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Abstract

We study existence, uniqueness, multiplicity and symmetry of large solutions for a class of
quasi-linear elliptic equations. Furthermore, we characterize the boundary blow-up rate of
solutions, including the case where the contribution of boundary curvature appears.
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1 Introduction and results
The study of explosive solutions of elliptic equations goes back to 1916 by Bieberbach [6] for the
problem ∆u = eu on a bounded two dimensional domain, arising in Riemannian geometry as related
to exponential metrics with constant Gaussian negative curvature. The result was then extended to
three dimensional domains by Rademacher [36] in 1943. Large solutions of more general elliptic
equations ∆u = f (u) in smooth bounded domains Ω of RN were originally studied by Keller [26]
and Osserman [33] around 1957, and subsequently refined in a series of more recent contributions,
see [1, 2, 3, 8, 9, 10, 12, 15, 22, 29, 32, 34] and references therein. The aim of this paper is to study
existence, uniqueness, symmetry as well as asymptotic behavior on ∂Ω for the quasi-linear problem div(a(u)Du) = a′(u)

2 |Du|2 + f (u) in Ω,

u(x)→ +∞ as d(x, ∂Ω)→ 0,
(1.1)
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where Ω is a bounded smooth domain of RN , N ≥ 1, and d(x, ∂Ω) is the distance of x from the
boundary of Ω. Here and in the following a : R → R+ is a C1 function such that there exists ν > 0
with a(s) ≥ ν for any s ∈ R, and f : R→ R is a C1 function. In problem (1.1), the terms depending
upon a are formally associated with the functional

∫
Ω

a(u)|Du|2 and the problem can be thought as
related to the study of blow-up solutions in presence of a Riemannian metric tensor depending upon
the unknown u itself, see e.g. [37, 40] for more details. We shall cover the situations where a and
f have an exponential, polynomial or logarithmic type growth at infinity. In the semi-linear case
a ≡ 1, typical situations where the exponential nonlinearity appears is the Liouville [30] equation
∆u = 4e2u inΩ ⊂ R2, while for a typical polynomial growth one can think to the Loewner-Nirenberg
[31] equation ∆u = 3u5 in Ω ⊂ R3. Logarithmic type nonlinearities usually appear in theories of
quantum gravity [41] and in particular in the framework of nonlinear Schrödinger equations [5].
The function a can be regarded as responsible for the diffusion effects while, on the contrary, f
can be considered as playing the rǒle of an external source. Roughly speaking, in some sense, a
is competing with f for the existence and nonexistence of solutions to (1.1) and the asymptotic
behavior of a(s) and f (s) as s → +∞ determines the blow-up rate of u(x) as x approaches the
boundary of Ω. For the literature on these type of quasi-linear operators in frameworks different
from that of large solutions, we refer the reader to [38] and the reference therein. In order to give
precise characterization of existence and explosion rate, we shall convert the quasi-linear problem
(1.1) into a corresponding semi-linear problem through a change of variable procedure involving the
globally defined Cauchy problem

g′ =
1
√

a ◦ g
, g(0) = 0. (1.2)

The precise knowledge of the asymptotic behavior of the solution g of (1.2) as s → +∞ depending
of the asymptotics of the function a will be crucial in studying the qualitative properties of the
solutions to (1.1). We shall obtain for (1.1) existence, nonexistence, uniqueness and multiplicity
results in arbitrary smooth bounded domains, uniqueness and symmetry results when the problem is
set in the ball and, finally, results about the blow-up rate of the solution with or without the second
order contribution of the local curvature of the boundary ∂Ω. For instance, if a(s) ∼ a∞sk as s→ +∞
and f (s) ∼ f∞sp as s→ +∞ with p > 2k+3, then a solution to (1.1) exists and any solution satisfies

u(x) =
Γ

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)), Γ =
[ p − k − 1√

2(p + 1)

√
f∞√
a∞

] 2
k+1−p

,

as x approaches ∂Ω. If instead k + 1 < p ≤ 2k + 3, then we have

u(x) = Γ
1

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)) + Γ′
H(σ(x))

(d(x, ∂Ω))
3+k−p
p−k−1

(1 + o(1)), Γ′ =
2(N − 1)
p + k + 3

Γ,

for x approaching ∂Ω, being σ(x) the orthogonal projection on ∂Ω of a x ∈ Ω and denoting H the
mean curvature of the boundary ∂Ω.

In this paper we shall restrict the attention on the study of explosive solutions in smooth and
bounded domains. Concerning the study of large solutions of quasi-linear equations (including non-
degenerate and non-autonomous problems) on the entire space, a vast recent literature currently
exists on the subject. We refer the reader to the contributions [13, 14, 16, 17, 15, 18, 19, 20, 35]
of (in alphabetical order) Dupaigne, Farina, Filippucci, Pucci, Rigoli and Serrin and the references
therein.
Concerning the existence of solutions to (1.1), we have the following
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Theorem 1.1 (Existence of solutions) The following statements hold:

1. Assume that there exist k > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞, lim

s→+∞

f (s)
e2βs = f∞. (1.3)

Then (1.1) admits a solution.

2. Assume that there exist k > 0, p > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞, lim

s→+∞

f (s)
sp = f∞. (1.4)

Then (1.1) admits a solution if and only if p > k + 1.

3. Assume that there exist k > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞, lim

s→+∞

f (s)
(log s)β

= f∞. (1.5)

Then (1.1) admits no solution.

4. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
e2γs = a∞, lim

s→+∞

f (s)
e2βs = f∞. (1.6)

Then (1.1) admits a solution if and only if β > γ.

5. Assume that there exist γ > 0, p > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
e2γs = a∞, lim

s→+∞

f (s)
sp = f∞.

Then (1.1) admits no solution.

6. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
e2γs = a∞, lim

s→+∞

f (s)
(log s)β

= f∞.

Then (1.1) admits no solution.

7. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞, lim

s→+∞

f (s)
e2βs = f∞. (1.7)

Then (1.1) admits a solution.

8. Assume that there exist γ > 0, p > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞, lim

s→+∞

f (s)
sp = f∞. (1.8)

Then (1.1) admits a solution if and only if p > 1.
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9. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞, lim

s→+∞

f (s)
(log s)β

= f∞.

Then (1.1) admits no solution.

Concerning the uniqueness of solutions, we have the following

Theorem 1.2 (Uniqueness of solutions) Suppose that

2 f ′(s)a(s) − f (s)a′(s) ≥ 0 if s ≥ 0, f (s) = 0 if s ≤ 0, f (s) > 0 if s > 0, (1.9)

and that

lim
s→+∞

[
2 f ′(s)a(s) − f (s)a′(s)

]
g−1(s)

2(a(s))
3
2 f (s)

> 1, (1.10)

where g is as defined in (1.2). Then (1.1) admits a unique solution, which is positive.
Moreover, assume that a and f satisfy one of the existence conditions of Theorem 1.1 and ∂Ω is of
class C3 and its mean curvature is nonnegative. Then if (1.9) is satisfied and if

there exists R > 0 such that:
( f (g(s))√

a(g(s))

) 1
2 is convex in (R,+∞), (1.11)

then (1.1) admits a unique solution, which is positive.
Now consider problem (1.1) set in the unit ball B1(0) div(a(u)Du) = a′(u)

2 |Du|2 + f (u) in B1(0),

u(x)→ +∞ as d(x, ∂B1(0))→ 0.
(1.12)

Let λ1 be the first eigenvalue of −∆ in B1(0) with Dirichlet boundary conditions. Assume a and f
satisfy one of the existence conditions of Theorem 1.1 and, in addition, that

2 f ′(s)a(s) − f (s)a′(s) + 2λ1a2(s) ≥ 0, for all s ∈ R. (1.13)

Then (1.12) admits a unique solution.

Concerning the multiplicity of solutions, we have the following

Theorem 1.3 (Nonuniqueness of solutions) Assume that the functions a and f satisfy one of the
existence conditions of Theorem 1.1. Let Ω be bounded, convex, C2, f (0) = 0 and

there exists R ≥ 0 such that: f |(R,+∞) > 0, (2 f ′a − f a′)|(R,+∞) ≥ 0. (1.14)

Assume that there exists 1 < q < N+2
N−2 if N ≥ 3, q > 1 if N = 1, 2 such that

0 < lim
s→−∞

f (s)
√

a(s)|g−1(s)|q
< +∞.
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Then (1.1) admits two solutions, one positive and one sign-changing. In particular, if there exist
k > 0 and p−, p+ > 1 such that

0 < lim
s→+∞

a′(s)
sk−1 < +∞, a(−s) = a(s), for all s ∈ R, (1.15)

0 < lim
s→−∞

f (s)
|s|p− < +∞, k + 1 < p− <

k
2
+

k + 2
2

N + 2
N − 2

for N ≥ 3, (1.16)

0 < lim
s→−∞

f (s)
|s|p− < +∞, p− > k + 1 for N = 1, 2, (1.17)

0 < lim
s→+∞

f ′(s)
sp+−1 < +∞, p+ > k + 1 for N ≥ 1, (1.18)

then (1.1) admits two solutions, one positive and one sign-changing.

Concerning the symmetry of solutions to (1.12), we have the following

Theorem 1.4 (Symmetry of solutions) Let a and f be of class C2(R). Then the following state-
ments hold:

1. Assume that there exist k > 0, β > 0, a∞ > 0 and f∞ > 0 such that

lim
s→+∞

a′(s)
sk−1 = ka∞, lim

s→+∞

a′′(s)
sk−2 = k(k − 1)a∞, (1.19)

lim
s→+∞

f ′′(s)
e2βs = 4β2 f∞, (1.20)

(only the right limit in (1.19) for k > 1). Then any solution to (1.12) is radially symmetric and
increasing.

2. Assume that there exist k > 0, p > 1, a∞ > 0 and f∞ > 0 such that (1.19) hold and

lim
s→+∞

f ′′(s)
sp−2 = p(p − 1) f∞. (1.21)

Then, if p > k + 1, any solution to (1.12) is radially symmetric and increasing.

3. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that (1.20) holds and

lim
s→+∞

a′′(s)
e2γs = 4γ2a∞.

Then, if β > γ, any solution to (1.12) is radially symmetric and increasing.

4. Assume that there exist γ > 0, β > 0, a∞ > 0 and f∞ > 0 such that (1.20) holds and

lim
s→+∞

a′(s)s
(log s)2γ−1 = 2γa∞, lim

s→+∞

a′′(s)s2

(log s)2γ−1 = −2γa∞. (1.22)

Then, any solution to (1.12) is radially symmetric and increasing.

