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We are concerned with a class of generalized Chern-Simons-Schrödinger systems

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δu + λV (x)u + A0u +

2∑
j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1
2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

where λ > 0 denotes a sufficiently large parameter, V : R2 → R admits a potential 
well Ω � intV −1(0) and the nonlinearity f fulfills the critical exponential growth in 
the Trudinger-Moser sense at infinity. Under some suitable assumptions on V and f , 
based on variational method together with some new technical analysis, we are able 
to get the existence of positive solutions for some large λ > 0, and the asymptotic 
behavior of the obtained solutions is also investigated when λ → +∞.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Overview

In this article, we focus on establishing the existence and concentrating behavior of positive solutions for 
a class of generalized Chern-Simons-Schrödinger (CSS in short) systems
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δu + λV (x)u + A0u +

2∑
j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1
2 |u|

2, ∂1A1 + ∂2A2 = 0,
∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

(1.1)

where λ > 0 denotes a sufficiently large parameter, V : R2 → R admits a potential well Ω � intV −1(0) and 
the nonlinearity f fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. On the 
potential V , we shall firstly make the following assumptions

(V1) V ∈ C(R2, R) with V ≥ 0 on R2;
(V2) there is b > 0 such that the set Σ �

{
x ∈ R2 : V (x) < b

}
has positive finite Lebesgue measure;

(V3) Ω = intV −1(0) is nonempty with smooth boundary with Ω = V −1(0), V −1(0) � {x : V (x) = 0}.

In celebrated papers, Bartsch and his collaborators initially proposed the above hypotheses to study the 
nonlinear Schrödinger equations, see [4,5]. As we all know, the harmonic trapping potential

V (x) =
{

ω1|x1|2 + ω2|x2|2 − ω, if |(√ω1x1,
√
ω2x2)|2 ≥ ω,

0, if |(√ω1x1,
√
ω2x2)|2 ≤ ω,

with ω > 0 satisfying (V1)-(V3), where ωi > 0 is called the anisotropy factor of the trap in quantum physics 
and trapping frequency of the ith-direction in mathematics, see e.g. [6,10,33]. In reality, the potential λV , 
instead of V , with the above mentioned assumptions (V1)-(V3) can be read as the steep potential well.

Over the past several decades, there were considerable attentions to the time-dependent CSS system in 
two spatial dimension

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iD0ψ + (D1D1 + D2D2)ψ + g(x, |ψ|2)ψ = 0,
∂0A1 − ∂1A0 = −Im(ψD2ψ),
∂0A2 − ∂2A0 = Im(ψD1ψ),
∂1A2 − ∂2A1 = −1

2 |ψ|2,

(1.2)

where i is the imaginary unit, Dj = ∂j+iAj is the covariant derivative for j = 0, 1, 2 with ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, 

∂2 = ∂
∂x2

for (t, x1, x2) ∈ R1+2 and Aj : R1+2 → R acting as the gauge field and ψ : R1+2 → C denotes 
the complex scalar field. As a matter of fact, it is usually adopted to describe the non-relativistic dynamics 
behavior of massive number of particles in Chern-Simons gauge fields. This model plays an important role in 
the study of the high-temperature superconductor, Aharovnov-Bohm scattering, and quantum Hall effect, 
we refer the reader to [20–22]. Moreover, there exist some further physical motivations for considering CSS 
system (1.2), see e.g. [16,18,30,31].

Consider the standing wave ansatz ψ(t, x) = eiωtu(x) with a radially symmetric u : R2 → R, the CSS 
system (1.2) can reduce to a single equation. In fact, Byeon, Huh and Seok [8] disposed of the standing 
waves of type

ψ(t, x) = u(|x|)eiλt, A0(t, x) = k(|x|),

A1(t, x) = x2

|x|2h(|x|), A2(t, x) = − x1

|x|2h(|x|),
(1.3)

where both k and h are radially symmetric and real value functions. We remark that (1.3) satisfies the 
Coulomb gauge condition with ς = ct + nπ, where n is an integer and c is a real constant. To look for 
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solutions of CSS system (1.2) of the type (1.3), it is adequate to contemplate the following semilinear 
elliptic equation

−Δu + ωu +

⎛⎜⎝ ∞∫
|x|

h(s)
s

u2(s)ds + h2(|x|)
|x|2

⎞⎟⎠u = g(x, u) in R2, (1.4)

where h(s) =
∫ s
0

r
2u

2(r)dr. In [8], the authors contemplated the existence of ground state solutions of (1.4)
with g(x, u) = |u|p−2u for p > 4 and ω > 0 as well as existence of a solution for p ∈ (2, 4) and the suitable 
ω > 0. A more precise results for the case p ∈ (2, 4) can be found in [36]. There are some other meaningful 
results on (1.4) and its variants, the reader can refer to [3,8,14,18,24,32,36,39–41,44,50] and the references 
therein.

Whereas, if the function u : R2 → R in the standing wave ansatz ψ(t, x) = eiωtu(x) is not radially 
symmetric, the studies on (1.2) would be more complicated. In this situation, one usually tackles the case 
Aj(t, x) = Aj(x) for all (t, x1, x2) ∈ R1+2 and j = 0, 1, 2. Observe that (1.2) can reduce to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δu + ωu + A0u +

2∑
j=1

A2
ju = f(x, u),

∂1A2 − ∂2A1 = −1
2 |u|

2,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

(1.5)

where f(x, t) = g(x, |t|2)t for every (x, t) ∈ R2 ×R.
Suppose Aj satisfies the Coulomb gauge condition 

∑2
j=0 ∂jAj = 0, then (1.5) becomes a special case of 

the original CSS equation (1.1), namely

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δu + ωu + A0u +

2∑
j=1

A2
ju = f(x, u),

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
∂1A2 − ∂2A1 = −1

2 |u|
2, ∂1A1 + ∂2A2 = 0.

(1.6)

By using some elementary calculations, one can obtain the explicit expression for Aj. On the one hand, 
combining ∂1A0 = A2|u|2 and ∂2A0 = −A1|u|2 in (1.6), it holds that

ΔA0 = ∂1
(
A2|u|2

)
− ∂2
(
A1|u|2

)
,

and so

A0[u](x) = x1

2π|x|2 ∗
(
A2|u|2

)
− x2

2π|x|2 ∗
(
A1|u|2

)
. (1.7)

On the other hand, we are derived from ∂1A2 − ∂2A1 = −1
2 |u|2 and ∂1A1 + ∂2A2 = 0 in (1.6) that

ΔA1 = ∂2

(
|u|2
2

)
and ΔA2 = −∂1

(
|u|2
2

)
.

As a consequence, the components Aj for j = 1, 2 in (1.6) can be represented as
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1[u](x) = x2

2π|x|2 ∗
(
|u|2
2

)
= − 1

4π

∫
R2

(x2 − y2)u2(y)
|x− y|2 dy,

A2[u](x) = − x1

2π|x|2 ∗
(
|u|2
2

)
= 1

4π

∫
R2

(x1 − y1)u2(y)
|x− y|2 dy.

(1.8)

In the sequel, we shall write Aj in place of Aj [u] for j ∈ {0, 1, 2} for simplicity as long as there is no 
misunderstanding. There are some further properties of Aj for j ∈ {0, 1, 2} in Section 2 below.

In [19], Huh initially contemplated the system (1.6) with f(x, t) = |t|p−2t and p > 6, where the existence 
of infinitely many solutions was investigated. Afterwards, the existence, nonexistence and multiplicity of 
nontrivial solutions for (1.5) and its variants have been considerably studied by a lot of mathematicians, 
see [11,19,25,27,42,43,45,47] and the references therein for example even if these references are far to be 
exhaustive.

We have to note that the spatial dimension of Eq. (1.1) is very special, as for bounded domains Ω ⊂ R2, 
the corresponding Sobolev embedding yields H1

0 (Ω) ↪→ Lq(Ω) for all q ≥ 1, while H1
0 (Ω) 	↪→ L∞(Ω). Loosely 

speaking, to get rid of the obstacle in this limiting case, the well-known Trudinger-Moser inequality [34,35,46]
would be a candidate as the suitable substitute of the Sobolev inequality. Firstly, we shall introduce the 
case bounded domain Ω instead of the whole space R2. The authors in [34,35,46] established the following 
sharp maximal exponential integrability for functions in H1

0 (Ω):

sup
u∈H1

0 (Ω):‖∇u‖L2(Ω)≤1

∫
Ω

eαu
2
dx ≤ C|Ω| if α < 4π, (1.9)

where the constant C = C(α) > 0 and |Ω| stands for the Lebesgue measure of Ω. Subsequently, Lions [29]
developed the concentration-compactness principle in the Trudinger-Moser inequality sense: Let (un) be a 
sequence of functions in H1

0 (Ω) with ‖∇un‖L2(Ω) = 1 such that un ⇀ u0 weakly in H1
0 (Ω), there holds

sup
n∈N

∫
Ω

e4πpu2
ndx < +∞, ∀p <

1
1 − ‖∇u0‖2

L2(Ω)
. (1.10)

Unfortunately, the domains Ω ⊂ R2 satisfying |Ω| = ∞ yield the supremum in (1.9) to be infinite, and 
hence the Trudinger-Moser inequality is not available for the unbounded domains. As to the whole space R2, 
the authors in [7,9] established the following version of the Trudinger-Moser inequality: For all u ∈ H1(R2)
with ‖u‖L2(R2) ≤ M < +∞, there is a positive constant C = C(M, α) such that

sup
u∈H1(R2):‖∇u‖L2(R2)≤1

∫
R2

(
eαu

2 − 1
)
dx ≤ C if α < 4π. (1.11)

Souza and do Ó [13] extended the Lions’s concentration-compactness principle to R2: Let (un) be in 
W 1,2

0 (R2) with ‖un‖W 1,2
0 (R2) = 1 and suppose that un ⇀ u0 in W 1,2

0 (R2), there holds

sup
n∈N

∫
R2

(e4πpu2
n − 1)dx < ∞, ∀0 < p < pα0(u) � 1

1 − ‖u0‖2
W 1,2

0 (R2)
(1.12)

Let us quote the results in [2,12] and their references therein concerning some other generalizations, exten-
sions and applications of the Trudinger-Moser inequalities for bounded and unbounded domain.

