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Abstract. In this paper, we study the following class of planar Schrödinger-Poisson problems
−∆u+ λV (x)u+ γ(ln | · | ∗ |u|2)u = µu+ κf(u) in R2,

u(x) > 0 in R2,∫
R2

|u(x)|2dx = a2,

where a > 0, µ ∈ R is an unknown parameter appearing as a Lagrange multiplier, λ, γ, κ > 0
are parameters, V ∈ C(R2,R+) admits a potential well Ω ≜ intV −1(0) and f is a continuous
function having critical exponential growth at infinity in the Trudinger-Moser sense. Owing to
some technical tricks adopted in [11,62], we are able to obtain the existence and concentrating
behavior of positive normalized solutions for sufficiently large λ using variational method.
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1. Introduction

1.1. Some literature overview. We are concerned with the existence of positive solutions
to the following planar Schrödinger-Poisson equation

(1.1) −∆u+ λV (x)u+ γ(ln | · | ∗ |u|2)u = µu+ κf(u) in R2,

under the constraint

(1.2)

∫
R2

|u|2dx = a2,

where a > 0, µ ∈ R is an unknown parameter appearing as a Lagrange multiplier and λ, γ, κ > 0
are parameters. The potential V is supposed to satisfy the following set of assumptions:

(V1) V ∈ C(R2,R) with V (x) ≥ 0 on R2;
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(V2) Ω ≜ intV −1(0) is nonempty and bounded with smooth boundary, and Ω = V −1(0);

(V3) there exists a b > 0 such that the set Ξ ≜ {x ∈ R2 : V (x) < b} is nonempty and admits
finite measure.

As we all know, Bartsch and his collaborators firstly proposed the assumptions like (V1)−(V3)
in [16,18]. Particularly, the harmonic trapping potential

V (x) =

{
ω1|x1|2 + ω2|x2|2 − ω, if |(√ω1x1,

√
ω2x2)|2 ≥ ω,

0, if |(√ω1x1,
√
ω2x2)|2 ≤ ω,

with ω > 0 satisfies (V1)− (V3), where ωi > 0 is called by the anisotropy factor of the trap in
quantum physics and trapping frequency of the ith-direction in mathematics, see e.g. [19,24,51].
Actually, the potential λV with the above hypotheses is usually denoted by the steep potential
well.

Inspired by the well-known Trudinger-Moser type inequality, we recall that a function f has
the critical exponential growth at infinity if there exists a constant α0 > 0 such that

(1.3) lim
|s|→+∞

|f(s)|
eαs2

=

{
0, ∀α > α0,
+∞, ∀α < α0.

This definition was introduced by Adimurthi and Yadava [2], see also de Figueiredo, Miyagaki
and Ruf [36] for example.

Hereafter, we shall suppose that the nonlinearity f satisfies (1.3) and the assumptions below

(f1) f ∈ C(R,R) and f(s) ≡ 0 for all s ∈ (−∞, 0];
(f2) There is a q ∈ (2, 4) such that f(s)/sq−1 is an increasing function of s on (0,+∞),
(f3) There is a c0 > 0 such that f(s) ≥ c0s

q−1 for all s ∈ [0,+∞).

We would like to highlight here that many functions f satisfy the above assumptions, with
α0 = 4π and c0 = 1, for example,

f(s) =

{
0, s ≤ 0,

sq−1e4πs
2
, 0 ≤ s < +∞,

where q ∈ (2, 4).
In recent years, considerable attention was paid to the standing, or solitary, wave solutions

of Schrödinger-Poisson systems of the type

(1.4)

{
i
∂ψ

∂t
= ∆ψ −W (x)ψ −mϕψ + f̃(|ψ|)ψ, in R+ × Rd,

∆ϕ = |ψ|2, in Rd,

where ψ : Rd × R → C acts as the time-dependent wave function, W : Rd → R stands for the
real external potential, m ∈ R is a parameter, ϕ represents an internal potential for a nonlocal

self-interaction of wave function and nonlinear term f(ψ) ≜ f̃(|ψ|)ψ describes the interaction
effect among particles. Inserting the standing wave ansatz ψ(x, t) = exp(−iωt)u(x) with ω ∈ R
and x ∈ Rd into (1.4), then u : Rd → R satisfies the Schrödinger-Poisson system