5. Assume that (1.21) and (1.22) hold. Then, if p > 1, any solution to (1.12) is radially symmetric
and increasing.
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Concerning the blow-up behavior of solution, we have two results. The first is the following

Theorem 1.5 (Boundary behavior I) LetΩ be a bounded domain of RN satisfying an inner and an
outer sphere condition on ∂Ω. Let η denote the unique solution to problem

η′ = −
√

2F ◦ g ◦ η, lim
t→0+

η(t) = +∞. (1.23)

Then any solution u ∈ C2(Ω) to (1.1) satisfies

u(x) = g ◦ η(d(x, ∂Ω)) + o(1),

whenever d(x, ∂Ω) goes to zero, provided that one of the following situations occurs:

1. Conditions (1.3) hold.

2. Conditions (1.4) hold with p > 2k + 3.

3. Conditions (1.6) with β > 2γ.

4. Conditions (1.7) hold.

5. Conditions (1.8) hold with p > 3.

In general, in addition to the blow-up term g ◦ η(d(x, ∂Ω)), the expansion of a large solution u could
contain other blow-up terms, one of them typically depends upon the local mean curvature of the
boundary. We will study this in a particular, but meaningful, situation.
For p > k + 1, in the framework of (1.4), let us now introduce the positive constants

Γ :=

 p − k − 1√
2(p + 1)

√
f∞√
a∞


2

k+1−p

and Γ′ :=
2(N − 1)
p + k + 3

Γ. (1.24)

When a and f behave like powers at infinity, we have the following characterization

Theorem 1.6 (Boundary behavior II) Let Ω be a bounded domain of RN of class C4 and assume
that (1.4) hold with p > k + 1. If conditons (1.14) hold with R = 0 and η is as in (1.23), let us set

J(t) :=
N − 1

2

∫ t

0

∫ η(s)
0

√
2F(g(σ))dσ

F(g(η(s)))
ds, t > 0,

T(x) :=
(d(x, ∂Ω))

k+2
k+1−p

min{uk/2(x)), (d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))k/(k+1−p)} , x ∈ Ω,

where σ(x) denotes the projection on ∂Ω of a x ∈ Ω andH is the mean curvature of ∂Ω. Then there
exists a positive constant L such that

|u(x) − g ◦ η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))| ≤ LT(x)o(d(x, ∂Ω)),

whenever d(x, ∂Ω) goes to zero. Furthermore, the following facts hold:

1. If p > 2k + 3 (even if (1.14) do not hold), then

u(x) =
Γ

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)),

whenever x approaches ∂Ω.
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2. If (1.14) hold with R = 0 and k + 1 < p ≤ 2k + 3, then

u(x) = Γ
1

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)) + Γ′
H(σ(x))

(d(x, ∂Ω))
3+k−p
p−k−1

(1 + o(1)),

whenever x approaches ∂Ω.

The proofs of these assertions is contained in Sections 3-8.

2 Some remarks
Some remarks are now in order on the results stated in the previous section.

Remark 2.1 (Derivatives blow-up) According to a result due to Bandle and Marcus [3, see Sec-
tion 3, Theorem 3.1] for general semi-linear equations, not only the solution u blows up along the
boundary but also the modulus of the gradient |Du| explodes. Hence, concerning problem (1.1), a
result in the spirit of Theorem 1.5 for the gradient could be stated too, under suitable assumptions
on the asymptotic behavior of a and f yielding to

lim
d(x,∂Ω)→0

a(u)|Du(x)|2
2F ◦ g ◦ η(d(x, ∂Ω))

= 1,

under suitable assumptions on the domain. In the case (1.4) this turns into

|Du(x)| = Γ♭

(d(x, ∂Ω))
p+1−k
p−k−1

(1 + o(1)), for d(x, ∂Ω)→ 0,

where Γ♭ := 2Γ
p−k−1 , by exploiting the information provided in (1.77).

Remark 2.2 (Sign condition on a) Assume that a satisfies a′(s)s ≥ 0 for every s ∈ R. Then a
nonnegative solution u of (1.1) satisfies the inequality div(a(u)Du) ≥ f (u) in Ω. In this case the
problem become simpler. We will not assume sign conditions on a.

Remark 2.3 (Nonnegative solutions) Assuming that f (s) = 0 for every s ≤ 0, any solution to
(1.31) is nonnegative (and hence any solution to (1.1) is nonnegative). In fact, since g(0) = 0 and
g′ > 0, it is g(s) ≤ 0 for all s ≤ 0 and therefore

h(s) =
f (g(s))√
a(g(s))

= 0, for every s ≤ 0. (1.25)

Let v : Ω → R be a classical solution of ∆v = h(v) such that v(x) → +∞ as x approaches ∂Ω and
define the open bounded set Ω− = {x ∈ Ω : v(x) < 0}. We have

∂Ω− ⊆ {x ∈ Ω : v(x) = 0}. (1.26)

In fact, if x ∈ ∂Ω− = Ω− \ Ω−, there is a sequence (ξ j) ⊂ Ω with ξ j → x and v(ξ j) < 0. It follows
that x ∈ Ω, otherwise v(ξ j) → +∞ if x ∈ ∂Ω. In addition, v(x) ≤ 0. Since x < Ω−, we also have
v(x) ≥ 0, proving the claim. In view of (1.25), v is harmonic in Ω−. Assume by contradiction that
Ω− , ∅ and let ξ ∈ Ω−. By (1.26) and the maximum principle in Ω−

v(ξ) ≥ min
Ω−

v ≥ min
Ω̄−

v = min
∂Ω−

v = 0,

yielding a contradiction. Then v ≥ 0 and for the solution u of (1.1), u = g(v) ≥ 0.
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Remark 2.4 (Negative large solutions) In analogy with the study of positively blowing up solu-
tions, it is possible to formulate existence and nonexistence results for the problem div(a(u)Du) = a′(u)

2 |Du|2 + f (u) in Ω,

u(x)→ −∞ as d(x, ∂Ω)→ 0,
(1.27)

by assuming that a is an even function, that there exists r ∈ R such that f (r) < 0 and f (s) ≤ 0 for
all s < r and by prescribing suitable asymptotic conditions on a and f as s→ −∞. Furthermore, by
arguing as in Remark 2.3, it is readily seen that if f (s) = 0 for every s ≥ 0, any solution to (1.27) is
nonpositive. See Remark 3.1 in Section 3 for more details on how to detect solutions to (1.27) when
a is even by reducing the problem to a related one with positive blow-up.

Remark 2.5 (Lower bound of solutions) Under assumption (1.9) and (1.10) problem (1.1) has a
unique positive solution u in Ω and it is possible to estimate the minimum of u in Ω in terms of the
minimum of the unique radial solution z of (1.1) in a ball B such that |B| = |Ω|, yielding

min
x∈Ω

u(x) ≥ min
x∈B

z(x). (1.28)

To prove this, let us consider the associated semi-linear problem (1.31). Quoting a result of [23] (see
Theorem 3.1), we get

min
x∈Ω

v(x) ≥ min
x∈B

z♯(x)

where z♯(x) is the unique solution of (1.31) in a ball B such that |B| = |Ω|. The monotonicity of g
then yields (1.28) via Lemma 3.1. Moreover, in some cases, the unique radial solution z♯ of (1.31)
in a ball B is explicitly known and this provides an estimate on the minimum of z♯ (hence of z) in
terms of |Ω|.

Remark 2.6 (Convexity of sublevel sets in strictly convex domains) Assume the domainΩ is strictly
convex and that for a solution u to (1.1) we have:

u > 0, 2 f ′(s)a(s) − f (s)a′(s) > 0 for s > 0 s 7→
√

a(g(s))
f (g(s))

is convex on (0,+∞). (1.29)

Then g−1(u) is strictly convex for N = 2. The same occurs in higher dimensions provided that the
Gauss curvature of ∂Ω is strictly positive (see [39], for example, for the definition of Gauss curvature
of a surface). In these cases, furthermore, the sublevel sets of u are strictly convex. In fact, we have
u = g(v), for some v ∈ C2(Ω), v > 0, which satisfies ∆v = h(v), see Lemma 3.1, where h is defined
as in (1.31). Furthermore, by (1.29), we have that h > 0, h strictly increasing and 1/h convex. Let
us consider the Concavity function

C(v, x, y) := v
( x + y

2
) − 1

2
v(x) − 1

2
v(y)

defined in Ω × Ω as introduced in [27] to study the convexity of the level sets of solutions of some
semi-linear equations. We are then in position to apply a result [25, Theorem 3.13], by Kawohl,
which implies that the Concavity function cannot attain a positive maximum in Ω × Ω. Moreover
by [25, Lemma 3.11], the Concavity function is negative in a neighborhood of ∂(Ω × Ω) so that
C(v, x, y) ≤ 0 inΩ×Ω and hence v is convex inΩ. If N = 2, from a result of Caffarelli and Friedman
[7, Corollary 1.3], v needs to be strictly convex in Ω. In higher dimensions, assuming that the Gauss
curvature of Ω is strictly positive, it is possible to find some points close to the boundary ∂Ω where
the Hessian matrix of v has full rank. Then, from a result due to Korevaar and Lewis [28, Theorem
1] we would get that v is strictly convex. In these cases, from the strict monotonicity of g, we get
that the (closed) sublevel sets of u are strictly convex.
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Remark 2.7 (A case of uniqueness) Assume that p > k + 1 and

f (s) =

sp if s ≥ 0,
0 if s < 0,

a(s) = 1 + |s|k, s ∈ R. (1.30)

Then condition (1.9) is satisfied. Moreover, using Lemma 3.2 with a∞ = 1, we have

lim
s→+∞

[
2 f ′(s)a(s) − f (s)a′(s)

]
g−1(s)

2(a(s))
3
2 f (s)

= lim
s→+∞

2psp−1(1 + sk) − sp(ksk−1)

2(1 + sk)
3
2 sp

g−1(s)

s
k+2

2

s
k+2

2

= lim
s→+∞

(2p − k)sp+k−1(1 + o(1))s
k+2

2

2sp+ 3
2 k(1 + o(1))

1

g
k+2

2
∞

=
2p − k
k + 2

> 1,

since p > k + 1, so that (1.10) is fulfilled. In particular div((1 + uk)Du) − k
2 uk−1|Du|2 = up in Ω,

u(x)→ +∞ as d(x, ∂Ω)→ 0,

admits a unique nonnegative solution in every bounded smooth domain Ω.

Remark 2.8 Let us observe that, under the existence conditions of Theorem (1.1), condition (1.11)
is always satisfied. This is proved, for instance, in Section 6 where we assume that a and g are of
class C2. Then, if Ω is of class C3 and has positive mean curvature on ∂Ω the solution of (1.1) is
unique if the function h is nondecreasing.

Remark 2.9 Various results appeared in the recent literature about existence and qualitative proper-
ties of large solutions for the m-Laplacian equation ∆mu = f (u) with m > 1 on a smooth bounded Ω,
see for example [23]. On this basis, using a suitable modification of the change of variable Cauchy
problem (1.2) and of the Keller-Ossermann condition (1.33), many of the properties stated in our
results might be extended to cover the study of blow-up solutions of

div(a(u)|Du|m−2Du) =
a′(u)

m
|Du|m + f (u) in Ω.