Due to the Trudinger-Moser type inequality above, we shall say that a function f admits the critical 
exponential growth in the Trudinger-Moser sense at infinity. In fact, it is said that f possesses the critical 
exponential growth at infinity if there exists a constant α0 > 0 such that
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lim
t→+∞

|f(t)|
eαt2

=
{

0, ∀α > α0,

+∞, ∀α < α0.
(1.13)

The above definition was introduced by Adimurthi and Yadava in [1], see also de Figueiredo, Miyagaki and 
Ruf [12] for example.

1.2. Main results

Inspired by all the works above, particularly by [37,39,45], we shall be concerned with the existence and 
concentration results for system (1.1) with steep potential well. Since we are interested in positive solutions, 
without loss of generality, we suppose that f ∈ C0(R, R) vanishes in (−∞, 0) and satisfies the following 
conditions

(f1) f ∈ C0(R, R+) and f(z) = o(z3) as z → 0, where R+ = [0, +∞);
(f2) there are p ∈ (4,+∞) and μ̂ > 0 such that F (z) ≥ μ̂zp for all z ∈ R+, where F (z) =

∫ z
0 f(s)ds;

(f3) the map z �→ θf(z)z−2F (z)

z
6θ−2

θ

is nondecreasing on z ∈ (0, +∞), where θ ∈ (1, +∞) is a constant satisfying

θ ∈
{(

1, 2
6−p

)
, if 4 < p < 6,

(1,+∞), if 6 ≤ p < +∞.

The first main result in this paper can be stated as follows.

Theorem 1.1. Suppose (V1)-(V3) and (1.13) with (f1)-(f3) as well as the following conditions

(V4) V is weakly differentiable a.e. in R2 and the map t �→ t2(2θ−1)[2(θ− 1)V (tx) − (∇V (tx), tx)] is nonde-
creasing on t ∈ (0, +∞) as well as (θ− 1)V (x) ≥ |(∇V, x)| for all x ∈ R2, where θ > 1 comes from (f3)
and (·, ·) denotes the inner product in R2.

If in addition the constant μ̂ appearing in (f2) is sufficiently large, then there exists a Λ > 0 such that the 
system (1.1) admits at least one positive ground state solution for all λ > Λ.

As a counterpart of [37, Theorem 1.3], we also dispose of the concentrating behavior of the positive 
ground state solution uλ obtained in Theorem 1.1 when λ → +∞. More precisely, we are able to prove the 
following result.

Theorem 1.2. Under the assumptions of Theorem 1.1 and let (uλ) ⊂ Eλ be the ground state solutions of 
system (1.1) established in Theorem 1.1, then, up to a subsequence if necessary, uλ → u0 in H1(R2) as 
λ → +∞, where u0 ∈ H1(R2)\{0} is a ground state solution of the following Dirichlet boundary problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu + A0[u]u +
∑2

j=1 A
2
j [u]u = f(u) in Ω

∂1A2[u] − ∂2A1[u] = −1
2 |u|2 in Ω

∂1A1[u] + ∂2A2[u] = 0, A1[u]∂1u + A2[u]∂2u = 0 in Ω,

∂1A0[u] = A2[u]|u|2, ∂2A0[u] = −A1[u]|u|2 in Ω,

u = 0 on ∂Ω,

(1.14)

and, moreover, u0 = 0 in R2 \ Ω.
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We would like to highlight here that the result in Theorem 1.1 can be applied for the nonlinearity

f(t) =
{

μ̂tp, t ∈ [0, t0],
μ̂C0te

α0t
2
, t ∈ [t0,+∞),

and f(t) = 0 if t ≤ 0,

for some suitable constants t0 > 0 and C0 > 0. As to the potential V , we provide an example as follows

V (x) =
{

0, if |x| ≤ 1,
|x|θ−1, if |x| > 1.

Obviously, this example for V above is not sharp, but it reveals that the existence result in Theorem 1.1
seems reasonable.

Remark 1.3. The reader is invited to observe that the results explored in Theorems 1.1 and 1.2 can be 
regarded as some supplementaries and improvements to the counterparts in [37]. As a matter of fact, 
instead of the Nehari manifold constraint procedure adopted in the quoted paper, we heavily rely on the 
Nehari-Pohoz̆aev manifold constraint method and so there are some new challenges to overcome.

Remark 1.4. As far as we are concerned, there exist some other interesting questions for some further 
explorations. On the one hand, we all know that the assumption (f4) does not reveal the essential feature 
of the critical exponential growth (1.13) because it is a truly global one in the sense that f is p-superlinear 
growth at infinity and the parameter μ̂ must be large. If the constraint set Mλ defined in (3.1) below is 
a natural C1-manifold, then (f4) would be replaced by (f5) − (f6) which will be introduced later. On the 
other hand, the requirement (θ − 1)V (x) ≥ |(∇V, x)| for all x ∈ R2 in (V4) is too limited, but we have no 
idea how to remove it so far.

It should be pointed out that the assumptions on f and V required in Theorem 1.1 are somehow re-
strictive. It is natural to ask that whether the existence result remains true when (f3) and (V4) are absent. 
Thus, our next main result would exhibit an affirmative answer. To achieve it, we impose the assumptions 
on the nonlinearity f below.

(f4) there is a γ > 4 such that zf(z) − γF (z) ≥ 0 for all z ∈ R+;
(f5) there exist some constants t0 > 0, M0 > 0 and ϑ ∈ [0, 1) such that

0 < tϑF (t) ≤ M0f(t), ∀t > t0;

(f6) lim
t→+∞

F (t)e−α0t
2 � β0 > 0, where α0 > 0 comes from (1.13).

Theorem 1.5. Suppose (V1)-(V3), (1.13), (f1) and (f4) − (f6) as well as the following conditions

(V5) V is weakly differentiable a.e. in R2 and satisfiers the inequality

2V (x) + (∇V, x) ≥ 0 for all x ∈ R2.

Then there exists a Λ̂ > 0 such that (1.1) has at least one positive solution for all λ > Λ̂.

There is no doubt that the assumptions (f4) − (f6) and (V5) are more general than those (f2) − (f3) and 
(V4), respectively.
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Remark 1.6. It is worth mentioning here that we follow the approach adopted in [39] to conclude Theo-
rem 1.5. Nevertheless, one cannot simply repeat the approaches explored in [39, Therorem 1.4] to get the 
result. Explaining it clearly, in contrast to this quoted result, there are three main contributions:

(1) Firstly, the work space in this paper is unnecessary to be radially symmetric. Indeed, we consider a 
generalized CSS system which urges us take some more careful calculations;

(2) Secondly, the critical exponential growth (1.13) in the nonlinearity is involved and so we have to make 
some delicate analysis to restore the compactness;

(3) Last but not the least, we contemplate the so-called steep potential well λV in (1.1). Consequently, 
we prefer to believe that the methods proposed in this paper would further prompt some related studies on 
the Chern-Simons-Schrödinger equations.

Finally, it is very similar to Theorem 1.2 that we can derive the asymptotical behavior of the positive 
solutions obtained by Theorem 1.5. Because of the detailed proof of Theorem 1.2, we shall just exhibit this 
result without proof.

Corollary 1.7. Under the assumptions of Theorem 1.5 and let (uλ) ⊂ Eλ be the positive solutions of system 
(1.1) established in Theorem 1.5, then, up to a subsequence if necessary, uλ → u0 in H1(R2) as λ → +∞, 
where u0 ∈ H1(R2)\{0} is a positive solution of (1.14) and u0 = 0 in R2\Ω.

According to the best knowledge of us, although from the perspectives of Theorems 1.1, 1.2 and 1.5
themselves, one could find similar results on Chern-Simons-Schrödinger equation in recent literatures, see 
e.g. [37,39,45], we would like to stress here that this paper deals with a wider class of nonlinearities involving 
critical exponential growth. What’s more, due to the steep potential well, the techniques are not obvious 
to some extent. As one would observe later, some of particular barriers prevent us applying the variational 
method to prove the main results in a standard way.

The paper is organized as follows. In Section 2, we mainly introduce some preliminary results. In Sections 3
and 4, we show some crucial lemmas and exhibit the detailed proofs of Theorems 1.1, 1.2 and 1.5, respectively.

Notations. From now on until the end of this paper, otherwise mentioned explicitly, we will take advantage 
of the following notations:

• C, C1, C2, · · · denote any positive constant, whose value is not relevant and R+ � (0, +∞).
• Let (X, ‖ · ‖X) be a Banach space with dual space (X−1, ‖ · ‖X−1), and Ψ be functional on X.
• The (PS) sequence at a level c ∈ R ((PS)c sequence in short) corresponding to Φ means that Φ(xn) → c

and Φ′(xn) → 0 in X−1 as n → ∞, where {xn} ⊂ X.
• | · |p stands for the usual norm of the Lebesgue space Lp(R2) for all p ∈ [1, +∞].
• For any � > 0 and every x ∈ R2, B	(x) � {y ∈ R2 : |y − x| < �}.
• |Σ| stands for the Lebesgue measure of a Lebesgue measurable set Σ ⊂ R2.
• on(1) denotes the real sequences with on(1) → 0 as n → +∞.
• “→” and “⇀” stand for the strong and weak convergence in the related function spaces, respectively;

2. Variational framework and preliminaries

In this section, we are going to search for the variational structure for the main theorems and then exhibit 
some preliminary results which enable us to treat our problems variationally.
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2.1. Variational setting

First of all, we define the space

E �

⎧⎨⎩u ∈ H1(R2) :
∫
R2

V (x)u2dx < +∞

⎫⎬⎭ .