(1.5)

{
−∆u+ V̄ (x)u+mϕu = f(u), in Rd,
∆ϕ = u2, in Rd,

where and in the sequel V̄ (x) =W (x) +ω for all x ∈ Rd. In view of the paper [34], the second
equation in (1.5) determines ϕ : Rd → R only up to harmonic functions. Conversely, it is natural
to regard ϕ as the negative Newton potential of u2, namely, the convolution of u2 with the
fundamental solution Φd of the Laplacian, which is denoted by Φd(x) = −1/(d(d− 2)ωd)|x|2−d

if d ≥ 3, and Φ2(x) = − 1
2π log(|x|) if d = 2, here we denote by ωd the volume of the unit ball in
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Rd. With this inversion of the second equation in (1.5), one can receive the integro-differential
equation

(1.6) −∆u+ V̄ (x)u+m
(
Φd ∗ u2

)
u = f(u) in Rd.

In light of its physical relevance in physics, there exist a rich literature associated with (1.6)
and the generalizations under the variant assumptions on V̄ and f by using variational methods
for d ≥ 3, see [1,13,27,39,52,58] and their references therein. We prefer to mention that, when
m ̸= 0, the Poisson term (Φd ∗u2)u causes that (1.6) is not a pointwise identity any longer such
that there are some mathematical difficulties which make the study of it more interesting.

For d = 2, the Schrödinger-Poisson equation (1.6) can be rewritten as the form

(1.7) −∆u+ V̄ (x)u+
m

2π

[
ln(|x|) ∗ u2

]
u = f(u) in R2.

For clarity, we shall suppose that V̄ (x) ≡ −µ ∈ R for all x ∈ R2 and m = 2π.
Generally speaking, there are two different directions to the considerations of Eq. (1.7). On

the one hand, one can choose frequency µ ∈ R to be fixed and then focus on investigating the
existence of nontrivial solutions by looking for critical points of the variational functional

I(u) =
1

2

∫
R2

[
|∇u|2 − µu2

]
dx+

1

4

∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy −
∫
R2

F (u)dx,

where and in the sequel F (t) =
∫ t
0 f(s)ds for all t ∈ R. Due to the variational method point of

view, one usually requires I to be a class of C1-functional and the classic Hilbert space H1(R2)
is an ideal candidate that acts as the work space. Nevertheless, Stubbe [63] pointed out clearly
that the functional I is not even well-defined in H1(R2). In order to get around this obstacle,
the author introduced a new Hilbert space

X =

{
u ∈ H1(R2) :

∫
R2

ln(1 + |x|)u2dx < +∞
}
,

endowed with the inner product and norm

(u, v)X =

∫
R2

[
∇u∇v + uv + ln(1 + |x|)uv

]
dx and ∥u∥X =

√
(u, u)X .

With the work space X in hands, one can define the two variational functionals V1, V2 : X → R
by 

V1(u) ≜
∫
R2

∫
R2

ln(1 + |x− y|)u2(x)u2(y)dxdy,

V2(u) ≜
∫
R2

∫
R2

ln

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy,

∀u ∈ X

and they belong to C1(X,R), see e.g. [63]. Now, because of the crucial identity

ln r = ln(1 + r)− ln

(
1 +

1

r

)
, ∀r > 0,

it enables to have the following decomposition

(1.8) V0(u) ≜
∫
R2

∫
R2

ln(|x− y|)u2(x)u2(y)dxdy = V1(u)− V2(u), ∀u ∈ X

indicating that I is of class C1(X,R). Afterwards, for µ = −1 and f(t) = b|t|p−2t with b ≥ 0 and
p ≥ 4, Cingolani and Weth [34] obtained the existence and multiplicity of nontrivial solutions
for Eq. (1.7), later the case p ∈ (2, 4) was supplemented by Du and Weth in [38]. To acquaint
the asymptotic and non-degeneracy of the ground state solution when b = 0, we refer the reader
to [21]. Moreover, Chen, Shi and Tang [29] extended the main results to a general nonlinearity.
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It is significant to note that the above cited papers depended on the fact that the potential is
constant or Z2-periodic. To avoid such restriction, the authors in [31,32] constructed nontrivial
solutions in an axially symmetric space which is weaker than the radially symmetric one.