Remark 2.10 The results of the paper can be extended, with slight adaptations, to the quasi-linear
elliptic problem div(a(u)Du) = βa′(u)|Du|2 + f (u), for β < 1, by arguing on the Cauchy problem
g′(s) = (a(g(s)))β−1, g(0) = 0. In fact, setting u = g(v), v is a solution to ∆v = h(v), with h(s) :=
f (g(s))(a(g(s))−β. For β = 1/2, this problem reduces precisely to the one investigated in this paper.
For any β , 1/2 the problem is not variational.

3 Existence of solutions
Assume that a : R → R is a function of class C1 such that there exists ν > 0 with a(s) ≥ ν, for
every s ∈ R. The function g : R → R, defined in (1.2), is smooth and strictly increasing. Then, it is
possible to associate to problem (1.1) the semi-linear problem∆v = h(v) in Ω,

v(x)→ +∞ as d(x, ∂Ω)→ 0,
(1.31)
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where we let h(s) := f (g(s))√
a(g(s))

. More precisely, we have the following

Lemma 3.1 If v ∈ C2(Ω) is a classical solution to problem (1.31), then u = g(v) is a classical
solution to problem (1.1). Vice versa, if u ∈ C2(Ω) is a classical solution to problem (1.1), then
v = g−1(u) is a classical solution to problem (1.31).

Proof. Observe first that the solution g to the Cauchy problem (1.2) is globally defined, of class C2,
strictly increasing (thus invertible with inverse g−1) and

lim
s→±∞

g(s) = ±∞, lim
s→±∞

g−1(s) = ±∞. (1.32)

Now, if v ∈ C2(Ω) is a classical solution to (1.31), from the regularity of g it is u = g(v) ∈ C2(Ω).
Furthermore, from (1.32), it is u(x) → +∞ as d(x, ∂Ω) → 0. In addition Dv = a1/2(u)Du and
∆v = a1/2(u)∆u + 1

2 a′(u)a−1/2(u)|Du|2, so that from (1.31) it is a(u)∆u + 1
2 a′(u)|Du|2 − f (u) = 0

which easily yields the assertion. Vice versa, if u is a classical solution to (1.1), then v = g−1(u)
is of class C2 and by (1.32), it is v(x) → +∞ as d(x, ∂Ω) → 0. Moreover, it follows that ∆v =
a1/2(u)∆u + 1

2 a′(u)a−1/2(u)|Du|2 = f (u)a−1/2(u) = f (g(v))a−1/2(g(v)), concluding the proof.

On the basis of Lemma 3.1, we try to establish existence of solutions of problem (1.1) using existence
condition known in the literature for semi-linear problems like (1.31).
Hereafter we let f : R→ R be a C1 function. Consider the following condition:
E. There exists r ∈ R such that f (r) > 0 and f (s) ≥ 0 for all s > r and∫ +∞

g−1(r)

1
√

F ◦ g
< +∞, F(t) :=

∫ t

r
f (τ)dτ. (1.33)

Essentially, E depends upon the asymptotic behavior of the function F and g.

Proposition 3.1 Let Ω be any smooth bounded domain in RN . Then problem (1.1) admits a solution
if and only if E holds.

Proposition 3.1 readily follows by combining Lemma 3.1 with the assertion of [12, Theorem 1.3],
where the authors proved the equivalence between the Keller-Osserman condition, the sharpened
Keller-Osserman condition and the existence of blow-up solutions in arbitrary bounded domains
without any monotonicity assumption on the nonlinearity.

We shall now investigate the asymptotic behavior of g as s → +∞ according to the cases when
a behaves like a polynomial, an exponential function or a logarithmic function. In turn, in these
situation, we discuss the validity of condition (1.33).

3.1 Polynomial growth

Assume that there exists a∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞. (1.34)

In [24, Lemma 2.1], we proved the following
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Lemma 3.2 Assume that condition (1.34) holds. Then, we have

lim
s→+∞

g(s)

s
2

k+2

= g∞, lim
t→+∞

g−1(t)

t
k+2

2

= g−
k+2

2
∞ , (1.35)

where g∞ =
( k+2

2
1√
a∞

) 2
k+2 .

We can now formulate the following existence result.

Proposition 3.2 ( f with exponential growth) Assume that (1.34) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
e2βs = f∞. (1.36)

Then (1.1) always admits a solution in any smooth domain Ω.

Proof. In light of assumption (1.36), there exists r > 0 such that f (t) > 0 for all t ≥ r. Since

lim
s→+∞

F(s)
e2βs =

f∞
2β
,

on account of Lemma 3.2, for any ε > 0 we obtain

lim
s→+∞

F(g(s))

e(2βg∞−2ε)s
2

k+2
= lim

s→+∞

f∞e2βg∞ s
2

2+k (1+o(1))(1 + o(1))

2βe(2βg∞−2ε)s
2

k+2

=
f∞
2β

lim
s→+∞

e2s
2

2+k (ε+o(1))(1 + o(1)) = +∞.

In particular, having fixed ε such that ε < βg∞, there exists R = R(ε) > 0 such that√
F(g(s)) ≥ e(βg∞−ε)s

2
k+2
, for every s ≥ R.

Therefore, ∫ +∞

g−1(r)

1√
F(g(s))

ds ≤
∫ R

g−1(r)

1√
F(g(s))

ds +
∫ +∞

R

1
e(βg∞−ε)s2/(k+2) ds < +∞.

The assertion then follows by Proposition 3.1.

Proposition 3.3 ( f with polynomial growth) Assume that (1.34) holds and that there exist p > 1
and f∞ > 0 such that

lim
s→+∞

f (s)
sp = f∞. (1.37)

Then (1.1) admits a solution in any smooth domain Ω if and only if p > k + 1.

Proof. In light of (1.37), there exists r > 0 such that f (t) > 0 for all t ≥ r. Since

lim
s→+∞

F(s)
sp+1 =

f∞
p + 1

,
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on account of Lemma 3.2, we get

lim
s→+∞

F(g(s))

s
2(p+1)

k+2

= lim
s→+∞

f∞(g(s))p+1(1 + o(1))

(p + 1)s
2(p+1)

k+2

=
f∞

p + 1
lim

s→+∞

(g∞s
2

k+2 (1 + o(1)))p+1(1 + o(1))

s
2(p+1)

k+2

=
f∞gp+1

∞
p + 1

.

In particular, there exists R > 0 such that√
f∞g

p+1
2
∞√

2p + 2
s

p+1
k+2 ≤

√
F(g(s)) ≤

√
2 f∞g

p+1
2
∞√

p + 1
s

p+1
k+2 , for every s ≥ R.

Then, if p > k + 1, we have∫ +∞

g−1(r)

1√
F(g(s))

ds ≤
∫ R

g−1(r)

1√
F(g(s))

ds +

√
2p + 2√
f∞g

p+1
2
∞

∫ +∞

R
s−

p+1
k+2 ds < +∞,

so that E holds true. On the contrary, assuming that p ≤ k + 1, for every r ∈ R with f (r) > 0 and
f (t) ≥ 0 for all t > r, we obtain∫ +∞

g−1(r)

1√
F(g(s))

ds ≥
√

p + 1√
2 f∞g

p+1
2
∞

∫ +∞

max{R,g−1(r)}
s−

p+1
k+2 ds = +∞.

The assertion then follows by Proposition 3.1.

We also have the following

Proposition 3.4 ( f with logarithmic growth) Assume that (1.34) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
(log s)β

= f∞. (1.38)

Then, in any smooth domain Ω, problem (1.1) admits no solution.

Proof. The proof proceeds just like in the proof of Proposition 3.3 observing that for any k > 0 there
exists p0 < k + 1 such that

√
F(g(s)) ≤ s

p0+1
k+2 for s large.

3.2 Exponential growth
Assume now that there exist γ > 0 and a∞ > 0 such that

lim
s→+∞

a(s)
e2γs = a∞. (1.39)

Then we have the following

Lemma 3.3 Assume that condition (1.39) holds. Then, we have

lim
s→+∞

g(s)
log s

=
1
γ
, lim

t→+∞

g−1(t)
eγt =

√
a∞
γ

. (1.40)
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Proof. From the definition of g, we have g′(s)a1/2(g(s)) = 1. Integrating on [0, s] yields

s =
∫ s

0
g′(σ)a1/2(g(σ))dσ =

∫ g(s)

0
a1/2(σ)dσ.

In turn, we reach

lim
s→+∞

g(s)
1
γ

log s
= γ lim

s→+∞
sg′(s) = γ lim

s→+∞

s√
a(g(s))

= γ lim
s→+∞

s√
a∞e2γg(s)(1 + o(1))

=
γ
√

a∞
lim

s→+∞

∫ g(s)
0 a1/2(σ)dσ

eγg(s)

=
γ
√

a∞
lim

s→+∞

a1/2(g(s))g′(s)
γeγg(s)g′(s)

=
1
√

a∞
lim

s→+∞

a1/2(g(s))
eγg(s) = 1,

in light of condition (1.39). Furthermore, taking into account the above computations,

lim
t→+∞

g−1(t)
eγt = lim

s→+∞

s
eγg(s) =

√
a∞
γ

,

concluding the proof.

We can now formulate the following existence result.

Proposition 3.5 ( f with exponential growth) Assume that (1.39) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
e2βs = f∞. (1.41)

Then (1.1) admits a solution in any smooth domain Ω if and only if β > γ.

Proof. In light of (1.41), there exists r > 0 such that f (t) > 0 for all t ≥ r. Furthermore, taking into
account Lemma 3.3 and that

lim
s→+∞

F(s)
e2βs =

f∞
2β
,

we have in turn, for any ε > 0,

lim
s→+∞

F(g(s))

s
2β
γ −2ε

= lim
s→+∞

f∞
2β

e2βg(s)(1 + o(1))

s
2β
γ −2ε

=
f∞
2β

lim
s→+∞

e
2β
γ (1+o(1)) log s(1 + o(1))

s
2β
γ −2ε

=
f∞
2β

lim
s→+∞

s
2β
γ so(1)

s
2β
γ −2ε

=
f∞
2β

lim
s→+∞

s2ε+o(1) = +∞.

Consider the case β > γ. We can fix ε in such a way that 0 < ε < β
γ
− 1. Corresponding to this

choice of ε there exists R = R(ε) > 0 large enough that

F(g(s)) ≥ s
2β
γ −2ε, for every s ≥ R,



676 F. Gladiali, M. Squassina

yielding in turn, ∫ +∞

g−1(r)

1√
F(g(s))

ds ≤
∫ R

g−1(r)

1√
F(g(s))

ds +
∫ +∞

R

1

s
β
γ−ε

ds < +∞,

so that E is fulfilled. Assume now that β < γ. Given ε > 0, by arguing as above, we obtain

lim
s→+∞

F(g(s))

s
2β
γ +2ε

= lim
s→+∞

f∞
2β

s
2β
γ so(1)

s
2β
γ +2ε

=
f∞
2β

lim
s→+∞

so(1)

s2ε = 0.

Hence, fixed ε̄ > 0 sufficiently small that β
γ
+ ε̄ < 1, there exists R = R(ε̄) > 0 such that

F(g(s)) ≤ s
2β
γ +2ε̄, for every s ≥ R.