By using (V1), it would be simple to conclude that the space is a Hilbert space equipped with the inner 
product and norm

(u, v)E =
∫
R2

[∇u∇v + V (x)uv] dx and ‖u‖E =

⎛⎝∫
R2

|∇u|2 + V (x)u2dx

⎞⎠
1
2

for each u, v ∈ E. Particularly, one can deduce that the embedding E ↪→ H1(R2) is continuous. Indeed, it 
follows from (V2) that ∫

R2\Σ

u2dx ≤ 1
b

∫
R2\Σ

V (x)u2dx ≤ 1
b

∫
R2

V (x)u2dx, ∀u ∈ H1(R2). (2.1)

On the other hand, we recall the celebrated Gagliardo-Nirenberg inequality:

|u|rr ≤ κGN|∇u|r−2
2 |u|22, ∀u ∈ H1(R2), 2 < r < +∞, (2.2)

where κGN > 0 is a constant. Combining (2.2) with r = 4 and the Young inequality,

∫
Σ

|u|2dx ≤ |Σ| 12

⎛⎝∫
Σ

|u|4dx

⎞⎠
1
2

≤ |Σ| 12

⎛⎝∫
R2

|u|4dx

⎞⎠
1
2

≤ |Σ| 12κ
1
2
GN

⎛⎝∫
R2

|∇u|2dx

⎞⎠
1
2
⎛⎝∫
R2

|u|2dx

⎞⎠
1
2

≤ 1
2 |Σ|κGN

∫
R2

|∇u|2dx + 1
2

∫
R2

|u|2dx, ∀u ∈ H1(R2). (2.3)

As a consequence of (2.1) and (2.3), it holds that∫
R2

u2dx ≤ max
{

2
b
, |Σ|κGN

}
‖u‖2

E , ∀u ∈ H1(R2),

showing that the embedding E ↪→ H1(R2) is continuous. So, there exists a constant dr > 0 such that

|u|r ≤ dr‖u‖E , ∀u ∈ E and 2 ≤ r < +∞. (2.4)

For any λ > 0, define the Hilbert space Eλ � (E, ‖ · ‖Eλ
) with inner product and norm given by

(u, v)Eλ
=
∫

[∇u∇v + λV (x)uv] dx and ‖u‖Eλ
=

⎛⎝∫ [|∇u|2 + λV (x)|u|2
]
dx

⎞⎠
1
2

R2 R2
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for all u, v ∈ E. Obviously, if λ ≥ 1, one sees ‖u‖E ≤ ‖u‖Eλ
for all u ∈ E. Using (V2) again,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Σ

|u|2dx ≤ |Σ|κGN|∇u|22 ≤ |Σ|κGN‖u‖2
Eλ

,∫
R2\Σ

|u|2dx ≤ 1
λb

∫
R2\Σ

λV (x)|u|2dx ≤ 1
λb

∫
R2

λV (x)|u|2dx ≤ 1
λb

‖u‖2
Eλ

.

From which, for any r ∈ (2, +∞), there holds

∫
R3

|u|rdx ≤
∫
R2

|u|2dx

⎛⎝∫
R2

|∇u|2dx

⎞⎠
r−2
2

≤ max
{
|Σ|κGN,

1
λb

}
‖u‖rEλ

Hence, for all r ∈ (2, +∞), we reach

|u|r ≤ r
√

|Σ|κGN‖u‖Eλ
whenever λ ≥ b−1|Σ|κGN � Λ0. (2.5)

When the work space Eλ is built, we turn to investigate the variational structure of system (1.1). For this 
purpose, we have to focus on the Chern-Simons term in (1.1). To begin with, there exist some meaningful 
observations. According to the second equation and the last two equations in (1.1), for all u ∈ E, one has∫

R2

A0|u|2dx = 2
∫
R2

A0(∂2A1 − ∂1A2)dx

= 2
∫
R2

(A2∂1A0 −A1∂2A0)dx = 2
∫
R2

(A2
1 + A2

2)|u|2dx.
(2.6)

As a by-product of the well-known Hardy-Littlewood-Sobolev inequality [28, Theorem 4.3], we could 
conclude the following estimates to the gauge fields Aj for j ∈ {0, 1, 2}.

Lemma 2.1. (see [19, Propositions 4.2-4.3]) Assume 1 < r < 2 and 1
r − 1

r̂ = 1
2 , then

|Aj |r̂ ≤ Cr|u|22r for j = 1, 2, |A0|r̂ ≤ Cr|u|22r|u|24,

where Cr > 0 is a constant dependent of r.

Combining (2.5) and Lemma 2.1, for all λ > Λ0, one easily sees that

|Aju|2 ≤ |Aj |r̂|u| r
r−1

≤ Cr|u|22r|u| r
r−1

≤ C̄r‖u‖3
Eλ

, for j = 1, 2, (2.7)

because 2r > 2 and r/(r − 1) > 2, where C̄r > 0 is independent of λ > Λ0. We also need the following 
Brézis-Lieb type lemma for the Chern-Simons term.

Lemma 2.2. (see [17, Lemma 2.4]) If un ⇀ u in H1(R2) and un → u a.e. in R2 as n → ∞, then one has 
Aj [un] → Aj [u] a.e. for j = 1, 2,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
n→∞

∫
R2

A0[un]unψdx =
∫
R2

A0[u]uψdx, ∀ψ ∈ H1(R2),

lim
n→∞

∫
A2

j [un]unψdx =
∫

A2
j [u]uψdx, ∀ψ ∈ H1(R2) with j = 1, 2,

(2.8)
R2 R2
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and

lim
n→∞

∫
R2

[
A2

j [un]|un|2 −A2
j [un − u]|un − u|2

]
dx =

∫
R2

A2
j [u]|u|2dx, for j = 1, 2. (2.9)

Now, we are able to verify that the variational functional Iλ : Eλ → R defined by

Iλ(u) = 1
2

∫
R2

[|∇u|2 + λV (x)u2]dx + 1
2

∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx−

∫
R2

F (u)dx

is well-defined and of class C1(Eλ, R). Actually, due to (1.13) and (f1), for all ε > 0 and α > α0, there is a 
constant Cε > 0 such that

|f(s)| ≤ ε|s| + Cε|s|q−1(eαs
2 − 1), ∀s ∈ R, (2.10)

where q > 2 can be arbitrarily chosen later. By adopting (f3), or (f4), there holds

|F (s)| ≤ ε|s|2 + Cε|s|q(eαs
2 − 1), ∀s ∈ R. (2.11)

Moreover, without mentioned any longer, let us exploit directly the following inequality (see e.g. [48, Lemma 
2.1]):

(eαs
2 − 1)m ≤ (eαms2 − 1), ∀s ∈ R, α > 0 and m > 1.

With (2.10) and (2.11) in hands, together with (1.11), we could proceed as the calculations in [39,41] to 
deduce that the variational functional Iλ associated with (1.1) is well-defined and belongs to C1(Eλ, R) such 
that

I ′λ(u)(v) =
∫
R2

[
∇u∇v + λV (x)uv + (A2

1[u] + A2
2[u] + A0[u])uv

]
dx−

∫
R2

f(u)vdx

In particular, it follows from (2.6) that

I ′λ(u)(u) =
∫
R2

[|∇u|2 + λV (x)u2]dx + 3
∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx−

∫
R2

f(u)udx

2.2. Basic lemmas

Due to the above discussions, any (weak) solution of Eq. (1.1) corresponds to a critical point of Iλ. In 
order to search for critical points of Iλ, we introduce the following results.

Lemma 2.3. If f satisfies (1.13) and (f1). Let (un) ⊂ H1(R2) require |∇u|22 < 4π
α0

and |u|22 ≤ M0 for some 
M0 ∈ (0, +∞). Assume un ⇀ u in H1(R2) and un → u a.e. in R2, then, up to subsequences,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
n→∞

∫
R2

[F (un) − F (un − u)] dx =
∫
R2

F (u)dx,

lim
n→∞

∫
R2

[f(un)un − f(un − u)(un − u)] dx =
∫
R2

f(u)udx.
(2.12)

Proof. Thanks to (1.11), the proof is standard and we omit the details. �
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Lemma 2.4. If f satisfies (1.13) and (f1) as well as (f4) − (f5). Suppose there is a sequence (un) ⊂ Eλ such 
that un ⇀ u in Eλ and un → u a.e. in R2. If in addition we assume that

sup
n∈N

∫
R2

f(un)undx ≤ K0 (2.13)

for some K0 ∈ (0, +∞) independent of n ∈ N, then, going to a subsequence if necessary,

lim
n→∞

∫
K

F (un)dx =
∫
K

F (u)dx for any compact set K ⊂ R2. (2.14)

Moreover, passing to a subsequence if necessary, there holds

lim
n→∞

∫
R2

f(un)ψdx =
∫
R2

f(u)ψdx for all ψ ∈ C∞
0 (R2). (2.15)

Proof. We follow the essential ideas adopted in [12, Lemma 2.1] and so omit the details. �
It is similar to the proof of [42, Lemma A.1] that we can derive the following lemma.

Lemma 2.5. (Pohoz̆aev identity) Let u ∈ Eλ be a critical point of the functional Iλ, then the identity 
Pλ(u) ≡ 0 holds true, where the functional Pλ : Eλ → R is defined by

Pλ(u) � 1
2

∫
R2

λ [2V (x) + (∇V, x)]u2dx + 2
∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx− 2

∫
R2

F (u)dx.

We conclude this section by the following two lemmas developed by P.-L. Lions [29].

Lemma 2.6. Let (ρn) ⊂ L1(R2) be a bounded sequence and ρn ≥ 0, then there exists a subsequence, still 
denoted by ρn, such that one of the following two possibilities occurs:

(i) (Vanishing) lim
n→∞

sup
y∈R2

∫
B�(y) ρndx = 0 for all � > 0;

(ii) (Non-Vanishing) there are τ > 0 and � < +∞ such that

lim
n→∞

sup
y∈R2

∫
B�(y)

ρndx = τ.

Lemma 2.7. Suppose that {un} is bounded in L2(R2) and {|∇un|} is bounded in L2(R2) as well as

lim
n→∞

sup
y∈R2

∫
B�(y)

|un|2dx = 0.

