + λn+ R+w ⊆ Epi (g̃) = SH

and thus, being x0 + λn ∈ SH , by [58, Theorem 8.3] we obtain w ∈ rec (SH) = C. Since by
construction w ∈ V ⊆ n⊥, it must hold (n,w) = 0, contradicting (A.13).

It remains to prove the last statement on Lipschitz continuity. Note that, as a consequence
of [58, Theorems 8.5 and 10.5], given a convex epigraph H in a direction ν ̸= 0, the
corresponding function is globally Lipschitz if and only if ν ∈ int (rec (H)) (notice that here
int is the classical interior, not the relative one). By assumption this holds true for v, so
that v ∈ int (rec (H)). Let n be constructed as in Step 2. Exploiting that int (rec (H)) is
nonempty and (A.14), we obtain

int (rec (H)) = rint (rec (H)) = rint (C)⊕ lin (H).

Since n lies in the last set, we indeed have that H is a convex epigraph in direction
n ∈ int (rec (H)), and thus the corresponding function is globally Lipschitz. □

Appendix B. Liouville theorems

In what follows we present a Liouville type result on convex epigraphs, valid for positive
solutions of −∆v = vp. The half-space case dates back to [21], while the case of coercive
epigraph is treated in [26].

We start by recalling a maximum principle on strips.

Lemma B.1 (Maximum principle in a strip). Let A be an open subset of RN−1× ]0, d[ and
w ∈ C2(A) ∩ C0(A) fulfill {

−∆w ⩾ c(x)w in A

w ⩾ 0 on ∂A

for some c ∈ L∞(A). Set

k := sup
{
c(x) : x ∈ A,w(x) < 0

}
.
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If w is bounded from below and k d2 < π2, then w ⩾ 0 in A.

Proof. Suppose by contradiction that A− := {w < 0} ≠ ∅. The function w− fulfils{
−∆w− ⩽ c(x)w− ⩽ k w− in A−

w− = 0 on ∂A−.

We can assume k > 0, otherwise c ⩽ 0 on A− and the standard comparison principle (which
holds classically for ∆ + c(x) when c ⩽ 0, see [33, Corollary 2.8]) gives w− ⩽ 0. Since
k d2 < π2, by [57, Lemma 21.11] there exists a smooth h : RN−1 × [0, d] → R fulfilling

−∆h = k h in RN−1× ]0, d[

infRN−1×[0,d] h > 0

h(x) → +∞ for |x| → +∞.

Since w− is bounded, we have w−/h → 0 as |x| → +∞, and therefore w−/h attains a
maximum in A−. Since w− > 0 in A− and w− = 0 on ∂A−, the maximum is positive and
attained in A−, implying by [33, Theorem 2.11] that w−/h is constant. But since w−/h = 0
on ∂A−, this implies that w− ≡ 0, contradicting A− ̸= ∅. □

We next show the Liouville theorem for semicoercive epigraphs (recall definition (A.1)).
The proof we present is an application of the moving plane method.

Theorem B.2 (Liouville theorem on semicoercive epigraphs). Let q ⩾ 1, α ∈ ]0, 1[
and Ω ⊆ RN be an entire open epigraph Ω = {x ∈ RN : xN > g(x1, . . . , xN−1)} with g
semicoercive and continuous. Then any solution of

(B.1)


−∆v = vq in Ω

v > 0 in Ω

v = 0 on ∂Ω

belonging to the class

Cα
g = {v ∈ C2(Ω) ∩ C0(Ω) : v ∈ Cα(Tλ) ∀λ}

where

(B.2) Tλ :=
{
x ∈ Ω : xN < λ

}
,

satisfies ∂Nv > 0 in Ω. Moreover, (B.1) has no bounded solution in Cα
g if

(i) N ⩽ 11 and q ⩾ 1
(ii) N ⩾ 12 and 1 ⩽ q < qc, where

(B.3) qc :=
(N − 3)2 − 4(N − 1) + 8

√
N − 3

(N − 3)(N − 11)
.