Thus, for every r ∈ R with f (r) > 0 and f (t) ≥ 0 for all t > r, we obtain∫ +∞

g−1(r)

1√
F(g(s))

ds ≥
∫ +∞

max{R,g−1(r)}

1

s
β
γ+ε̄

ds = +∞.

The assertion then follows by Proposition 3.1.

Next, we formulate the following existence result.

Proposition 3.6 ( f with polynomial growth) Assume that (1.39) holds and that there exist p > 1
and f∞ > 0 such that

lim
s→+∞

f (s)
sp = f∞. (1.42)

Then, in any smooth domain Ω, problem (1.1) admits no solution.

Proof. Since

lim
s→+∞

F(s)
sp+1 =

f∞
p + 1

,

there exist β < γ and R > 0 such that F(s) ≤ e2βs for every s ≥ R. Fixed now ε̄ > 0 so small that
β
γ
(1 + ε̄) < 1, taking into account Lemma 3.3, there exists R = R(ε̄) > 0 such that√

F(g(s)) ≤ eβg(s) = eβ
g(s)
log s log s ≤ s

β
γ (1+ε̄),

for all s ≥ R. Then, for every r ∈ R with f (r) > 0 and f (t) ≥ 0 for all t > r, we have∫ +∞

g−1(r)

1√
F(g(s))

ds ≥
∫ +∞

max{R,g−1(r)}

1

s
β
γ (1+ε̄)

ds = +∞.

The assertion then follows by Proposition 3.1.

We also have the following

Proposition 3.7 ( f with logarithmic growth) Assume that (1.39) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
(log s)β

= f∞. (1.43)

Then, in any smooth domain Ω, problem (1.1) admits no solution.

Proof. The proof proceeds as for Proposition 3.6 since F(s) ≤ e2βs with β < γ for s large.
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3.3 Logarithmic growth
Assume now that there exist γ > 0 and a∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞. (1.44)

Then we have the following

Lemma 3.4 Assume that condition (1.44) holds. Then, we have

lim
s→+∞

g(s)
s1−ε = +∞, lim

s→+∞

g(s)
s
= 0. (1.45)

for every ε ∈ (0, 1). In particular, for every ε ∈ (0, 1) there exists R = R(ε) > 0 such that

s1−ε ≤ g(s) ≤ s, for every s ≥ R. (1.46)

Proof. We have, for every ε ∈ (0, 1)

lim
s→+∞

g(s)

s
1

1+ε

= lim
s→+∞

(g1+ε(s)
s

) 1
1+ε
=

(
lim

s→+∞

g1+ε(s)∫ g(s)
0

√
a(σ)dσ

) 1
1+ε

=
(

lim
s→+∞

(1 + ε)gε(s)g′(s)√
a(g(s))g′(s)

) 1
1+ε

= (1 + ε)
1

1+ε

(
lim

s→+∞

gε(s)
(log g(s))γ

(log g(s))γ√
a(g(s))

) 1
1+ε
= +∞.

Furthermore, we have

lim
s→+∞

g(s)
s
= lim

s→+∞

g(s)∫ g(s)
0 a1/2(σ)dσ

= lim
s→+∞

1
a1/2(g(s))

= 0,

which concludes the proof of the lemma.

We can now formulate the following existence result.

Proposition 3.8 ( f with exponential growth) Assume that (1.44) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
e2βs = f∞. (1.47)

Then (1.1) admits a solution in any smooth domain Ω.

Proof. By (1.47), there exists r > 0 such that f (t) > 0 for all t ≥ r. By virtue of Lemma 3.4, for
every ε ∈ (0, 1) there exists R = R(ε) > 0 such that

F(g(s)) =
f∞
2β

e2βg(s)(1 + o(1)) ≥ f∞
4β

e2βg(s) ≥ f∞
4β

e2βs1−ε
,

for every s ≥ R. In turn, for any ε ∈ (0, 1), we conclude∫ +∞

g−1(r)

1√
F(g(s))

ds ≤
∫ R

g−1(r)

1√
F(g(s))

ds +
2
√
β√

f∞

∫ +∞

R

1
eβs1−ε ds < +∞,

concluding the proof of E. The assertion then follows by Propositions 3.1.

Next we state the following existence result.
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Proposition 3.9 ( f with polynomial growth) Assume that (1.44) holds and that there exist p > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
sp = f∞. (1.48)

Then (1.1) admits a solution in any smooth domain Ω if and only if p > 1.

Proof. By (1.48), there exists r > 0 such that f (t) > 0 for all t ≥ r. By virtue of Lemma 3.4, for
every ε ∈ (0, 1) there exists R = R(ε) > 0 such that

F(g(s)) =
f∞

p + 1
gp+1(s)(1 + o(1)) ≥ f∞

2p + 2
gp+1(s) ≥ f∞

2p + 2
s(p+1)(1−ε),

for every s ≥ R. In turn, if p > 1, fixed ε ∈ (0, 1) with (p+1)(1−ε)
2 > 1 , we conclude∫ +∞

g−1(r)

1√
F(g(s))

ds ≤
∫ R

g−1(r)

1√
F(g(s))

ds +

√
2p + 2√

f∞

∫ +∞

R
s−

(p+1)(1−ε)
2 ds < +∞.

If p ≤ 1, exploiting again Lemma 3.4, we can find R such that

F(g(s)) =
f∞

p + 1
gp+1(s)(1 + o(1)) ≤ 2 f∞

p + 1
sp+1 for all s ≥ R

yielding, as p+1
2 ≤ 1, for every r ∈ R with f (r) > 0 and f (t) ≥ 0 for t > r,∫ +∞

g−1(r)

1√
F(g(s))

ds ≥
√

p + 1√
2 f∞

∫ +∞

max{R,g−1(r)}
s−

p+1
2 ds = +∞,

concluding the proof of condition E. The assertion then follows by Proposition 3.1.

Finally, we have the following

Proposition 3.10 ( f with logarithmic growth) Assume that (1.44) holds and that there exist β > 0
and f∞ > 0 such that

lim
s→+∞

f (s)
(log s)β

= f∞. (1.49)

Then, in any smooth domain Ω, problem (1.1) admits no solution.

Proof. Taking into account Lemma 3.4, the proof proceeds as for Proposition 3.9 since there exists
p0 < 1 such that F(s) ≤ sp0+1 for every s large.

Remark 3.1 (Negative large solutions II) Assume that a is even and consider the following con-
dition:
E-. There exists r ∈ R such that f (r) < 0 and f (s) ≤ 0 for all s < r and∫ g−1(r)

−∞

1
√

F ◦ g
< +∞, F(t) :=

∫ t

r
f (τ)dτ. (1.50)

Then problem (1.27) has a solution if and only if E- holds. In fact, being a even, it is readily seen
that g is odd, and letting

f0(s) := − f (−s) for all s ∈ R, F0(t) =
∫ t

−r
f0(τ)dτ,
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two changes of variable yield ∫ +∞

g−1(−r)

1
√

F0 ◦ g
=

∫ g−1(r)

−∞

1
√

F ◦ g
.

Therefore E- holds for problem (1.27) if and only if E holds for the problem div(a(w)Dw) − a′(w)
2 |Dw|2 = f0(w) in Ω,

w(x)→ +∞ as d(x, ∂Ω)→ 0,
(1.51)

in which case (1.51) admits a solution. Then u := −w is a solution to (1.27).

3.4 Proof of Theorem 1.1
The assertions of Theorem 1.1 follows from a combination of Propositions 3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.9 and 3.10.

4 Uniqueness of solutions
Concerning the uniqueness of solutions to problems (1.1) and (1.12), we have the following

Proposition 4.1 If (1.9) and (1.10) are satisfied then problem (1.1) admits a unique solution which
is nonnegative. If, else, the conditions which guarantee the existence of solutions are fulfilled, if ∂Ω
is of class C3 and its mean curvature is nonnegative and (1.9) and (1.11) are satisfied, then pro-
blem (1.1) admits a unique solution which is nonnegative. Finally, if the conditions which guarantee
the existence of solutions are fulfilled and (1.13) is satisfied then problem (1.12) admits a unique
solution.

Proof. According to [21, Theorem 1] problem (1.31) has a unique non-negative solution in a
smooth bounded domainΩ if h(0) = 0 and h′(s) ≥ 0 for any s ≥ 0 and if there exist m > 1 and t0 > 0
such that h(t)

tm is increasing for t ≥ t0. The second hypothesis (which guarantees the existence of the
solution) is equivalent to requiring that limt→+∞

th′(t)
h(t) > 1. Recalling that h(s) = f (g(s))a−1/2(g(s)),

we have
h′(s) =

2 f ′(g(s))a(g(s)) − f (g(s))a′(g(s))
2a2(g(s))

, for every s ∈ R. (1.52)

In turn, the uniqueness conditions of [21] turn into (1.9) and (1.10) which readily yields the desired
conclusion since g is a bijection.

Now we quote a result of Costin, Dupaigne and Goubet [11, Theorem 1.3], which says that, under
smoothness assumption on ∂Ω and positivity of its mean curvature, if h is nondecreasing and

√
h

is asymptotically convex then the solution of problem (1.31) is unique. Conditions (1.9) and (1.11)
allow us to use their result and provide the uniqueness of the solution u of problem (1.1) via the
transformation (1.2).
In the case of Ω = B1(0), according to [10, Corollary 1.4], the uniqueness of large solutions of
∆v = h(v) in B1(0) is guaranteed provided that the existence conditions are satisfied and the map
{s 7→ h(s) + λ1s} is nondecreasing on R. The uniqueness condition turns into

2 f ′(g(s))a(g(s)) − f (g(s))a′(g(s)) + 2λ1a2(g(s)) ≥ 0, for every s ∈ R.

which readily yields the desired conclusion since g is a bijection.
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4.1 Proof of Theorem 1.2
The assertion of Theorem 1.2 follows by Proposition 4.1.

5 Nonuniqueness of solutions
In this section we discuss the existence of two distinct solutions to (1.1) under suitable assumptions
on a and f . By virtue of [1, Theorem 1], we have the following

Proposition 5.1 Let Ω be bounded, convex and C2. Assume that condition E holds, f (0) = 0 and,
for some R > 0 large,

f |(R,+∞) > 0,
( f ′

f
− a′

2a

)
|(R,+∞) ≥ 0, (1.53)

and there exists 1 < q < N+2
N−2 if N ≥ 3 and q > 1 for N = 1, 2 such that

0 < lim
s→−∞

f (s)
√

a(s)|g−1(s)|q
< +∞. (1.54)

Then problem (1.1) admits at least two distinct solutions, one positive and one sign-changing.

Proof. The function h(s) = f (g(s))
√

a−1/2(g(s)) is smooth and h(0) = 0. Recalling that g(s) → +∞
as s→ +∞, by virtue of (1.53) there exists R > 0 sufficiently large that

h(s) > 0,
f ′(g(s))
f (g(s))

≥ a′(g(s))
2a(g(s))

, for any s ≥ R,

namely h|(R,+∞) > 0 and h′|(R,+∞) ≥ 0. Finally, due to (1.54) and (1.32), we get

lim
s→−∞

h(s)
|s|q = lim

s→−∞

f (g(s))√
a(g(s))|s|q

= lim
s→−∞

f (s)
√

a(s)|g−1(s)|q
∈ (0,+∞).