Then un → 0 in Ls(R2) for s ∈ (2, +∞).
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3. Some technical lemmas

3.1. The constraint manifold method

In this Subsection, we focus on the constraint manifold method for (1.1). First of all, to search for a 
ground state solution, let us consider the following minimization problem

mλ � inf
u∈Mλ

Iλ(u), (3.1)

where Mλ = {u ∈ Eλ\(0) : Gλ(u) = 0} with the functional Gλ : Eλ → R defined by

Gλ(u) = θ

∫
R2

|∇u|2dx + 1
2

∫
R2

λ[2(θ − 1)V (x) − (∇V, x)]u2dx

+ (3θ − 2)
∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx−

∫
R2

[θf(u)u− 2F (u)]dx

Recalling the functional Pλ in Lemma 2.5, one sees that Gλ(u) = θI ′λ(u)(u) − Pλ(u) for all u ∈ Eλ. In 
other words, if u ∈ Eλ is a critical point of Iλ, then we are derived from Lemma 2.5 that Gλ(u) = 0. As a 
consequence, the set Mλ is a natural constraint and we then begin showing some properties for it and the 
minimization constant mλ.

Before exhibiting them, we need the following elementary facts:

ξ1(t, x) � 1
2V (x) − t2(θ−1)

2 V (t−1x) − 1 − t6θ−4

2(6θ − 4) [2(θ − 1)V (x) − (∇V, x)] (3.2)

for all (t, x) ∈ (0, +∞) ×R2 and

ξ2(t, z) � 1 − t6θ−4

6θ − 4 [θf(z)z − 2F (z)] + t−2F (tθz) − F (z) (3.3)

for all (t, z) ∈ (0, +∞) ×R+.
Actually, it follows from (V4) that

∂

∂t
ξ1(t, x) = t6θ−5

2 [2(θ − 1)V (x) − (∇V, x)] − t2θ−3

2 [2(θ − 1)V (t−1x) − (∇V (t−1x), t−1x)]

= t6θ−5

2

{
[2(θ − 1)V (x) − (∇V, x)] − [2(θ − 1)V (t−1x) − (∇V (t−1x), t−1x)]

t2(2θ−1)

}
{

≤ 0, if t ∈ (0, 1],
≥ 0, if t ∈ [1,+∞).

Hence, the function t �→ ξ1(t, x) is decreasing on (0, 1) and increasing on (1, +∞) for all x ∈ R2 which 
indicate that ξ1(t, x) ≥ min

t>0
ξ1(t, x) = ξ1(1, x) = 0 for all (t, x) × (0, +∞) ∈ R2. Similarly, we are able to 

apply (f3) to derive

∂

∂t
ξ2(t, z) = t−3[θf(tθu)tθu− 2F (tθu)] − t6θ−5[θf(u)u− 2F (u)]

= t6θ−5u
6θ−2

θ

{
[θf(tθu)tθu− 2F (tθu)]

θ
6θ−2

θ

− [θf(u)u− 2F (u)]
6θ−2

θ

}

(t u) u
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{
≤ 0, if t ∈ (0, 1],
≥ 0, if t ∈ [1,+∞).

It therefore reveals that ξ2(t, z) ≥ min
t>0

ξ2(t, z) = ξ2(1, z) = 0 for all (t, z) × (0, +∞) ∈ R+.

Lemma 3.1. Assume (V1) − (V3) with (V4) and (1.13) with (f1) − (f3), then for any nonzero u ∈ Eλ, there is 
a unique t̄ = t̄(u) > 0 such that ut̄ = t̄θu(t̄·) ∈ Mλ for all λ > Λ0, where Iλ(ut̄) = max

t>0
Iλ(ut). In particular, 

there holds

mλ = dλ � inf
u∈Eλ\(0)

max
t>0

Iλ(ut).

Proof. For any u ∈ Eλ\(0) and t > 0, we define τ(t) = Iλ(ut), where

τ(t) = t2θ

2

∫
R2

|∇u|2dx + t2(θ−1)

2

∫
R2

λV (t−1x)u2dx + t6θ−4

2

∫
R2

[A2
1(u) + A2

2(u)]u2dx

− t−2
∫
R2

F (tθu)dx

It is simple to observe that

τ ′(t) = 0 ⇐⇒ t−1Gλ(ut) = 0 ⇐⇒ Gλ(ut) = 0 ⇐⇒ ut ∈ Mλ.

Since θ > 1 in (f3) and lim
t→0+

t−4θF (tθz) = 0 for all z ∈ R by (f1), we can derive lim
t→0+

τ(t) > 0. Without 
loss of generality, we are assuming that 0 ∈ Ω in (V3) and thus lim

t→+∞

∫
R3 λV (t−1x)u2dx = 0. Adopting 

pθ > 6θ − 2 in (f3) and (f2), it holds that lim
t→+∞

τ(t) = −∞. As a consequence, with the above two facts 
in hands, we take advantage of (f1) and (f2) to demonstrate that τ(t) possesses a critical point which 
corresponds to its maximum, that is, there exists a constant t̄ > 0 such that τ ′(t̄) = 0. We next verify that 
t̄ is unique. Arguing it indirectly, we would assume that there exist two constants t1, t2 > 0 with t1 	= t2
such that uti ∈ Mλ for i ∈ {1, 2}. It concludes from some elementary computations that

Iλ(ut1) − Iλ(ut2) −
t6θ−4
1 − t6θ−4

2

(6θ − 4)t6θ−4
1

Gλ(ut1)

= ξ0

(
t2
t1

)∫
R2

|∇u|2dx + t
2(θ−1)
1

2

∫
R2

λξ1

(
t2
t1
, t−1

1 x

)
u2dx + t−2

1

∫
R2

ξ2

(
t2
t1
, t1u

)
dx

and

Iλ(ut2) − Iλ(ut1) −
t6θ−4
2 − t6θ−4

1

(6θ − 4)t6θ−4
2

Gλ(ut2)

= ξ0

(
t1
t2

)∫
R2

|∇u|2dx + t
2(θ−1)
2

2

∫
R2

λξ1

(
t1
t2
, t−1

2 x

)
u2dx + t−2

2

∫
R2

ξ2

(
t1
t2
, t2u

)
dx,

where

ξ0(t) � 1 − t2θ − θ(1 − t6θ−4) = 2(θ − 1) − (3θ − 2)t2θ + θt6θ−4
≥ 0, ∀t ∈ (0,+∞).
2 6θ − 4 6θ − 4
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In view of (3.2) and (3.3), combining the above two formulas with Gλ(uti) = 0 for i ∈ {1, 2}, we arrive at a 
contradiction if t1 	= t2. Finally, the result dλ ≤ mλ is a direct consequence of the inequality

Iλ(u) − Iλ(ut) −
1 − t6θ−4

6θ − 4 Gλ(u) ≥ 0, ∀u ∈ Eλ and t > 0, (3.4)

we immediately finish the proof of this lemma. �
According to Lemma 3.1, we know that Mλ is a nonempty set for some suitably large λ > 0. The following 

lemma ensures that the minimization constant mλ would be well-defined. More precisely, we further show 
that mλ is uniformly bounded from below and above by some positive constants which are independent of 
some suitably large λ > 0.

Lemma 3.2. Assume (V1) − (V3) with (V4) and (1.13) with (f1) − (f3), then there is a ρ > 0 independent of 
λ > Λ0 such that

inf
λ>Λ0

mλ ≥ ρ. (3.5)

If in addition the constant μ̂ in (f2) satisfies

μ̂ > max
{
p(3θ − 2)A

pθ−2
6θ−4

(pθ − 2)B

(
pθ − 6θ + 2
2m∗(pθ − 2)

) pθ−6θ+2
6θ−4

,
pθA

pθ−2
2θ

(pθ − 2)B

(
pθ − 2θ − 2
2m∗(pθ − 2)

) pθ−2θ−2
2θ
}

with A �
∫
R2

{
|∇ψ|2 + [A2

1(ψ) + A2
2(ψ)]ψ2} dx and B �

∫
R2 |ψ|pdx, where ψ ∈ C∞

0 (R2) is a cutoff function 
independent of λ, then

sup
λ>Λ0

mλ < m∗ � 4πmax{4(θ − 1), 2θ − 1})
2α0(6θ − 4) . (3.6)

Proof. On the one hand, let t → 0+ in (3.3), it holds that

θf(z)z − (6θ − 2)F (z) ≥ 0, ∀z ∈ R+.

Then, for all u ∈ Eλ, we depend on (θ − 1)V (x) ≥ |(∇V, x)| for all x ∈ R2 in (V4) to reach

Iλ(u) = Iλ(u) − 1
6θ − 4Gλ(u)

= θ − 1
3θ − 2

∫
R2

|∇u|2dx + 1
2(6θ − 4)

∫
R2

λ[2(2θ − 1)V (x) + (∇V, x)]u2dx

+ 1
6θ − 4

∫
R2

[θf(u)u− (6θ − 2)F (u)]dx

≥ θ − 1
3θ − 2

∫
R2

|∇u|2dx + 2θ − 1
2(6θ − 4)

∫
R2

λV (x)u2dx ≥ max{4(θ − 1), 2θ − 1}
2(6θ − 4) ‖u‖2

Eλ
(3.7)

implying that mλ ≥ 0 for all λ > Λ0. If mλ = 0, then there exists a sequence (un) ⊂ Mλ such that 
‖un‖2

Eλ
→ 0. Denoting vn = un/‖un‖Eλ

, then one simply has that |∇vn|22 ≤ 1 and |vn|22 ≤ M0 ∈ (0, +∞)
for some M0 independent of λ > Λ0 and n ∈ N. Thus, using (1.11) and (2.10), we obtain
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∫
R2

f(un)undx ≤ ε|un|22 + Cε

⎛⎝∫
R2

|un|2qdx

⎞⎠
1
2
⎛⎝∫
R2

(e2α‖un‖2
Eλ

v2
n − 1)dx

⎞⎠
1
2

≤ θ − 1
2 ‖un‖2

Eλ
+ Cθ‖un‖qEλ

.