Proof of Theorem B.2. The case q = 1 can be dealt through [57, Remark 8.11]: the proof
described there only requires that there are arbitrarily large balls contained in Ω, in which
case there is no positive solution to −∆v = v on Ω at all. So we suppose that q > 1.

By translation invariance of the equations, we can suppose also

inf
RN

g = 0.
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If V ⊆ RN−1 is given in (A.1) and has dimension M ⩽ N − 1, we will assume V =
{(x1, . . . , xM , 0, . . . , 0). For x = (x1, . . . , xN) ∈ RN we will use the notation

RM ∋ x′ = (x1, . . . , xM), RN−M−1 ∋ x′′ = (xM+1, . . . , xN−1).

Correspondingly, points in RN will be denoted by (x′, x′′, t) for t ∈ R.
Step 1: compactness of solutions.

For a given non-decreasing function φ : R+ → R+, define the family of functions

Sφ :=
{
v ∈ C2(Ω) ∩ C0(Ω) : v solves (B.1) and ∥v∥Cα(Tλ) ⩽ φ(λ) ∀λ

}
.

Clearly, any solution of (B.1) in the class Cα
g belongs to Sφ for some φ. By the translation

invariance of the equation and of g, if v ∈ Sφ, then v( · + (0, x′′, 0)) ∈ Sφ for any given
x′′ ∈ RN−M−1. We claim that Sφ is precompact in C0

loc(Ω). Indeed, by Ascoli-Arzelá
theorem and a diagonal argument, together with the lower semicontinuity of the norm
∥ ∥Cα(Tλ) with respect to point-wise convergence, the set {v ∈ C0(Ω) : ∥v∥Cα(Tλ) ⩽ φ(λ) ∀λ}
is precompact in C0

loc(Ω). On the other hand local elliptic estimates ensure for any v ∈ Sφ

it holds

∥v∥C2,α(Br) ⩽ C(N, r, α, φ(λ)) <∞
for any λ > 0 and any ball Br such that B2r ⊆ Tλ. Since the (Tλ) exhaust Ω for λ→ +∞,
any limit of (vn) ⊂ Sφ is still a solution of (B.1), except possibly for the positivity condition.
By the strong minimum principle, we thus infer that the closure of Sφ in C0

loc(Ω) is {0}∪Sφ.
Note by this last discussion that C0

loc(Ω) convergence in Sφ implies C2
loc(Ω) convergence.

Step 2: reformulation by moving plane.
We aim at proving that for any fixed non-decreasing φ,

(B.4) ∂Nv > 0 in Ω, for all v ∈ Sφ.

In order to prove this claim, we shall show that for all v ∈ Sφ and all λ > 0 it holds

(B.5) wλ(x) := v(x′, x′′, 2λ− xN)− v(x′, x′′, xN) ⩾ 0 in Tλ

where Tλ is defined in (B.2). Let us show how (B.5) implies (B.4). Note that wλ satisfies

(B.6) −∆wλ = cλwλ in Tλ,

where
(B.7)

cλ(x) :=


v(x′, x′′, 2λ− xN)

q − v(x′, x′′, xN)
q

v(x′, x′′, 2λ− xN)− v(x′, x′′, xN)
⩾ 0 if v(x′, x′′, 2λ− xN) ̸= v(x′, x′′, xN)

0 if v(x′, x′′, 2λ− xN) = v(x′, x′′, xN).

In particular, wλ is a non-negative super-harmonic function in Tλ which is positive on
∂Tλ ∩Gr (g) because

v(x′, x′′, 2λ− g(x′, x′′)) > 0 = v(x′, x′′, g(x′, x′′)) if g(x′, x′′) < λ.