Whence, in light of [1, Theorem 1] we find two distinct large solutions v1 > 0 and v2 (with v−2 , 0
and v+2 , 0) to the problem ∆v = h(v). In turn, via Lemma 3.1, u1 = g(v1) > 0 and u2 = g(v2) (with
u±2 = (g(v2))± = g(v±2 ) , 0) are two distinct explosive solutions of problem (1.1). This concludes the
proof.

Proposition 5.2 Consider assumptions (1.15)-(1.18) in Proposition 5.1.Then (1.1) admits two solu-
tions, one positive and one sign-changing in any C2 convex and bounded domain.

Proof. It suffices to verify that under condition (1.15)-(1.18), assumptions (1.53)-(1.54) of Propo-
sition 5.1 are fulfilled. Let us observe first, that assumptions (1.53) and (1.54) imply (1.4), so that
condition E holds. In light of (1.18) it is readily seen that the left condition in (1.53) is satis-
fied, for some R > 0 large enough. Moreover, by combining (1.15) and (1.18) and recalling that
p+ > k + 1 > k/2 it follows that also the right condition in (1.53) is satisfied, up to enlarging R.
Concerning (1.54), recalling Lemma 3.2, (1.16)-(1.17) and the fact that g−1 is odd, choosing

1 < q :=
2p− − k

k + 2
<

N + 2
N − 2

, N ≥ 3, q > 1, N = 1, 2,

we have

lim
s→−∞

f (s)
√

a(s)|g−1(s)|q
= lim

s→−∞

f (s)
|s|p− lim

s→−∞

|s|k/2
√

a(s)
lim

s→−∞

|s| q(k+2)
2

|g−1(s)|q ∈ (0,+∞),

concluding the proof.
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5.1 Proof of Theorem 1.3
The assertion of Theorem 1.3 follows by Propositions 5.1 and 5.2.

6 Symmetry of solutions
Concerning a first condition for the symmetry for the solutions of problem (1.1) in the ball B1(0),
we have the following

Proposition 6.1 Assume that the conditions which guarantee the existence of solutions are fulfilled
and that there exists ρ ∈ R such that

2 f ′(s)a(s) − f (s)a′(s) + 2ρa2(s) ≥ 0, for all s ∈ R. (1.55)

Then any solution to problem (1.12) is radially symmetric and increasing.

Proof. According to [10, Corollary 1.7] the symmetry of large solutions of ∆v = h(v) in B1(0) is
guaranteed provided that the existence conditions are satisfied the map {s 7→ h(s) + ρs} is nonde-
creasing on R for some ρ ∈ R. Then, the assertion follows arguing as in the proof of Proposition 4.1.

Remark 6.1 Considering the same framework (1.30) of Remark 2.7, condition (1.55) is fulfilled for
every choice of ρ ≥ 0, and hence large solutions in B1(0) are radially symmetric and increasing.

Next, we would like to get the radial symmetry of the solutions to (1.12) in the unit ball under
a merely asymptotic condition on the data a and f (as opposed to the global condition imposed
in (1.55)) by using [34, Theorem 1.1]. Throughout the rest of this section we shall assume that
f ∈ C2(R) and a ∈ C2(R). By direct computation, from (1.52), there holds

h′′(s) =
1
2

a−7/2(g(s))
{
2 f ′′(g(s))a2(g(s)) − 3 f ′(g(s))a′(g(s))a(g(s))

− f (g(s))a′′(g(s))a(g(s)) + 2 f (g(s))(a′(g(s)))2
}
, for every s ∈ R. (1.56)

In [34, Theorem 1.1] one of the main assumption is that the function h is asymptotically convex,
namely there exists R > 0 such that h|(R,+∞) is convex. On account of formula (1.56), a sufficient
condition for this to be the case is that

lim inf
s→+∞

{
2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

}
> 0. (1.57)

Hence this condition only depends on the asymptotic behavior of a and f and their first and second
derivatives. We shall now discuss the various situations, as already done for the study of existence
of solutions.

6.1 Polynomial growth
Assume that there exists a∞ > 0 such that

lim
s→+∞

a′(s)
sk−1 = a∞k, lim

s→+∞

a′′(s)
sk−2 = a∞k(k − 1). (1.58)

First observe that condition (1.58) implies (1.34), and that for k > 1 only the right limit in (1.58)
is needed. We can now formulate the following symmetry results in the various situation where we
have already established existence of large solutions.
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Proposition 6.2 ( f with exponential growth) Assume that condition (1.58) holds and that there
exist β > 0 and f∞ > 0 such that

lim
s→+∞

f ′′(s)
e2βs = 4β2 f∞. (1.59)

Then any solution to problem (1.1) in B1(0) is radially symmetric and increasing.

Proof. Condition (1.59) implies that

lim
s→+∞

f (s)
e2βs = f∞, lim

s→+∞

f ′(s)
e2βs = 2β f∞.

Concerning (1.57), we have

2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

= 8β2 f∞e2βs(1 + o(1))a2
∞s2k(1 + o(1)) − 6β f∞e2βs(1 + o(1))a2

∞ksk sk−1(1 + o(1))

− f∞e2βs(1 + o(1))a2
∞k(k − 1)sk−2sk(1 + o(1)) + 2 f∞e2βs(1 + o(1))a2

∞k2s2k−2(1 + o(1))

= f∞a2
∞e2βss2k−2

[
8β2s2(1 + o(1)) − 6βks(1 + o(1)) − k(k − 1) + 2k2 + o(1)

]
= f∞a2

∞e2βss2k[8β2 + o(1)] > 0, for all s > 0 large,

concluding the proof.

Proposition 6.3 ( f with polynomial growth) Assume that condition (1.58) holds and that there ex-
ist p > 1 and f∞ > 0 such that

lim
s→+∞

f ′′(s)
sp−2 = f∞p(p − 1). (1.60)

Then, if p > k + 1, any solution to (1.1) in B1(0) is radially symmetric and increasing.

Proof. First observe that condition (1.60) implies that lims→+∞
f ′(s)
sp−1 = f∞p so that (1.37) holds.

Concerning (1.57), we have

2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

= 2p(p − 1) f∞sp−2a2
∞s2k(1 + o(1)) − 3 f∞psp−1a2

∞ksk sk−1(1 + o(1))

− f∞spa2
∞k(k − 1)sk−2sk(1 + o(1)) + 2 f∞spa2

∞k2s2k−2(1 + o(1))

= f∞a2
∞sp+2k−2

[
2p(p − 1) − 3pk − k(k − 1) + 2k2 + o(1)

]
= f∞a2

∞sp+2k−2
[
2p2 − (2 + 3k)p + k2 + k + o(1)

]
= f∞a2

∞sp+2k−2
[
(p − k − 1)(2p − k) + o(1)

]
> 0

for all s > 0 large being p > k + 1, concluding the proof.

6.2 Exponential growth
Assume that there exist γ > 0 and a∞ > 0 such that

lim
s→+∞

a′′(s)
e2γs = 4γ2a∞. (1.61)

Then, we have the following
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Proposition 6.4 ( f with exponential growth) Assume that conditions (1.59) and (1.61) hold. Then,
if β > γ, any solution to (1.1) in B1(0) is radially symmetric and increasing.

Proof. First observe that condition (1.61) implies

lim
s→+∞

a′(s)
e2γs = 2γa∞, lim

s→+∞

a(s)
e2γs = a∞.

Concerning (1.57), we have

2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

= 8β2 f∞e2βsa2
∞e4γs(1 + o(1)) − 6β f∞e2βs2γa2

∞e2γse2γs(1 + o(1))

− f∞e2βs4γ2a2
∞e4γs(1 + o(1)) + 2 f∞e2βs4a2

∞γ
2e4γs(1 + o(1))

= 4 f∞a2
∞e2(β+2γ)s[2β2 − 3γβ + γ2 + o(1)

]
> 0

for all s > 0 large if 2β2 − 3γβ + γ2 = (β − γ)(2β − γ) > 0. Since β > γ, we conclude.

6.3 Logarithmic growth

Assume that there exist γ > 0 and a∞ > 0 such that

lim
s→+∞

a′(s)s
(log s)2γ−1 = 2γa∞, lim

s→+∞

a′′(s)s2

(log s)2γ−1 = −2γa∞. (1.62)

Then, we have the following

Proposition 6.5 ( f with exponential growth) Assume that (1.59) and (1.62) hold for β > 0 and
f∞ > 0. Then any solution to (1.1) in B1(0) is radially symmetric and increasing.

Proof. First observe that (1.62) implies (1.44). Then, concerning (1.57), we have

2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

= 8β2 f∞e2βsa2
∞(log s)4γ(1 + o(1)) − 12β f∞e2βsγa2

∞
(log s)2γ−1

s
(log s)2γ(1 + o(1))

+ 2 f∞e2βsγa2
∞

(log s)2γ−1

s2 (log s)2γ(1 + o(1)) + 8 f∞e2βsγ2a2
∞

(log s)4γ−2

s2 (1 + o(1))

= f∞a2
∞e2βs(log s)4γ

[
8β2 − 12βγ

s log s
+

2γ
s2 log s

+
8γ2

s2(log s)2 + o(1)
]
> 0

for all s > 0 large, completing the proof.

Then, we have the following

Proposition 6.6 ( f with polynomial growth) Assume that (1.60) and (1.62) hold. Then, if p > 1,
any solution to (1.1) in B1(0) is radially symmetric and increasing.
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Proof. Concerning (1.57), we have

2 f ′′(s)a2(s) − 3 f ′(s)a′(s)a(s) − f (s)a′′(s)a(s) + 2 f (s)(a′(s))2

= 2 f∞p(p − 1)sp−2a2
∞(log s)4γ(1 + o(1)) − 6 f∞psp−1γa2

∞
(log s)2γ−1

s
(log s)2γ(1 + o(1))

+ 2 f∞spγa2
∞

(log s)2γ−1

s2 (log s)2γ(1 + o(1)) + 8 f∞spγ2a2
∞

(log s)4γ−2

s2 (1 + o(1))

= f∞a2
∞sp−2(log s)4γ

[
2p(p − 1) − 6pγ

log s
+

2γ
log s

+
8γ2

(log s)2 + o(1)
]
> 0

for all s > 0 large, completing the proof.