Since (un) ⊂ Mλ which is Gλ(un) = 0, we deduce that ‖un‖Eλ
≥
(

θ−1
4Cθ

) 1
q−2 by (θ− 1)V (x) ≥ |(∇V, x)| for 

all x ∈ R2 in (V4), a contradiction. So, we have that mλ > 0 for all λ > Λ0. If inf
λ>Λ0

mλ = 0, then there is a 

sequence (λn) ⊂ (Λ0, +∞) such that mλn
→ 0. Owing to (3.7), we can search for a sequence (uλn

) ⊂ Mλn

such that ‖uλn
‖Eλn

→ 0. Arguing as before, we obtain the same contradiction. Thus, we have inf
λ>Λ0

mλ > 0
finishing the verification of (3.5).

On the other hand, we begin verifying (3.6). Without loss of generality, we are assuming that 0 ∈ Ω. 
Because Ω is an open subset of R3, it holds that Br0(0) ⊂ Ω for some r0 > 0. Given a constant r̂0 > 0 which 
will be determined later, we choose a cutoff function ψ ∈ C∞

0 (R2) in such a way that ψ(x) ≡ 1 if |x| ≤ r̂0
and ψ(x) ≡ 0 if |x| ≥ 2r̂0. Due to Lemma 3.1 and (3.5), there is a t0 > 0 which is independent of λ > Λ0
such that

0 < inf
λ>Λ0

mλ ≤ max
θ>0

Iλ(ψt) = Iλ(ψt0).

Letting r̂0 = 1
2 t0r0, then∫

R3

V (t−1
0 x)ψ2dx =

∫
Bt0r0 (0)

V (t−1
0 x)ψ2dx +

∫
R2\Bt0r0 (0)

V (t−1
0 x)ψ2dx = 0

from where it follows that

Iλ(ψt0) = t2θ0
2

∫
R2

|∇ψ|2dx + t6θ−4
0
2

∫
R2

[A2
1(ψ) + A2

2(ψ)]ψ2dx− t−2
0

∫
R2

F (tθ0ψ)dx.

Clearly, the proof of (3.6) would be done if Iλ(ψt0) < m∗. Since pθ > 6θ − 2, then

max
t>1

⎧⎨⎩ t2θ

2

∫
R2

|∇ψ|2dx + t6θ−4

2

∫
R2

[A2
1(ψ) + A2

2(ψ)]ψ2dx− μ̂tpθ−2

p

∫
R2

|ψ|pdx

⎫⎬⎭
≤ max

t>0

⎧⎨⎩ t6θ−4

2

∫
R2

{
|∇ψ|2 + [A2

1(ψ) + A2
2(ψ)]ψ2} dx− μ̂tpθ−2

p

∫
R2

|ψ|pdx

⎫⎬⎭
= pθ − 6θ + 2

2(pθ − 2)

(
p(3θ − 2)A

pθ−2
6θ−4

μ̂(pθ − 2)B

) 6θ−4
pθ−6θ+2

< m∗

and

max
t∈(0,1)

⎧⎨⎩ t2θ

2

∫
R2

|∇ψ|2dx + t6θ−4

2

∫
R2

[A2
1(ψ) + A2

2(ψ)]ψ2dx− μ̂tpθ−2

p

∫
R2

|ψ|pdx

⎫⎬⎭
≤ max

t>0

⎧⎨⎩ t2θ

2

∫ {
|∇ψ|2 + [A2

1(ψ) + A2
2(ψ)]ψ2} dx− μ̂tpθ−2

p

∫
|ψ|pdx

⎫⎬⎭

R2 R2
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= pθ − 2θ − 2
2(pθ − 2)

(
pθA

pθ−2
2θ

μ̂(pθ − 2)B

) 2θ
pθ−2θ−2

< m∗.

As a consequence, it follows from (f2) that

Iλ(ψt0) ≤ max
t>0

⎧⎨⎩ t2θ

2

∫
R2

|∇ψ|2dx + t6θ−4

2

∫
R2

[A2
1(ψ) + A2

2(ψ)]ψ2dx− μ̂tpθ−2

p

∫
R2

|ψ|pdx

⎫⎬⎭ < m∗

finishing the proof of (3.6). The proof is completed. �
Lemma 3.3. Assume (V1) − (V3) with (V4) and (1.13) with (f1) − (f3). Let λ > Λ0 and (un) ⊂ Eλ be a 
minimizing sequence of mλ, then there exist r ∈ (2,+∞) and σ0 > 0, independent of λ, such that |un|r ≥ σ0, 
for all n ≥ 1.

Proof. First of all, we can make use of (3.6) and (3.7) to show that (un) is uniformly bounded in n ∈ N for 
all λ > Λ0. Let us divide the proof into intermediate steps.

Step I: Let λ > Λ0 and (un) ⊂ Eλ be a minimizing sequence of mλ, then there exist r ∈ (2,+∞) and 
σ = σ(λ) > 0 such that |un|r ≥ σ, for all n ≥ 1.

Otherwise, we can apply Lemmas 2.6 and 2.7 to have that un → 0 in Lr(R2) for each r ∈ (2,+∞). 
According to the boundedness of (un) in Eλ, we see that (un) is uniformly bounded in Lq(R2) for all 
q ∈ (2, +∞), too. As a consequence of (2.7), one simply arrives at

lim
n→∞

∫
R2

(
A2

1[un] + A2
2[un]

)
u2
ndx = 0. (3.8)

Since Jλ(un) = mλ + on(1) and (un) ⊂ Mλ, combining (3.6) and (3.7), it has that lim sup
n→∞

‖un‖2
Eλ

< 4π
α0

. 

Thereby, we shall choose α > α0 sufficiently close to α0 and ν′ > 1 sufficiently close to 1 in such a way that 
1
ν + 1

ν′ = 1 and

αν′‖un‖2
Eλ

< 4π(1 − ε) for some suitable ε ∈ (0, 1).

Setting ūn = un/‖un‖Eλ
, then (un) ⊂ H1(R2) and |∇ūn|22 < 1 as well as |ūn|22 ≤ M0 by (2.5), where 

M0 ∈ (0, +∞) is independent of λ > Λ0 and n ∈ N. It follows from (2.10) and the Holder’s inequality that

∫
R2

f(un)undx ≤ εM0 + Cε

∫
R2

|un|q(eαu
2
n − 1)dx

≤ εM0 + Cε

⎛⎝∫
R2

|un|qνdx

⎞⎠
1
ν
⎛⎝∫
R2

(e4π(1−ε)ū2
n − 1)dx

⎞⎠
1
ν′

.

In view of (1.11), we obtain 
∫
R2 f(un)undx → 0 by letting n → ∞ and then tending ε → 0. With this fact, 

we exploit (V4) and Gλ(un) = 0 to reach ‖un‖Eλ
→ 0. Due to (3.8), the above discussions permit us to 

conclude that mλ = lim
n→∞

Iλ(un) = 0 which is impossible because of (3.5). This step is done.

Step II: Conclusion.
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Let r ∈ (2,+∞) be as in Step I. Suppose by contradiction that the uniform control from below of Lr(R2)-
norm is false. Then, for every k ∈ N, k 	= 0, there exist λk > Λ0 and a minimizing sequence (uk,n) of mλk

such that

|uk,n|r <
1
k
, definitely.

Then, by a diagonalization argument, for any k ≥ 1, we can find an increasing sequence (nk) in N and 
unk

∈ Eλnk
such that

unk
∈ Mλk

, Jnk
(unk

) = mλnk
+ ok(1), |unk

|r = ok(1),

where ok(1) is a positive quantity which goes to zero as k → +∞. Then, we are able to arrive at a same 
contradiction in the Step I with (3.6), again. The proof is completed. �
Lemma 3.4. Assume (V1) − (V3) with (V4) and (1.13) with (f1) − (f3), then there is a Λ > 0 such that mλ

can be attained for all λ > Λ.

Proof. Let (un) ⊂ Mλ be a sequence satisfying Iλ(un) → mλ as n → ∞. First of all, we are derived from 
(3.6) and (3.7) that (un) is uniformly bounded in Eλ for all λ > Λ0. Passing to a subsequence if necessary, 
there is a function u ∈ Eλ such that un ⇀ u in Eλ, un → u in Lq

loc(R2) for all 2 < q < +∞ and un → u

a.e. in R2.
Secondly, we shall find a suitable large Λ > 0 such that u 	= 0 for all λ > Λ. Owing to the above 

discussions, we know that ‖un‖2
Eλ

≤ C∗ for a suitable C∗ > 0, for any n ≥ 1 and λ > Λ0. Let r > 2 and 
σ0 > 0 be given as in Lemma 3.3, recalling (V3), there is a sufficiently large constant R > 1 such that,∫

Bc
R

(0)∩Σ

|un|rdx ≤ σ0

4 , for all λ > Λ0 and for all n ≥ 1. (3.9)

Since V (x) ≥ b on Σc by (V3), we have∫
Bc

R
(0)∩Σc

|un|2dx ≤ 1
λb

∫
Bc

R
(0)∩Σc

λV (x)|un|2dx ≤ C∗

λb

It easily infers that

∫
Bc

R
(0)∩Σc

|un|rdx ≤

⎛⎜⎝ ∫
Bc

R
(0)∩Σc

|un|2dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫
Bc

R
(0)∩Σc

|un|2(r−1)dx

⎞⎟⎠
1
2

,

and so one can find a Λ > Λ0 such that∫
Bc

R
(0)∩Σc

|un|rdx ≤ σ0

4 , for all λ > Λ and for all n ≥ 1. (3.10)

Finally, we fix λ > Λ0, if un ⇀ u ≡ 0, we can deduce that∫
|un|rdx ≤ σ0

4 , for all n sufficiently large. (3.11)

BR(0)
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Clearly, (3.9), (3.10) and (3.11) are in contradictions with Lemma 3.3.
Finally, we conclude that un → u along a subsequence as n → ∞ for every λ > Λ. Taking (3.6) and 

(3.7) into account again, it holds that sup
n∈N

‖un‖2
Eλ

< 4π
α0

. Define wn � un − u, then we are able to apply 

(2.8)-(2.9) and (2.12) to derive

lim
n→∞

Iλ(wn) = lim
n→∞

[
Iλ(un) − Iλ(u)

]
= mλ − Iλ(u) (3.12)

and

lim
n→∞

Gλ(wn) = lim
n→∞

[
Gλ(un) −Gλ(u)

]
= −Gλ(u). (3.13)

We claim that Gλ(u) ≤ 0. Otherwise, it has that lim
n→∞

Gλ(wn) < 0 by (3.13). Without loss of generality, 
we are assuming that Gλ(wn) < 0 for all n ∈ N. From which, one knows that wn 	= 0 and so Lemma 3.1
permits us to determine a tn > 0 such that Gλ((wn)tn) = 0. Combining (3.4) and (3.12)-(3.13),

mλ − Iλ(u) + 1
6θ − 4Gλ(u) = lim

n→∞

[
Iλ(wn) − 1

6θ − 4Gλ(wn)
]

≥ lim
n→∞

[
Iλ
(
(wn)tn

)
− t6θ−4

n

6θ − 4Gλ(wn)
]
> lim

n→∞
Iλ((wn)tn) ≥ mλ,

which gives that

Iλ(u) − 1
6θ − 4Gλ(u) < 0.