Very recently, by supposing (V1) − (V2), Shen and Squassina [61] were able to study the
existence and concentration of nontrivial solutions for the equation

−∆u+ λV (x)u+ (ln | · | ∗ |u|2)u = f(u) in R2,

where λ > 0 is sufficiently large and f admits the supercritical exponential growth (see [8, 9]).
Concerning some other interesting works associated with Eq. (1.7) and its variants, we suggest
the reader to look at [14,37] and the references therein even if these ones are far to be exhaustive.

On the other hand, one can contemplate the case µ ∈ R to be unknown. In such a situation,
µ ∈ R is presented to be a Lagrange multiplier and the L2-norm of obtained solutions would be
prescribed. From the physical point of view, this spirit of research holds particular significance
as it accounts for the conservation of mass. What’s more, it provides valuable insights into the
dynamic properties of the standing waves of (1.5), for instance stability or instability in [20,26].
In this paper, we shall focus primarily on this aspect.

In [43], due to a minimax approach and compactness argument, Jeanjean contemplated the
existence of solutions for the following Schrödinger problem

(1.9)

 −∆u+ λu = g(u) in RN ,∫
RN

|u|2dx = a2 > 0.

Subsequently, there exist some further complements and generalizations in [45]. In [64], letting
g(t) = τ |t|q−2t+ |t|p−2t with 2 < q ≤ 2+ 4

N ≤ p < 2∗, Soave obtained the existence of solutions

for problem (1.9), where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = ∞ if N = 2. For this type of combined

nonlinearities, Soave also [65] proved the existence of ground state and excited solutions when
p = 2∗. For more interesting results for problem (1.9), we will refer the reader to [7,17,44,46,67]
and the references therein.

Conversely, the appearance of the nonlocal convolution term
[
ln(|x|) ∗ u2

]
u in (1.7) exhibits

some delicate mathematical difficulties with a local nonlinear term f . To address this trouble,
Cingolani and Jeanjean used the combination of the fibration method of Pohozaev (relying on
the decomposition of L2-Pohoz̆aev manifold used in [33]) and the strong compactness condition
developed by Cingolani-Weth [34], where some new estimates of energy on the dilated function
tu(t·) for all u ∈ L2 and t > 0 belonging to S(a) were given. Moreover, the reader may realize
that the spatial dimension of Eq. (1.7) is two, the case therefore is very special because 2∗ = ∞
in this situation. In spirit of [7], Alves, de S. Böer and Miyagaki [4] investigated the existence
of normalized solutions to (1.7), where the nonlinearity f satisfies (1.3) and

(F1) f(0) = 0 and there exists τ > 3 such that lim
t→0

|f(s)|
|s|τ = 0;

(F2) there exists θ > 6 such that f(s)s ≥ θF (s) > 0 for all s ̸= 0, where F (s) =
∫ s
0 f(t)dt

(F3) there exist p > 6 and a large enough ϑ > 0 such that F (s) ≥ ϑ|s|p for all s ∈ R.

Note that ϑ > 0 in (F3) is sufficiently large such that the obtained mountain-pass level can be
chosen as arbitrarily small from which the compactness will be restored in the usual way. Very
recently, due to same intention, the authors in [12,60,68] depended on the following condition,
instead of (F3),

(F ′
3) lim inf

s→+∞
F (s)

eα0s
2 > 0, where α0 > 0 comes from (1.3).
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In [28], by choosing f(s) =
(
es

2 − 1− s2
)
s for all s ∈ R, Chen et al. investigated the existence

of normalized solutions to (1.7) by virtue of the L2-Pohoz̆aev manifold. For some more results
on (1.7) for normalized solutions, see e.g. [41, 42] and their references therein.