6.4 Proof of Theorem 1.4
The assertion of Theorem 1.4 follows by Propositions 6.2, 6.3, 6.4, 6.5 and 6.6.

7 Blow-up rate of solutions, I
Let Ω be a bounded domain of RN which satisfies an inner and an outer sphere condition at each
point of the boundary ∂Ω. Consider the following condition

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt = 0, (1.63)

which merely depends upon the asymptotic behavior of F and a. Then, assuming that condition E
holds, by directly applying [10, Theorem 1.10] to the semi-linear problem (1.31), if η denotes the
unique solution to

η′ = −
√

2F ◦ g ◦ η, lim
t→0+

η(t) = +∞,

it follows that any blow-up solution v ∈ C2(Ω) to (1.31) satisfies

v(x) = η(d(x, ∂Ω)) + o(1), as d(x, ∂Ω)→ 0 (1.64)

if and only if (1.63) holds. By virtue of (1.2) and the asymptotic behavior of a(s) for s large (i.e.
(1.34), (1.39) or (1.44)), it is readily verified that there exists a positive constant L such that

|g(τ2) − g(τ1)| ≤ L
|τ2 − τ1|

a
1
2 (min{g(τ1), g(τ2)})

, for every τ1, τ2 > 0 large. (1.65)

Therefore, under assumption (1.63), any blow-up solution u ∈ C2(Ω) to the quasi-linear problem
(1.1) satisfies

|u(x) − g(η(d(x, ∂Ω)))| = |g(v(x)) − g(η(d(x, ∂Ω)))| ≤ L
|v(x) − η(d(x, ∂Ω))|

a
1
2 (min{u(x), g(η(d(x, ∂Ω)))})

as d(x, ∂Ω)→ 0, namely due to (1.64)

u(x) = g ◦ η(d(x, ∂Ω)) +
1

a
1
2 (min{u(x), g(η(d(x, ∂Ω)))})

o(1), as x→ x0 ∈ ∂Ω. (1.66)
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Moreover, in case (1.34) holds, then Lemma 3.2 implies there exists a positive constant C such that

a
1
2 (min{u(x), g(η(d(x, ∂Ω)))}) ≥ C min{u(x)

k
2 , η

k
k+2 (d(x, ∂Ω))},

as d(x, ∂Ω) → 0, while, if (1.39) is satisfied, from Lemma 3.3 we have that there exists a positive
constant C such that

a
1
2 (min{u(x), g(η(d(x, ∂Ω)))}) ≥ C min{eγu(x), eγg(η(d(x,∂Ω)))} ≥ min{eγu(x), η

1
α (d(x, ∂Ω))}

as d(x, ∂Ω)→ 0, for any α > 1. Using (1.66) we get Theorem 1.5 once (1.63) is satisfied.

7.1 Polynomial growth

We have the following

Proposition 7.1 Assume that there exist k > 0, a∞ > 0, p > k + 1 and f∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞, lim

s→+∞

f (s)
sp = f∞.

Then condition (1.63) is fulfilled if and only if p > 2k + 3. When p < 2k + 3 it holds

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt = +∞.

Proof. We denote by C a positive constant and by C′ a constant without any sign restriction, which
may vary from one place to another. By the proof of Proposition 3.3, we learn that there exists a
constant R > 0 such that

Cs
p+1
k+2 ≤

√
F(g(s)) ≤ 2Cs

p+1
k+2 , for every s ≥ R. (1.67)

In turn, for every t ≥ R, we obtain

Ct
k+p+3

k+2 +C′ ≤
∫ t

0

√
F(g(s))ds ≤ C +

∫ t

R

√
F(g(s))ds ≤ C′ +Ct

k+p+3
k+2 , (1.68)

Furthermore, by (1.67)-(1.68), we get

lim sup
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≤ C lim sup
u→+∞

u
p+1
k+2

∫ +∞

u

C′ +Ct
k+p+3

k+2

t
3p+3
k+2

dt

≤ C lim sup
u→+∞

u
p+1
k+2

∫ +∞

u
t

k−2p
k+2 dt = C lim sup

u→+∞
u

2k+3−p
k+2 = 0,
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yielding (1.63). Assume now instead that k + 1 < p ≤ 2k + 3, we have

lim inf
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≥ C lim inf
u→+∞

u
p+1
k+2

∫ +∞

u

C′ +Ct
k+p+3

k+2

t
3p+3
k+2

dt

≥ C lim inf
u→+∞

u
p+1
k+2

∫ +∞

u

(
C′t−

3p+3
k+2 +Ct

k−2p
k+2

)
dt

= lim inf
u→+∞

(
C′u

k−2p
k+2 +Cu

2k+3−p
k+2

)
=

+∞, for p < 2k + 3
C, for p = 2k + 3,

being k−2p
k+2 < −1. This concludes the proof.

We have the following

Proposition 7.2 Assume that there exist k > 0, a∞ > 0, β > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
sk = a∞, lim

s→+∞

f (s)
e2βs = f∞.

Then condition (1.63) is always fulfilled.

Proof. We denote by C a positive constant and by C′ a constant without any sign restriction, which
may vary from one one place to another. By the proof of Proposition 3.2, we learn that for any fixed
ε there exists a constant R = R(ε) > 0 such that√

F(g(s)) ≥ e(βg∞−ε)s
2

k+2
, for every s ≥ R. (1.69)

Moreover, for every ε > 0 fixed we have

lim
s→+∞

F(g(s))

e(2βg∞+2ε)s
2

k+2
=

f∞
2β

lim
s→+∞

e2βg∞ s
2

k+2 (1+o(1))

e(2βg∞+2ε)s
2

k+2
=

f∞
2β

lim
s→+∞

e2βg∞o(1)s
2

k+2

e2εs
2

k+2
= 0.

In turn, increasing R if needed, we have

e(βg∞−ε)s
2

k+2 ≤
√

F(g(s)) ≤ e(βg∞+ε)s
2

k+2
, for every s ≥ R. (1.70)

Choose now ε̄ > 0 such that 7ε̄ < βg∞ and let R̄ ≥ R be such that

wk/2 ≤ eε̄w, for every w ≥ R̄
2

k+2 .

Then, in light of inequality (1.70), we obtain∫ t

0

√
F(g(s))ds =

∫ R̄

0

√
F(g(s))ds +

∫ t

R̄

√
F(g(s))ds ≤ C +

∫ t

R̄
e(βg∞+ε̄)s

2
k+2 ds

= C +C
∫ t

2
k+2

R̄
2

k+2

e(βg∞+ε̄)wwk/2dw ≤ C +C
∫ t

2
k+2

R̄
2

k+2

e(βg∞+2ε̄)wdw

= C′ +Ce(βg∞+2ε̄)t
2

k+2 ≤ Ce(βg∞+2ε̄)t
2

k+2
,
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for every t large. Therefore,

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≤ C lim
u→+∞

e(βg∞+ε̄)u
2

k+2

∫ +∞

u

e(βg∞+2ε̄)t
2

k+2

e(3βg∞−3ε̄)t
2

k+2
dt

= C lim
u→+∞

e(βg∞+ε̄)u
2

k+2

∫ +∞

u
2

k+2

e(−2βg∞+5ε̄)wwk/2dw

≤ C lim
s→+∞

e(βg∞+ε̄)s
∫ +∞

s
e(−2βg∞+6ε̄)wdw

≤ C lim
s→+∞

e(βg∞+ε̄)se(−2βg∞+6ε̄)s = C lim
s→+∞

e−(βg∞−7ε̄)s = 0,

yielding (1.63). This concludes the proof.

7.2 Exponential growth

Proposition 7.3 Assume that there exist γ > 0, a∞ > 0, β > γ and f∞ > 0 such that

lim
s→+∞

a(s)
e2γs = a∞, lim

s→+∞

f (s)
e2βs = f∞.

Then condition (1.63) is fulfilled provided that β > 2γ. When β < 2γ it holds

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt = +∞.

Proof. We denote by C a positive constant and by C′ a constant without any sign restriction, which
may vary from one place to another. By the proof of Proposition 3.5, we learn that for every ε >
0 there exists a positive value R = R(ε) large enough that F(g(s)) ≥ s2β/γ−2ε for every s ≥ R.
Furthermore, enlarging R if needed, we have F(g(s)) ≤ s2β/γ+2ε, for every s ≥ R. Assume that
β > 2γ. Choosing now ε̄ > 0 so small that 2 − β

γ
+ 5ε̄ < 0, we have

s
2β
γ −2ε̄ ≤ F(g(s)) ≤ s

2β
γ +2ε̄, for every s ≥ R. (1.71)

In turn, for every t ≥ R, we obtain

Ct1+ β
γ−ε̄ +C′ ≤

∫ t

0

√
F(g(s))ds ≤ C +

∫ t

R

√
F(g(s))ds ≤ C′ +Ct1+ β

γ+ε̄ ≤ Ct1+ β
γ+ε̄. (1.72)

In turn, by (1.71)-(1.72), we get

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≤ C lim
u→+∞

u
β
γ+ε̄

∫ +∞

u

t1+ β
γ+ε̄

t3β/γ−3ε̄ dt

≤ C lim
u→+∞

u
β
γ+ε̄

∫ +∞

u
t1− 2β

γ +4ε̄dt = C lim
u→+∞

u2− β
γ+5ε̄
= 0,
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yielding (1.63). Assume now instead that β < 2γ. Choosing now ε̄ > 0 so small that 2− β
γ
− 5ε̄ > 0,

we have

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt ≥ lim

u→+∞
u

β
γ−ε̄

∫ +∞

u

C′ +Ct1+ β
γ−ε̄

t3β/γ+3ε̄ dt

≥ lim
u→+∞

u
β
γ−ε̄

∫ +∞

u
C′t−

3β
γ −3ε̄
+Ct1− 2β

γ −4ε̄dt

= lim
u→+∞

(
C′u1− 2β

γ −4ε̄
+Cu2− β

γ−5ε̄)
= +∞,

concluding the proof since 1 − 2β
γ
− 4ε̄ < 0 and 2 − β

γ
− 5ε̄ > 0.

7.3 Logarithmic growth
We have the following

Proposition 7.4 Assume that there exist γ > 0, a∞ > 0, p > 1 and f∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞, lim

s→+∞

f (s)
sp = f∞.

Then condition (1.63) is fulfilled provided that p > 3. When 1 < p < 3 it holds

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt = +∞.

Proof. We denote by C a positive constant and by C′ a constant without any sign restriction, which
may vary from one place to another. Taking into account Lemma 3.4, for every ε ∈ (0, 1) there exists
R = R(ε) > 0 such that

Cs(p+1)(1−ε) ≤ F(g(s)) ≤ Csp+1, for every s ≥ R.

So for every ε ∈ (0, 1) and for all t ≥ R, we obtain

Ct
p+1

2 (1−ε)+1 +C′ ≤
∫ t

0

√
F(g(s))ds =

∫ R

0

√
F(g(s))ds +

∫ t

R

√
F(g(s))ds

≤ C +C
∫ t

Rε̄
s

p+1
2 ds ≤ Ct

p+3
2 .