It is similar to (3.7) that we would get a contradiction. Hence, we have arrived at Gλ(u) ≤ 0. Adopting 
Lemma 3.1 again, there exists a t > 0 such that ut ∈ Mλ. Owing to (3.4) and the Fatou’s lemma,

mλ = lim
n→∞

Iλ(un) = lim
n→∞

[
Iλ(un) − 1

6θ − 4Gλ(un)
]
≥ Iλ(u) − 1

6θ − 4Gλ(u)

≥ Iλ(uθ) −
t6θ−4

6θ − 4Gλ(u) ≥ Iλ(ut) ≥ mλ,

which yields that un → u in Eλ. Consequently, Iλ(u) = mλ and Gλ(u) = 0. The proof is completed. �
3.2. The minimax argument

In this Subsection, we shall dispose of the minimax argument to find a positive solution for (1.1) with a 
wider class of V and f . Without (V4) and (f3), one could not take advantage of the minimization constraint 
manifold method explored in Section 3. Whereas, because of (f4), it seems impossible to prove that the 
(PS) sequence is uniformly bounded. As a consequence, we shall depend on an indirect approach developed 
by Jeanjean [23].

Proposition 3.5. (See [23, Theorem 1.1 and Lemma 2.3]) Let (X, ‖ · ‖) be a Banach space and T ⊂ R+ be 
an interval, consider a family of C1 functionals on X of the form

Φμ(u) = A(u) − μB(u), ∀μ ∈ T,

with B(u) ≥ 0 and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → +∞. Assume that there exists two points 
v1, v2 ∈ X such that



L. Shen, M. Squassina / J. Math. Anal. Appl. 543 (2025) 128926 19
cμ = inf
γ∈Γ

sup
θ∈[0,1]

Φμ(γ(θ)) > max{Φμ(v1),Φμ(v1)}, ∀μ ∈ T,

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every μ ∈ T , there is a sequence (un(μ)) ⊂ X such that

(a) (un(μ)) is bounded in X;
(b) Φμ(un(μ)) → cμ and Φ′

μ(un(μ)) → 0;
(c) the map μ → cμ is non-increasing and left continuous.

Letting T = [δ, 1], where δ ∈ (0, 1) is a positive constant. To apply Proposition 3.5, we will introduce a 
family of C1-functionals on X = Eλ with the form

Iλ,μ(u) = 1
2

∫
R2

[|∇u|2 + λV (x)u2]dx + 1
2

∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx− μ

∫
R3

F (u)dx. (3.14)

Define Iλ,μ(u) = A(u) − μB(u), where

A(u) = 1
2

∫
R2

[|∇u|2 + λV (x)u2]dx + 1
2

∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx → +∞ as ‖u‖Eλ

→ +∞,

and

B(u) =
∫
R2

F (u)dx ≥ 0.

Clearly, Iλ,μ is of class C1-functionals with

I ′λ,μ(u)(v) =
∫
R2

[
∇u∇v + λV (x)uv + (A2

1[u] + A2
2[u] + A0[u])uv

]
dx− μ

∫
R3

f(u)vdx

for all u, v ∈ Eλ.
For simplicity, from now on until the end of this section, we shall always suppose the assumptions in 

Theorem 1.5 when there is no misunderstanding.

Lemma 3.6. The functional Iλ,μ possesses a mountain-pass geometry, that is,

(a) there exists v ∈ Eλ \ {0} independent of μ such that Iλ,μ(v) ≤ 0 for all μ ∈ [δ, 1];
(b) cλ,μ � inf

η∈Γ
sup

θ∈[0,1]
Iλ,μ(γ(η)) > max{Iλ,μ(0), Iλ,μ(v)} for all μ ∈ [δ, 1], where

Γ = {η ∈ C([0, 1], Eλ) : η(0) = 0, η(1) = v}.

Proof. The proof is very similar to the calculations on showing the existence of critical points in the proof 
of Lemma 3.1, so we omit the details. �
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Next, we try to look for a uniform upper bound for cλ,μ with respect to λ. Because Ω = intV −1(0) is 
open, without loss of generality, we can suppose that 0 ∈ Ω and there exists a constant ρ0 > 0 such that 
Bρ0(0) ⊂ Ω. Motivated by [7,15,26,49], we introduce the Moser sequence defined by

w̄n(x) � 1√
2π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

log n, if 0 ≤ |x| ≤ ρ0
n ,

log( ρ0
|x| )√

logn
, if ρ0

n < |x| ≤ ρ0,

0, if |x| > ρ0.

It is easy to see that (w̄n) ⊂ Eλ. Moreover, thanks to [37, Lemma 3.5], we derive the following lemma.

Lemma 3.7. It holds that ‖w̄n‖Eλ
→ 1 and N(w̄n) �

∫
R2

(
A2

1[w̄n] + A2
2[w̄n]

)
w̄2

ndx → 0 as n → ∞.

Lemma 3.8. Let λ > Λ0, then there exists C̃ < 2π
α0

, independent of λ such that cλ,μ < C̃, ∀μ ∈ [δ, 1].

Proof. The essential idea comes from [37, Lemma 3.6], we exhibit the details for the sake of the reader’s 
convenience. Setting wn = w̄n/‖w̄n‖Eλ

, then ‖wn‖Eλ
≡ 1 and N(wn) = N(w̄n)/‖w̄n‖6

Eλ
→ 0 as n → ∞ by 

Lemma 3.7. Due to the definition of cλ,μ, to end with the proof, it is enough to show that there exists some 
n0 ∈ N such that

C̃ � max
t≥0

⎧⎨⎩ t2

2 + t6

2 N(wn0) − μ

∫
R2

F (twn0)dx

⎫⎬⎭ <
2π
α0

.

Indeed, it simply observes that

cλ ≤ max
t≥0

Jλ(twn0) ≤ max
t≥0

⎧⎨⎩ t2

2 + t6

2 N(wn0) − μ

∫
R2

F (twn0)dx

⎫⎬⎭ .

On the contrary, suppose that for all n ∈ N, there is a constant tn > 0 such that

t2n
2 + t6n

2 N(wn) − μ

∫
R2

F (tnwn)dx ≥ 2π
α0

(3.15)

and such that

t2n + 3t6nN(wn) = μ

∫
R2

f(tnwn)tnwndx. (3.16)

From (f5) and (f6), for all ε ∈ (0, β0), there exists a constant Rε = R(ε) > 0 such that

f(z)z ≥ M−1
0 (β0 − ε)tϑ+1eα0|t|2 , ∀z ≥ Rε.

Thanks to (3.15), {tn} is bounded below by some positive constant. For some sufficiently large n ∈ N, one 
knows that tnwn ≥ Rε on Bρ0/n(0). Then, on one hand, by (3.16) and (g1), we can obtain that

t2n + 3t6nN(wn) ≥ CM−1
0 μ(β0 − ε)

∫
B (0)

(tnwn)ϑ+1eα0|tnwn|2dx
ρ0/n
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≥ CM−1
0 μ(β0 − ε)tϑ+1

n

(
log n

2π‖w̄n‖2
Eλ

)ϑ+1
2

exp
(
α0t

2
n log n

2π‖w̄n‖2
Eλ

)
n−2 (3.17)

which, together with the fact that N(wn) ≤ C‖wn‖6
Eλ

≤ C < +∞, reveals that (tn) is uniformly bounded 
in n ∈ N. If not, we may assume that tn → +∞ and then

C log tn ≥ t2n

(
α0

2π‖w̄n‖2
Eλ

− 2
t2n

)
logn

which, together with Lemma 3.7, yields a contradiction. So, up to a subsequence if necessary, there exists 
a constant t0 ∈ (0, +∞) such that tn → t0.

On the other hand, by (3.15), we have t20 ≥ 4π/α0. Taking ε = β0/2 in (3.17), one has

(1 − ϑ) log t0 + o(1) ≥ C + C log(logn) + C

(
α0

2π t
2
0 − 2

)
log n + o(1) ≥ C + C log(log n) + o(1),

yields a contradiction if n ∈ N is sufficiently large. The proof is completed. �
Combining the arguments explored in Lemmas 3.6 and 3.8, there is a constant ρ̂ > 0 such that

ρ̂ ≤ inf
λ>Λ0

cλ,μ ≤ sup
λ>Λ0

cλ,μ <
2π
α0

, ∀μ ∈ [δ, 1]. (3.18)

Lemma 3.9. Let (un) be a bounded (PS) sequence of the functional Iλ,μ at the level c > 0, then for each 

M̂ ∈
(
c,

2π
α0

)
, there is a Λ̂ = Λ(M̂) > 0 such that (un) contains a strongly convergent subsequence in Eλ

for all λ > Λ̂.