Therefore wλ > 0 everywhere in Tλ. At any point x0 ∈ {xN = λ > g(x′, x′′)}, wλ vanishes
attaining its minimum and by the continuity of g there exists a ball B ⊂ Tλ tangent to
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∂Tλ at x0. Therefore, Hopf Boundary point lemma ensures ∂Nwλ(x0) < 0. All in all, since
∂Nwλ(x0) = −2 ∂Nv(x0), we actually proved the following:

(B.8) wλ ⩾ 0 on Tλ =⇒

{
wλ > 0 in Tλ

∂Nvλ > 0 on {xN = λ > g(x′, x′′)}.

By the arbitrariness of λ > 0, this will prove claim (B.4) and consequently, by the
arbitrariness of φ, the first statement of the Theorem.

To prove (B.5), consider the set

E :=
{
λ > 0 : ∀v ∈ Sφ (B.5) is true

}
.

We will show that E is non-empty, closed and open. This will imply (B.5) for all λ > 0 by
connectedness.

Step 3: E is closed and non-empty.
Since λ 7→ wλ(x) is continuous and E is the intersection of the closed sets {λ : wλ(x) ⩾ 0}
for v ∈ Sφ and x ∈ Tλ, we have that E is closed.

We show now that there exists λ0 > 0 independent of v ∈ Sφ such that (B.5) is true for
all λ ∈ ]0, λ0[. For λ ⩽ 1/2 it holds T2λ ⊆ T1 and 0 < v ⩽ φ(1) on T1. Recalling (B.6), we
use the intermediate value theorem on (B.7), to infer that

∥cλ∥∞ ⩽ q ∥v∥q−1
L∞(T2λ)

⩽ q φq−1(1).

Since wλ ⩾ 0 on ∂Tλ, Lemma B.1 ensures that wλ ⩾ 0 on Tλ if q (φ(1))q−1 λ2 < π2.
Choosing

λ0 < min

{
1

2
,

π√
q (φ(1))q−1

}
concludes this part of the proof.

Step 4: E is open.
Finally, we show that E is open, by contradiction. Fix λ ∈ E and suppose that there is a
sequence λn → λ, vn ∈ Sφ such that the corresponding wλn is negative somewhere in Tλn .
By Lemma B.1 the numbers

kn := sup{cλn(x) : x ∈ Tλn , wλn(x) < 0}

must satisfy kn λ
2
n ⩾ π2, hence for sufficiently large n it holds kn ⩾ π2/(2λ2). By the

intermediate value theorem, on {wλn < 0} ∩ Tλn it holds cλn(x) = q ξn(x)
q−1 for some

ξn(x) ∈ ]vn(x
′, x′′, 2λ− xN), vn(x

′, x′′, xN)[, hence

cλn(x) ⩽ q vq−1
n (x).

We infer that for sufficiently large n

π2

2λ2
⩽ sup{q vq−1

n (x) : x ∈ Tλn , wλn(x) < 0}

and therefore there exists xn = (x′n, x
′′
n, tn) ∈ Tλn such that

wλn(xn) < 0, vn(xn) ⩾ δ = δ(λ, q) :=

(
π2

2 q λ2

) 1
q−1

> 0.
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From the coercivity of g in the x′ variable, we have that (x′n) is bounded, and since
0 < tn ⩽ λn → λ, (tn) is bounded as well. By passing to a not relabelled subsequence, we
can assume that tn → t0 and x′n → x′0. Note that xn ∈ Tλn implies, by the continuity and
translation invariance of g, that

(B.9) x0 := (x′0, 0, t0) ∈ Tλ.