Assume that p > 3 and let ε̄ > 0 with p − 3 − 3ε̄(p + 1) > 0. Whence, we get

lim sup
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≤ C lim sup
u→+∞

u
p+1

2

∫ +∞

u

t
p+3

2

t
3p+3

2 (1−ε)
dt

= C lim sup
u→+∞

u
p+1

2

∫ +∞

u
t−p+ 3ε̄

2 (p+1)dt

= C lim sup
u→+∞

u−
p−3−3ε̄(p+1)

2 = 0.
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On the contrary, if 1 < p < 3, fix ε̄ so small that 3−p
2 − ε̄(p + 1) > 0. In turn, we deduce

lim inf
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

≥ C lim inf
u→+∞

u
p+1

2 (1−ε̄)
∫ +∞

u

t
p+1

2 (1−ε̄)+1 +C′

t
3p+3

2

dt

= lim
u→+∞

u
p+1

2 (1−ε̄)(Cu1−p−ε̄ p+1
2 +C′u1− 3

2 (p+1))
= lim

u→+∞

(
Cu

3−p
2 −ε̄(p+1) +C′u−p−ε̄ p+1

2
)
= +∞.

This concludes the proof.

We have the following

Proposition 7.5 Assume that there exist γ > 0, a∞ > 0, β > 0 and f∞ > 0 such that

lim
s→+∞

a(s)
(log s)2γ = a∞, lim

s→+∞

f (s)
e2βs = f∞.

Then condition (1.63) is fulfilled.

Proof. We denote by C a positive constant and by C′ a constant without any sign restriction, which
may vary from one place to another. For every ε ∈ (0, 1) there exists R = R(ε) > 0 such that
Ce2βs1−ε ≤ F(g(s)) ≤ Ce2βs, for every s ≥ R. Observe that

lim
u→+∞

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt = lim

u→+∞

∫ +∞

1

∫ t
0

√
F(g(s))ds

F3/2(g(t))
χ(u,+∞)dt = 0.

In fact, the integrand belongs to L1(1,+∞) since, for R big enough and all t large, we have

∫ t
0

√
F(g(s))ds

(F(g(t)))3/2 ≤
C + (t − R)

√
F(g(t))

(F(g(t)))3/2 ≤ C
t

F(g(t))
≤ C

t
e2βt1−ε .

Then, by virtue of l’Hǒpital rule, we get

lim
u→+∞

√
F(g(u))

∫ +∞

u

∫ t
0

√
F(g(s))ds

F3/2(g(t))
dt

= lim
u→+∞

−F−3/2(g(u))
∫ u

0

√
F(g(s))ds

− 1
2 F−3/2(g(u)) f (g(u))g′(u)

= 2 lim
u→+∞

∫ u
0

√
F(g(s))ds

f (g(u))g′(u)
= 0.
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We thus only need to justify this last limit. Observe that, if ε ∈ (0, 1), from s1−ε ≤ g(s) for s large
enough (see Lemma 3.4), we get g−1(s) ≤ s1/(1−ε). Then, for R large enough, we have

0 ≤ lim sup
u→+∞

∫ u
0

√
F(g(s))ds

f (g(u))g′(u)
≤ lim sup

u→+∞

√
a(g(u))(C + (u − R)

√
F(g(u)))

f (g(u))

≤ C lim sup
u→+∞

u
√

a(g(u))
√

F(g(u))
f (g(u))

= C lim sup
t→+∞

g−1(t)
√

a(t)
√

F(t)
f (t)

≤ C lim sup
t→+∞

t
1

1−ε
√

a(t)
√

F(t)
f (t)

=

√
f∞a∞√
2β

lim
t→+∞

t
1

1−ε (log t)γeβt

f∞e2βt = 0.

This concludes the proof.

7.4 Proof of Theorem 1.5
The assertion of Theorem 1.5 follows by Propositions 7.1, 7.2, 7.3, 7.4, 7.5.

8 Blow-up rate of solutions, II
Suppose that (1.14) hold with R = 0 and that the existence conditions of Theorem 1.1 are satisfied.
As before, η denotes the unique solution to (1.23). We consider the following notations, where
F(t) =

∫ t
0 f (σ)dσ and

ψ(t) :=
∫ +∞

t

ds√
2F(g(s))

, Λ(t) :=

∫ t
0

√
2F(g(s))ds

F(g(t))
, t > 0,

J(t) :=
N − 1

2

∫ t

0
Λ(η(s))ds, B(t) :=

f (g(t))g′(t)√
2F(g(t))

, t > 0.

Notice that our condition E holds for every choice of r > 0 and

ψ(t) < +∞, ∀t > 0 ⇐⇒
∫ +∞

g−1(r)

ds√
Fr(g(s))

< +∞, ∀r > 0,

where Fr(t) =
∫ t

r f (σ)dσ, justifying the finiteness of ψ(t) at each t > 0.
In the following, we shall denote by σ(x) the orthogonal projection on the boundary ∂Ω of a given
point x ∈ Ω. Moreover, we shall indicate by H : ∂Ω → R the mean curvature of ∂Ω (see [39] for
a definition of mean curvature). In particular, the function x 7→ H(σ(x)) is well defined on Ω. We
can state the following

Proposition 8.1 Let Ω be a bounded domain of RN of class C4 and assume that (1.14) hold with
R = 0 and that one of the existence conditions of Theorem 1.1 is satisfied. Let us set

T(x) :=
η(d(x, ∂Ω))

a
1
2 (min{u(x), g(η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω))))})

, x ∈ Ω,
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where σ(x) denotes the projection on ∂Ω of a x ∈ Ω andH is the mean curvature of ∂Ω. Then there
exists a positive constant L such that

|u(x) − g ◦ η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))| ≤ LT(x)o(d(x, ∂Ω)),

whenever d(x, ∂Ω) goes to zero if the following conditions hold

lim inf
t→+∞

ψ(νt)
ψ(t)

> 1, for all ν ∈ (0, 1), (1.73)

lim
δ→0

B(η(δ(1 + o(1))))
B(η(δ))

= 1, (1.74)

lim sup
t→+∞

B(t)Λ(t) < +∞. (1.75)

Proof. Assuming that Ω is a domain of class C4, by using the main result of [4] due to Bandle
and Marcus, if the problem ∆v = h(v) with h(s) = f (g(s))a−1/2(g(s)) positive and nondecreasing on
(0,+∞), satisfying the Keller-Osserman condition and (1.73), (1.74) and (1.75) then it follows

|v(x) − η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))| ≤ η(d(x, ∂Ω))o(d(x, ∂Ω)), (1.76)

provided that d(x, ∂Ω) goes to zero. The proof then follows from (1.65) and (1.76).

In the particular case where (1.4) is satisfied with p > k + 1, we have the following

Proposition 8.2 Let Ω be a bounded domain of RN which satisfies an inner and an outer sphere
condition at each point of the boundary ∂Ω. Therefore, if (1.4) hold with p > 2k + 3, any solution
u ∈ C2(Ω) to (1.1) satisfies

u(x) =
Γ

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)), Γ :=

 p − k − 1√
2(p + 1)

√
f∞√
a∞


2

k+1−p

> 0,

whenever x approaches the boundary ∂Ω.

Proof. Let η be the unique solution to η′ = −
√

2F ◦ g ◦ η, limt→0+ η(t) = +∞. Let us prove that

lim
t→0+

η(t)

t
k+2

k+1−p

= Γ0, Γ0 =

 p − k − 1
k + 2

√
2 f∞√
p + 1

(
k + 2
2
√

a∞

) p+1
k+2


k+2

k+1−p

.

For any t > 0 sufficiently close to 0 we have 2F(g(η(t))) > 0 and, from η′√
2F◦g◦η

= −1,

∫ +∞

η(t)

dξ√
2F(g(ξ))

=

∫ 0

t

η′(s)√
2F(g(η(s)))

= t.

Furthermore, from (1.4) and (1.35), we have

lim
t→0+

√
2F(g(η(t)))

η(t)
p+1
k+2

= lim
s→+∞

√
2F(g(s))

s
p+1
k+2

=

√
2 f∞g

p+1
2
∞√

p + 1
,
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where g∞ was introduced in Lemma 3.2. Whence, recalling that p > k + 1, we get

lim
t→0+

η(t)

t
k+2

k+1−p

= lim
t→0+

η(t)
k+1−p

k+2

t


k+2

k+1−p

= lim
t→0+

 η(t)
k+1−p

k+2∫ +∞
η(t)

dξ√
2F(g(ξ))


k+2

k+1−p

(1.77)

= lim
t→0+


k+1−p

k+2 η(t)
−p−1
k+2 η′(t)

− 1√
2F(g(η(t)))

η′(t)


k+2

k+1−p

= lim
t→0+

 p−k−1
k+2

√
2F(g(η(t)))

η(t)
p+1
k+2


k+2

k+1−p

= Γ0.

Taking into account Lemma 3.2, we thus obtain

g ◦ η(d(x, ∂Ω)) = g∞Γ
2

k+2
0 (d(x, ∂Ω))

2
k+1−p (1 + o(1)), as d(x, ∂Ω)→ 0.

Since p > 2k + 3 by virtue of (1.66) it holds u(x) = g ◦ η(d(x, ∂Ω)) + o(1) as x approaches the
boundary ∂Ω. Combining these equations we get the assertion.

Proposition 8.3 LetΩ be a bounded domain of RN of class C4, assume that (1.4) hold with p > k+1
and that (1.14) are satisfied with R = 0. Then the following facts hold

1. There exists a positive constant L such that

|u(x) − g ◦ η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))| ≤ LT(x)o(d(x, ∂Ω)),

whenever d(x, ∂Ω) goes to zero, where

T(x) :=
(d(x, ∂Ω))

k+2
k+1−p

min{uk/2(x)), (d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))k/(k+1−p)} , x ∈ Ω,

where σ(x) denotes the projection on ∂Ω of a x ∈ Ω andH is the mean curvature of ∂Ω.

2. If k + 3 < p ≤ 2k + 3, then

u(x) = Γ
1

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)) + Γ′H(σ(x))(d(x, ∂Ω))
p−k−3
p−k−1 (1 + o(1)),

whenever x approaches ∂Ω, where Γ and Γ′ are as defined in (1.24).

3. If p ≤ k + 3, then

u(x) = Γ
1

(d(x, ∂Ω))
2

p−k−1

(1 + o(1)) + Γ′
H(σ(x))

(d(x, ∂Ω))
3+k−p
p−k−1

(1 + o(1)),

whenever x approaches ∂Ω.
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Proof. We want to apply Proposition 8.1. Let us check that condition (1.73) holds. From the validity
of the Keller-Osserman condition and the definition of ψ, we have ψ(νt) → 0 as t → +∞, for every
ν ∈ (0, 1]. Given ν ∈ (0, 1), using (1.4) and (1.35), we have

lim
t→+∞

ψ(νt)
ψ(t)

= lim
t→+∞

∫ +∞
νt

ds√
2F(g(s))∫ +∞

t
ds√

2F(g(s))

= ν

√
lim

t→+∞

F(g(t))
F(g(νt))

= ν

√
lim

t→+∞

F(g(t))
(g(t))p+1

(g(νt))p+1

F(g(νt))

[g(t)

t
2

k+2

]p+1[ (νt)
2

k+2

g(νt)

]p+1
ν−

2(p+1)
k+2

= ν
k+1−p

k+2

√
lim

t→+∞

F(g(t))
(g(t))p+1 lim

t→+∞

(g(νt))p+1

F(g(νt))
lim

t→+∞

[g(t)

t
2

k+2

]p+1
lim

t→+∞

[ (νt)
2

k+2

g(νt)

]p+1

=
1

ν
p−k−1

k+2

> 1, being ν < 1 and p > k + 1.