Proof. Since (un) is bounded in Eλ, then there exists a u ∈ Eλ such that un ⇀ u in Eλ, un → u in Ls
loc(R2)

with s ∈ [1, +∞) and un → u a.e. in R2. To conclude the proof clearly, we shall split it into several steps:
Step 1: Define vn � un − u, then there exists a Λ̂ = Λ(M̂) > 0 such that vn → 0 in Lq(R2) for all 

q ∈ (2, +∞) along a subsequence as n → ∞ when λ > Λ̂.
Actually, since (vn) is uniformly bounded in n ∈ N for all λ > Λ0, then we have one of the following two 

possibilities for some r > 0: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) lim

n→∞
sup
y∈R2

∫
Br(y)

|vn|2dx > 0,

(ii) lim
n→∞

sup
y∈R2

∫
Br(y)

|vn|2dx = 0.

As a consequence, the conclusion would be clear if we could demonstrate that the case (i) cannot occur for 
sufficiently large λ > 0. Now, we suppose, by contradiction, that (i) was true. Proceeding as the very similar 
way in Lemma 3.4, there is a constant δ̂ > 0 independent of λ > Λ0 such that

lim
n→∞

sup
y∈R2

∫
Br(y)

|vn|2dx ≥ δ̂

for some r > 0. Since (un) is uniformly bounded in Eλ, without loss of generality, we can assume that 
lim ‖un‖2

E ≤ Θ for some Θ ∈ (0, +∞). Clearly, there holds lim ‖vn‖2
E ≤ 4Θ. Recalling vn → 0 in 
n→∞ λ n→∞ λ
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Lq
loc(R2) with q ∈ (2, +∞) and |AR| → 0 as R → +∞ by (V2), where AR � {x ∈ R2\BR(0) : V (x) < b}, 

we can determine a sufficiently large but fixed R > 0 to satisfy

lim sup
n→∞

∫
BR(0)

|vn|2dx <
δ̂

4 (3.19)

and

|AR| <
(

δ̂

16Θ

) q
q−2

(|Σ|κGN)−
2

q−2 . (3.20)

Combining (2.5) and (3.20), one sees that

lim sup
n→∞

∫
AR

|vn|2dx ≤ lim sup
n→∞

⎛⎝∫
AR

|vn|qdx

⎞⎠
2
q

|AR|
q−2
q ≤ 4Θ(|Σ|κGN)

2
q |AR|

q−2
q <

δ̂

4 . (3.21)

Let us choose Λ̂ = max
{

1,Λ0,
16Θ
δ̂b

}
, then for all λ > Λ̂, we reach

lim sup
n→∞

∫
BR

|vn|2dx ≤ lim sup
n→∞

1
λb

∫
BR

λV (x)|vn|2dx ≤ 4Θ
λb

<
δ̂

4 , (3.22)

where BR � {x ∈ R2\BR(0) : V (x) ≥ b}. We gather (3.19), (3.20) and (3.22) to derive

δ̂ ≤ lim
n→∞

sup
y∈R2

∫
Br(y)

|vn|2dx ≤ lim sup
n→∞

∫
R2

|vn|2dx

= lim sup
n→∞

⎛⎜⎝ ∫
R2\BR(0)

|vn|2dx +
∫

BR(0)

|vn|2dx

⎞⎟⎠ ≤ 3δ̂
4

which is impossible. The proof of this step is done.
Step 2: u 	= 0, I ′λ,μ(u) = 0 and Iλ,μ(u) ≥ 0.
We suppose, by contradiction, that u ≡ 0 and thus the Step 1 gives us that un → 0 in Lq(R2) for all 

q ∈ (2, +∞) when Λ > Λ̂. Since (un) is a bounded (PS) sequence of the functional Iλ,μ, we know that 
(2.13) holds true from some K0 ∈ (0, +∞), then (2.14) and (2.15) reveal that

lim
n→∞

∫
R2

F (un)dx = 0 and lim
n→∞

∫
R2

f(un)undx = 0. (3.23)

Moreover, we are derived from (2.7) that

lim
n→∞

∫
R2

(
A2

1[un] + A2
2[un]

)
u2
ndx = 0. (3.24)

As a consequence, according to Iλ,μ(un) = c + on(1) it holds that
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lim sup
n→∞

∫
R2

[|∇un|2 + λV (x)u2
n]dx = 2c < 4π

α0
.

Thereby, we shall choose α > α0 sufficiently close to α0 and ν′ > 1 sufficiently close to 1 in such a way that 
1
ν + 1

ν′ = 1 and

αν′|∇un|22 < 4π(1 − ε) for some suitable ε ∈ (0, 1).

Setting ūn =
√

αν′

4π(1−ε)un, then (un) ⊂ H1(R2) and |∇ūn|22 < 1 as well as |ūn|22 ≤ M0 by (2.5), where 

M0 ∈ (0, +∞) is independent of λ > Λ̂ and n ∈ N. It follows from (2.10) and the Holder’s inequality that∫
R2

f(un)undx ≤ εM0 + Cε

∫
R2

|un|q(eαu
2
n − 1)dx

≤ εM0 + Cε

⎛⎝∫
R2

|un|qνdx

⎞⎠
1
ν
⎛⎝∫
R2

(e4π(1−ε)ū2
n − 1)dx

⎞⎠
1
ν′

.

Recalling (1.11), we derive 
∫
R2 f(un)undx → 0 by letting n → ∞ and then tending ε → 0. Combining this 

fact and (3.23)-(3.24), we exploit I ′λ,μ(um) → 0 to obtain ‖un‖Eλ
→ 0. Consequently, one could observe 

that 0 < c = lim
n→∞

Iλ,μ(um) = 0 which is absurd. So, u 	= 0 holds true. As a direct consequence of (2.8) and 

(2.15) together with I ′λ,μ(un) → 0, one sees I ′λ,μ(u) = 0. It is very similar to Lemma 2.5 that Pλ,μ(u) = 0, 
where Pλ,μ : Eλ → R is given by

Pλ,μ(v) � 1
2

∫
R2

λ [2V (x) + (∇V, x)] v2dx + 2
∫
R2

(
A2

1[v] + A2
2[v]
)
v2dx− 2μ

∫
R2

F (v)dx.

Since I ′λ,μ(u)(u) = 0 and Pλ,μ(u) = 0, we apply (f4) and (V5) to obtain

Iλ,μ(u) = Iλ,μ(u) − 1
2I

′
λ,μn

(u)(u) + γ − 2
4 Pλ,μ(u)

= γ − 2
8

∫
R2

λ [2V (x) + (∇V, x)]u2dx + γ − 4
2

∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx

+ μ

2

∫
R2

[f(u)u− γF (u)] dx

≥ γ − 2
8

∫
R2

λ [2V (x) + (∇V, x)]u2dx + γ − 4
2

∫
R2

(
A2

1[u] + A2
2[u]
)
u2dx

implying that Iλ,μ(u) ≥ 0. The proof of this Step is done.
Step 3: Passing to a subsequence if necessary, un → u in Eλ as n → ∞.
By the Fatou’s lemma, there holds

0 < ‖u‖Eλ
≤ lim inf

n→∞
‖un‖Eλ

. (3.25)

Up to a subsequence if necessary, we define

vn � un

‖un‖Eλ

and v = u

lim ‖un‖Eλ

.

n→∞
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Obviously, 0 < ‖v‖Eλ
≤ 1 by (3.25). If ‖v‖Eλ

= 1, we deduce that ‖un‖Eλ
→ ‖u‖Eλ

which together with 
un ⇀ u in Eλ yields that un → u in Eλ. Hence, the proof is finished. Suppose that 0 < ‖v‖Eλ

< 1. In this 
situation, combining Steps 1-2, (2.7), (2.14) and the Fatou’s lemma, we obtain

4π
α0

> 2c ≥ 2[c− Iλ(u)] = lim sup
n→∞

(‖un‖2
Eλ

− ‖u‖2
Eλ

) = lim sup
n→∞

‖un‖2
Eλ

(
1 −
∥∥∥∥ u

‖un‖Eλ

∥∥∥∥2
Eλ

)

≥ (1 − ‖v‖2
Eλ

) lim sup
n→∞

‖un‖2
Eλ

which gives that

lim sup
n→∞

‖un‖2
Eλ

<
4π

α0(1 − ‖v‖2
Eλ

) .

Then, we would choose α > α0 sufficiently close to α0 and ν′ > 1 sufficiently close to 1 in such a way that 
1
v + 1

v′ = 1 and

αν′‖un‖2
Eλ

<
4π(1 − ε)
1 − ‖v‖2

Eλ

� 4πpε, for some suitable ε ∈ (0, 1),

where 0 < pε = (1 − ε)/(1 − ‖v‖2
Eλ

) < Pα0(v). So, by (1.12) and |un|2 = ‖un‖2
Eλ

|vn|2, we have that

sup
n∈N

∫
R2

(eαν
′|un|2 − 1)dx ≤ sup

n∈N

∫
R2

(e4πpε|vn|2 − 1)dx < +∞. (3.26)

To finish the proof, we claim that

∫
R2

f(un)(un − u)dx → 0. (3.27)

Indeed, since I ′λ,μ(un)(u − un) → 0, we apply the convexity of the functional J(u) � ‖u‖2
Eλ

2 to get

1
2‖u‖

2
Eλ

= J(u) ≥ J(un) + J ′(un)(u− un)

= 1
2‖un‖2

Eλ
+
∫
R2

[∇un∇(u− un) + λV (x)un(u− un)]dx

= 1
2‖un‖2

Eλ
+ I ′λ,μ(un)(u− un) − μ

∫
R2

f(un)(un − u)dx

−
∫
R2

(
A2

1[un] + A2
2[un] + A0[un]