Setting

ṽn(x) := vn(x
′, x′′ + x′′n, xN),

it holds ṽn ∈ Sφ and

(B.10) w̃λn(x
′
n, 0, tn) < 0, ṽn(x

′
n, 0, tn) ⩾ δ > 0

where as usual w̃λn is derived from ṽn. By Step 1, up to a not relabelled subsequence, we
can suppose that ṽn → v ∈ Sφ ∪ {0} in C0

loc(Ω) and in C2
loc(Ω). In particular, (B.10) passes

to the limit to give (recall (B.9))

wλ(x0) ⩽ 0, v(x0) ⩾ δ > 0

and the second inequality ensures that actually v ∈ Sφ. Since λ ∈ E by assumption, it
holds wλ ⩾ 0 in Tλ and thus the first inequality in the previous display ensures that x0
is a minimum point for wλ on Tλ. By (B.8) it must hold x0 ∈ ∂Tλ, but from v(x0) > 0
we actually have x0 ∈ {xN = λ > g(x′)}, thus ∂Nv(x0) > 0. In particular x0 ∈ Ω and by
the C2

loc(Ω) convergence of ṽn to v, it must hold ∂N ṽn > 0 in a neighbourhood of x0 for
all sufficiently large n. Since (x′n, 0, tn) → x0 = (x′0, 0, λ), this forces ∂N ṽ(x

′
n, 0, t) to be

positive for all n sufficiently large and all t sufficiently near λ. In particular

w̃λn(x
′
n, 0, tn) =

∫ 2λn−tn

tn

∂N ṽn(x
′
n, 0, s) ds > 0,

for all sufficiently large n, contradicting the first inequality in (B.10) and completing the
proof of (B.4).

Step 5: nonexistence.
We finally prove the non-existence statement. If v is a bounded solution of (B.1), let

u(x′, x′′) := lim
t→+∞

v(x′, x′′t)

which exists by (B.4) and is bounded on RN−1. Then, arguing as in [27, proof of Theorem
12], u is a positive stable bounded solution of −∆u = uq on RN−1, which does not exists –
when N ≥ 3 – under the conditions stated in [27, Theorem 1]; if N = 2, −u′′ = uq has no
positive solutions in R by elementary means. □

We are ready to prove the Liouville result on convex epigraphs.

Proof of Theorem 1.4. By Lemma A.2 and the invariance of the equation by orthogo-
nal transformations, we can reduce after a rotation to the case where H = {xN >
g(x1, . . . , xN−1)} with g convex and semicoercive. By Lemma 3.4 any bounded solution v
of (B.1) actually belongs to Cα(H) for a suitable α > 0 only depending on ∥v∥∞, thus in
particular it belongs to the class Cα

g . Noting that the exponent qc given in (B.3) is always
greater than 2∗ − 1, Theorem B.2 gives the claim. □
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25

[2] N.M. Almousa, J. Assettini, M. Gallo, M. Squassina, Concavity properties for quasilin-
ear equations and optimality remarks, Differential Integral Equations 37:1-2 (2024),
1–26. 3

[3] O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and state constraints J.
Math. Pures. Appl. 76:3 (1997), 265–288. 4

[4] R. F. Basener, Nonlinear Cauchy-Riemann equations and q-pseudoconvexity, Duke
Math. J. 43:1 (1976), 203–213. 15

[5] I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Physics 100:1-2
(1976), 62–93. 2

[6] B. Bian, P. Guan, A microscopic convexity principle for nonlinear partial differential
equations, Invent. Math. 177:2 (2009), 307–335. 11

[7] B. Bian, P. Guan, X.-N. Ma, L. Xu, A constant rank theorem for quasiconcave solutions
of fully nonlinear partial differential equations, Indiana Univ. Math. J. 60:1 (2011),
101–119. 7, 11

[8] M. Bianchini, P. Salani, Power concavity for solutions of nonlinear elliptic problems in
convex domains, in “Geometric Properties for Parabolic and Elliptic PDE’s”, eds. R.
Magnanini, S. Sakaguchi, A. Alvino, Springer INdAM Series 2, 2013. 4

[9] N.H. Bingham, C.M. Goldie, J. L. Teugels, “Regular Variation”, Encyclopedia of
Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987.
33

[10] W. Borrelli, S. Mosconi, M. Squassina, Concavity properties for solutions to p-Laplace
equations with concave nonlinearities, Adv. Calc. Var. 17:1 (2022), 79–97. 3, 4, 6, 10,
32, 35

[11] H. J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-
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