Let us now check that condition (1.74) is fulfilled. Observe first that, using (1.4), (1.35) and (1.77),
we have

lim
δ→0+

f (g(η(δ(1 + o(1)))))
f (g(η(δ)))

= lim
δ→0+

f (g(η(δ(1 + o(1)))))
(g(η(δ(1 + o(1)))))p · lim

δ→0+

(g(η(δ)))p

f (g(η(δ)))
·

· lim
δ→0+

[ g(η(δ(1 + o(1))))

(η(δ(1 + o(1))))
2

k+2

]p
· lim
δ→0+

[ (η(δ))
2

k+2

g(η(δ))

]p
· lim
δ→0+

[η(δ(1 + o(1)))
η(δ)

] 2p
k+2

= lim
δ→0+

[η(δ(1 + o(1)))
η(δ)

] 2p
k+2

=
[

lim
δ→0+

η(δ(1 + o(1)))

(δ(1 + o(1)))
k+2

k+1−p

lim
δ→0+

δ
k+2

k+1−p

η(δ)
lim
δ→0+

(δ(1 + o(1)))
k+2

k+1−p

δ
k+2

k+1−p

] 2p
k+2
= 1.

Moreover, we have

(
lim
δ→0+

g′(η(δ(1 + o(1))))
g′(η(δ))

)2
= lim

δ→0+

a(g(η(δ)))
a(g(η(δ(1 + o(1)))))

= lim
δ→0+

a(g(η(δ)))
(g(η(δ)))k · lim

δ→0+

(g(η(δ(1 + o(1)))))k

a(g(η(δ(1 + o(1)))))
· lim
δ→0+

[ g(η(δ))

(η(δ))
2

k+2

]k
·

· lim
δ→0+

[ (η(δ(1 + o(1))))
2

k+2

g(η(δ(1 + o(1))))

]k
· lim
δ→0+

[ η(δ)

δ
k+2

k+1−p

] 2k
k+2 ·

· lim
δ→0+

[ (δ(1 + o(1)))
k+2

k+1−p

η(δ(1 + o(1)))

] 2k
k+2 · lim

δ→0+

δ
2k

k+1−p

(δ(1 + o(1)))
2k

k+1−p

= 1.

Arguing in a similar fashion, there holds

lim
δ→0+

F(η(δ))
F(η(δ(1 + o(1))))

= 1.
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Therefore, collecting the above conclusions, from the definition of B it follows that

lim
δ→0+

B(η(δ(1 + o(1))))
B(η(δ))

= lim
δ→0+

f (g(η(δ(1 + o(1)))))
f (g(η(δ)))

·

· lim
δ→0+

g′(η(δ(1 + o(1))))
g′(η(δ))

·
√

lim
δ→0+

F(η(δ))
F(η(δ(1 + o(1))))

= 1,

as desired. For what concerns the quantity B(w)Λ(w) we have, using (1.4) again,

lim
w→+∞

B(w)Λ(w) = lim
w→+∞

f (g(w))g′(w)
√

2

∫ w
0

√
2F(g(s))ds

(F(g(w)))3/2

= lim
w→+∞

f∞(g(w))p

√
2
√

a(g(w))

√
(p + 1)3√

f 3
∞

∫ w
0

√
2F(g(s))ds

(g(w))
3(p+1)

2

=

√
(p + 1)3

√
2
√

a∞
√

f∞
lim

w→+∞

∫ w
0

√
2F(g(s))ds

(g(w))
p+3+k

2

=

√
(p + 1)3

√
2
√

a∞
√

f∞

2
(p + k + 3)

lim
w→+∞

√
2F(g(w))

(g(w))
p+1+k

2 g′(w)

=
2
√

(p + 1)3

√
a∞

√
f∞(p + k + 3)

lim
w→+∞

√
f∞
√

a∞√
p + 1

(g(w))
p+1

2

(g(w))
p+1+k

2 (g(w))−
k
2

=
2(p + 1)
p + k + 3

(1.78)

so that condition (1.75) follows from (1.78). In turn, from Proposition 8.1, again on account of
Lemma 3.2 and by (1.77), up to possibly enlarging L we obtain

|u(x) − g ◦ η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))|

≤ L
(d(x, ∂Ω))

k+2
k+1−p o(d(x, ∂Ω))

min{uk/2(x)), (d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))k/(k+1−p)} ,

provided that d(x, ∂Ω) goes to zero. This proves (1) and the first assertion of Theorem 1.6. Let us
now come to the proof of assertions (2) and (3). First we want to estimate the function J(t) near 0.
To this end, observe that the function Λ(t) is defined for t > 0 and that, from (1.4) it follows

lim
t→0+
Λ(η(t)) = lim

w→+∞
Λ(w) = lim

w→+∞

∫ w
0

√
2F(g(s))ds

F(g(w))

=
√

2 lim
w→+∞

√
F(g(w))

f (g(w))g′(w)
=
√

2 lim
w→+∞

(
f∞

p+1

) 1
2 (g(w))

p+1
2

√
a(g(w))

f∞ (g(w))p

=

√
2√

f∞
√

p + 1
lim

w→+∞

√
a∞(g(w))

p+1
2 −p+ k

2 =

√
2
√

a∞√
f∞

√
p + 1

lim
w→+∞

(g(w))
k+1−p

2 = 0

since p > k + 1. This implies that

lim
t→0+

J′(t) = lim
t→0+

N − 1
2
Λ(η(t)) = 0. (1.79)
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Moreover

Λ′(w) =

√
2F(g(w))F(g(w)) − f (g(w))g′(w)

∫ w
0

√
2F(g(s))ds

(F(g(w)))2

=

√
2√

F(g(w))
− f (g(w))g′(w)

F(g(w))

∫ w
0

√
2F(g(s))ds

F(g(w))

=

√
2√

F(g(w))
− f (g(w))g′(w)

F(g(w))
Λ(w),

so that

J′′(t) =
N − 1

2
Λ′(η(t))η′(t) = −N − 1

2
Λ′(η(t))

√
2F(g(η(t)))

= −N − 1
√

2

√2 − f (g(η(t)))g′(η(t))√
F(g(η(t)))

Λ(η(t))


= (N − 1)

( − 1 + B(η(t))Λ(η(t))
)
.

Then (1.78) implies that

lim
t→0+

J′′(t) = (N − 1)
(
−1 + lim

t→0+
B(η(t))Λ(η(t))

)
= (N − 1)

(
−1 + lim

w→+∞
B(w)Λ(w)

)
= (N − 1)

(
−1 +

2(p + 1)
(p + k + 3)

)
=

(N − 1)
(p + k + 3)

(p − k − 1). (1.80)

From (1.79) and (1.80) we get

J(t) =
(N − 1)

p + k + 3
(p − k − 1)t2 + o(t2) (1.81)

for t > 0 sufficiently small. From formulas (1.77) and (1.81) we have

η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω))) =

=
η(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))

(d(x, ∂Ω) −H(σ(x))J(d(x, ∂Ω)))
k+2

k+1−p

(d(x, ∂Ω))
k+2

k+1−p
(
1 − H(σ(x))J(d(x, ∂Ω))

d(x, ∂Ω)

) k+2
k+1−p

= Γ0(1 + o(1)) (d(x, ∂Ω))
k+2

k+1−p
(
1 +

k + 2
p − k − 1

H(σ(x))
J(d(x, ∂Ω)
d(x, ∂Ω)

+ o
( J(d(x, ∂Ω)

d(x, ∂Ω)

))
= Γ0(d(x, ∂Ω))

k+2
k+1−p

(
1 +

k + 2
p − k − 1

H(σ(x))
(N − 1)(p − k − 1)

p + k + 3
(d(x, ∂Ω))2

d(x, ∂Ω)
(1 + o(1))

)
(1 + o(1))

if d(x, ∂Ω) is sufficiently small. Moreover

η(d(x, ∂Ω))o(d(x, ∂Ω)) =
η(d(x, ∂Ω))

(d(x, ∂Ω))
k+2

k+1−p

(d(x, ∂Ω))
k+2

k+1−p o(d(x, ∂Ω))

= Γ0(1 + o(1)) (d(x, ∂Ω))
k+2

k+1−p+1 o(1)

= Γ0 (d(x, ∂Ω))
2k+3−p
k+1−p o(1)
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for d(x, ∂Ω) small enough. Then (1.76) implies that

v(x) = Γ0 (d(x, ∂Ω))
k+2

k+1−p (1 + o(1)) + Γ0
(k + 2)(N − 1)

p + k + 3
H(σ(x)) (d(x, ∂Ω))

2k+3−p
k+1−p (1 + o(1))

for d(x, ∂Ω) small enough. Then, in light of Lemma 3.1 and using (1.35), any blow-up solution
u ∈ C2(Ω) to (1.1) satisfies

u(x) = g(v(x))

= g
(
Γ0 (d(x, ∂Ω))

k+2
k+1−p (1 + o(1)) + Γ0

(k + 2)(N − 1)
p + k + 3

H(σ(x)) (d(x, ∂Ω))
2k+3−p
k+1−p (1 + o(1))

)
=

g
(
Γ0 (d(x, ∂Ω))

k+2
k+1−p (1 + o(1)) + Γ0

(k+2)(N−1)
p+k+3 H(σ(x)) (d(x, ∂Ω))

2k+3−p
k+1−p (1 + o(1))

)
[
Γ0 (d(x, ∂Ω))

k+2
k+1−p (1 + o(1)) + Γ0

(k+2)(N−1)
p+k+3 H(σ(x)) (d(x, ∂Ω))

2k+3−p
k+1−p (1 + o(1))

] 2
k+2

·

·
[
Γ0 (d(x, ∂Ω))

k+2
k+1−p (1 + o(1)) + Γ0

(k + 2)(N − 1)
p + k + 3

H(σ(x)) (d(x, ∂Ω))
2k+3−p
k+1−p (1 + o(1))

] 2
k+2

= g∞(1 + o(1))Γ
2

k+2
0 (d(x, ∂Ω))

2
k+1−p

(
1 +

(k + 2)(N − 1)
p + k + 3

H(σ(x))d(x, ∂Ω)(1 + o(1))
) 2

k+2

= g∞Γ
2

k+2
0 (d(x, ∂Ω))

2
k+1−p (1 + o(1)) +

2(N − 1)
p + k + 3

g∞Γ
2

k+2
0 H(σ(x)) (d(x, ∂Ω))

k+3−p
k+1−p (1 + o(1))

as x approaches the boundary ∂Ω. By performing some simple manipulations this yield the desired
conclusions.

8.1 Proof of Theorem 1.6
The assertion of Theorem 1.6 follows by combining Propositions 8.2 and 8.3.

Acknowledgments. The authors thank Marco Caliari for providing a numerical code in order to
check the validity of some asymptotic expansions. The authors also thank Giovanni Porru for point-
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