)
un(u− un)dx

which gives that lim sup
n→∞

‖un‖2
Eλ

≤ ‖u‖2
Eλ

, where we have applied the Step 1 to (2.7). Hence, it reaches 

un → u in Eλ by Fatou’s lemma. The remainder is to verify the validity of (3.27). Actually, one could 
gather (2.10) and (3.26) jointly with the Step 1 to have that
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∫
R2

|f(un)(un − u)|dx ≤ ε|un|2|un − u|2 + Cε

∫
R2

|un − u||un|q−1(eαu
2
n − 1)dx

≤ ε|un|2|un − u|2 + Cε|un|q−1
qν

⎛⎝∫
R2

|un − u|qνdx

⎞⎠
1
qν
⎛⎝∫
R2

(eαν
′u2

n − 1)dx

⎞⎠
1
ν′

→ 0

by letting n → ∞ and then tending ε → 0. The proof is completed. �
4. Proof of main theorems

4.1. Proof of Theorem 1.1

The proof would be done if u obtained in Lemma 3.4 satisfies I ′λ(u) = 0 in E−1
λ . Motivated by [38], we 

argue it indirectly. If I ′λ(u) 	= 0, there exists a ϕ ∈ C∞
0 (R2) such that I ′λ(u)(ϕ) < −1. Let ε > 0 be small 

enough and satisfy

I ′λ(ut + τϕ)(ϕ) ≤ −1
2 , for |t− 1| + |τ | ≤ ε. (4.1)

Let χ ∈ C∞
0 (R, [0, 1]) be a cut-off function satisfying χ(t) ≡ 1 for every |t − 1| ≤ ε

2 and χ(t) ≡ 0 for all 
|t − 1| ≥ ε. For any t > 0, we define

η(t) �
{

ut, if |t− 1| ≥ ε,

ut + εχ(t)ϕ, if |t− 1| < ε.

Obviously, η ∈ C(Eλ) and one can fix ε > 0 sufficiently small such that ‖η(t)‖Eλ
> 0 for |t − 1| < ε. By 

(4.1), it is easy to show that

max
t>0

Iλ(η(t)) < mλ.

Proceeding as the proof of Lemma 3.1, we have Gλ(η(1 − ε)) > 0 and Gλ(η(1 + ε)) < 0. Since Gλ(η(t))
is continuous, there exists t0 ∈ (1 − ε, 1 + ε) such that Gλ(η(t0)) = 0 which is η(t0) ∈ Mλ. Therefore, 
mλ ≤ Iλ(η(t0)) ≤ max

t>0
Iλ(η(t)) < mλ, a contradiction. As to the positivity of u, it is standard and we omit 

it here. The proof is completed.

Next, we will deal with the concentrating behavior of ground state solutions obtained in Theorem 1.1. 
For any u ∈ H1

0 (Ω), we denote by ũ ∈ H1(R2) its trivial extension, namely

ũ �
{
u in Ω,

0 in Ωc = {x : x ∈ R3\Ω}.

For i ∈ {0, 1, 2}, we can define so Ai[ũ] as in (1.7) and (1.8). Observe, for example that∫
R2

(
A2

1[ũ] + A2
2[ũ]
)
|ũ|2dx =

∫
Ω

(
A2

1[ũ] + A2
2[ũ]
)
|u|2dx.

We now define I0|Ω : H1
0 (Ω) → R as
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I0|Ω(u) = 1
2

∫
Ω

[
|∇u|2 + (A2

1[ũ] + A2
2[ũ])|u|2

]
dx−

∫
Ω

F (u)dx

and consider the minimization problem

m0|Ω � inf
u∈M0|Ω

I0|Ω(u)

where

M0|Ω = {u ∈ H1
0 (Ω)\{0} : G0|Ω(u) = 0}

denotes the corresponding manifold and G0|Ω : H1
0 (Ω) → R is given by

G0|Ω(u) = θ

∫
Ω

|∇u|2dx + (3θ − 2)
∫
R2

(
A2

1[ũ] + A2
2[ũ]
)
u2dx−

∫
Ω

[θf(u)u− 2F (u)]dx

We note that, up to the above trivial extension, there holds that M0|Ω ⊂ Mλ for all λ > 0.
For each λ > Λ0, we denote by uλ ∈ Eλ a ground state solution of system (1.1), that is, I ′λ(uλ) = 0 and 

Iλ(uλ) = mλ. Then, we prove Theorem 1.2 as follows.

4.2. Proof of Theorem 1.2

Let λn → +∞ as n → +∞ and (uλn
) ⊂ Eλn

be a sequence of ground state solutions of system (1.1), 
that is, I ′λn

(uλn
) = 0 and Iλn

(uλn
) = mλn

. Up to a subsequence if necessary, by (3.5) and M0|Ω ⊂ Mλ, for 
all λ > 0,

0 < ρ ≤ lim
n→∞

Iλn
(uλn

) � m̃Ω ≤ m0|Ω < +∞. (4.2)

Clearly, (uλn
) is bounded in H1(R2). Thereby, up to a subsequence if necessary, there is a u0 ∈ Hs1(R2)

such that uλn
⇀ u0 in H1(R2) and uλn

→ u0 a.e. in R2. By means of (2.8) and (2.15), we conclude 
that I0|′Ω(u0) = 0. We claim that u0 ≡ 0 in Ωc. Otherwise, there is a compact subset Θu0 ⊂ Ωc with 
dist(Θu0 , ∂Ωc) > 0 such that u0 	= 0 on Θu0 and by Fatou’s lemma

lim inf
n→∞

∫
R2

u2
ndx ≥

∫
Θu0

u0
2dx > 0. (4.3)

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Θu0 by the assumptions (V1) and (V2). 
According to (4.2)-(4.3), we depend on a similar calculation in (3.7) to reach

cΩ ≥ 2θ − 1
2(6θ − 4) lim inf

n→∞

∫
R2

λnV (x)u2dx ≥ (2θ − 1)ε0

2(6θ − 4)

⎛⎝∫
Θu

u0
2dx

⎞⎠ lim inf
n→∞

λn = +∞,

a contradiction. Therefore, u0 ∈ H1
0 (Ω) by the fact that ∂Ω is smooth and I0|′Ω(u0) = 0. Similar to 

the proof of Lemma 3.4, one knows that u0 	= 0. Proceeding as the proof of Lemma 2.5, it holds that 
G0|Ω(u0) = Gλn

(ũ0) = 0. In view of (4.2), by u0 ∈ H1
0 (Ω), we use the Fatou’s lemma to obtain
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m0|Ω ≥ m̃Ω = lim inf
n→∞

[
Iλn

(uλn
) − 1

6θ − 4Gλn
(uλn

)
]

≥ I0|Ω(u0) −
1

6θ − 4G0|Ω(u0) = I0|Ω(u0) ≥ m0|Ω

yielding that uλn
→ u0 in H1(R2) and I0|Ω(u0) = m0|Ω. The proof is finished.

4.3. Proof of Theorem 1.5

Let us recall Proposition 3.5, Lemma 3.6 and Lemma 3.9, there exist two sequences (μn) ⊂ [δ, 1] and 
(un) ⊂ Eλ\{0} such that

I ′λ,μn
(un) = 0, Iλ,μn

(un) = cλ,μn
and μn → 1−. (4.4)

Since I ′λ,μn
(un) = 0, we are derived from a similar argument in Lemma 2.5 that Pλ,μn

(un) ≡ 0, where

Pλ,μn
(v) � 1

2

∫
R2

λ [2V (x) + (∇V, x)] v2dx + 2
∫
R2

(
A2

1[v] + A2
2[v]
)
v2dx− 2μn

∫
R2

F (v)dx, ∀v ∈ Eλ.

We claim that (un) is uniformly bounded in Eλ for every λ > Λ0. Actually, some elementary calculations 
provide us that

cλ,μn
= Iλ,μn

(un) − 1
2I

′
λ,μn

(un)(un) + γ − 2
4 Pλ,μn

(un)

= γ − 2
8

∫
R2

λ [2V (x) + (∇V, x)]u2
ndx + γ − 4

2

∫
R2

(
A2

1[un] + A2
2[un]

)
u2
ndx

+ μn

2

∫
R2

[f(un)un − γF (un)] dx

jointly with (3.18) and (f4) implies that the two quantities

⎛⎝∫
R2

λ [2V (x) + (∇V, x)]u2
ndx

⎞⎠ and

⎛⎝∫
R2

(
A2

1[un] + A2
2[un]

)
u2
ndx

⎞⎠
are uniformly bounded in n ∈ N. From which, we are derived from Pλ,μn

(un) = 0 that 
(
μn

∫
R2 F (un)dx

)
is uniformly bounded in n ∈ N, too. With these discussions, combining Iλ,μn

(un) = cλ,μn
and (3.18), we 

derive that (un) is uniformly bounded in Eλ.
Then, we claim that (un) is a (PS)cλ,1 sequence of the functional Iλ = Iλ,1. Actually, taking into account 

μn → 1− and Proposition 3.5-(c),

lim
n→∞

Iλ,1(un) =
(

lim
n→∞

Iλ,μn
(un) + (μn − 1)

∫
R2

F (un)dx
)

= lim
n→∞

cλ,μn
= cλ,1,

where we have used the fact that (F (un)) is uniformly bounded in L1(R2). Similarly, we deduce from 
I ′λ,μ (un)(ψ) = 0 that (f(un)ψ) is uniformly bounded in L1(R2) and so
n
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lim
n→∞

|I ′λ,1(un)(ψ)|
‖ψ‖Eλ

= lim
n→∞

∣∣I ′λ,μn
(un)(ψ) + (μn − 1)

∫
R2 f(un)ψdx

∣∣
‖ψ‖Eλ

≤ lim
n→∞

|μn − 1|
∣∣ ∫

R2 f(un)ψdx
∣∣

‖ψ‖Eλ

= 0, ∀ψ ∈ Eλ.

As a consequence, one has that (un) is a (PS)cλ,1 sequence of the functional Iλ = Iλ,1.
Finally, combining the above two steps and (3.18), we can apply Lemma 3.9 to finish the proof.
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