1.2. Motivation for further advances. Motivated by all of the quoted papers above,
particularly by [4,28,61], it seems quite natural to ask some interesting questions. For example,

(I). From [33], it can be observed that the L2-Pohoz̆aev manifold method seems unavoidable
when the nonlinearity f satisfies the condition (F2) with even θ > 4, or it satisfies the critical
exponential growth (1.3). Conversely, if the L2-Pohoz̆aev manifold method is invalid any longer
when (1.7) is a non-automatous one, such as V ∈ C instead of C1 in (1.1), could we still conclude
the existence of normalized solutions for the planar Schrödinger-Poisson equations?

(II). One may infer from [4] that the condition (F3), or (F
′
3), is indispensable to some extent.

So, what happens if we weaken/remove them when f still satisfies (1.3)?
(III). Due to [61], could we apply the steep potential to deal with the existence of normalized

solutions for a class of planar Schrödinger-Poisson equations with L2-supercritical growth?

1.3. Main results. In the present article, we shall try our best to put forward some new
analytic skills and then give the affirmative answers to three Questions above. First of all, in
order to exhibit the main results legibly, let us introduce the work space. Following as [61],
given a fixed λ > 0, by (V1), we define the space

Eλ ≜

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and

∫
R2

λV (x)|u|2dx < +∞
}

which is indeed a Hilbert space equipped with the inner product and norm

(u, v)Eλ
=

∫
R2

[
∇u∇v + λV (x)uv

]
dx and ∥u∥Eλ

=
√

(u, u)Eλ
, ∀u, v ∈ Eλ.

From here onwards, we shall denote E and ∥ · ∥E by Eλ and ∥ · ∥Eλ
for λ = 1, respectively. It

is simple to observe that ∥ · ∥E ≤ ∥ · ∥Eλ
for every λ ≥ 1. Therefore, owing to [61, Lemma 2.4],

Eλ could be continuously imbedded into H1(R2) and then into X for every λ ≥ 1. With these
discussions, it permits us to introduce the work space

(1.10) Xλ ≜

{
u ∈ X :

∫
R2

λV (x)|u|2dx < +∞
}

and Xλ is also a Hilbert space equipped with the inner product and norm

(u, v)Xλ
=

∫
R2

[
∇u · ∇v + (λV (x) + ln(1 + |x|))uv

]
dx and ∥u∥Xλ

=
√

(u, u)Xλ
, ∀u, v ∈ Xλ.

Obviously, ∥ · ∥Xλ
=

√
∥ · ∥2Eλ

+ ∥ · ∥2∗, where ∥u∥∗ = (
∫
R2 ln(1 + |x|)|u|2dx)

1
2 for all u ∈ X.

Now, we are in a position to state the first main result in this paper as follows.

Theorem 1.1. Let V satisfy (V1)− (V3) and f require (1.3) with (f1)− (f3), then there exist
some constants γ∗ > 0, κ∗ > 0, a∗ > 0 and λ∗ > 1 such that, for every γ ∈ (0, γ∗), κ ∈ (0, κ∗),
a > a∗ and λ > λ∗, Problems (1.1)-(1.2) possess a couple of weak solution (ū, µ̄) ∈ Xλ × R,
where ū(x) > 0 for all x ∈ R2.

Remark 1. Because the nonlinearity f satisfies the critical exponential growth (1.3) at infinity,
one can regard the Problem (1.1) under the constraint (1.2) as a L2-supercritical one. However,
taking into account the mild assumptions (V1)− (V3) imposed on the potential V , we are never
able to follow the procedures in [15,35,53] to derive the desired result. Motivated by [11,62], we
shall cut off the nonlinearity and then the original problem reduces to a L2-subcritical one that



6 L. SHEN AND M. SQUASSINA

makes the solvability available. Nevertheless, considering the negative interactions between the
steep potential λV and the nonlocal term [ln(| · |)∗u2]u together with the structure of the work
space Xλ, there exist several unpleasant barriers in the present paper, see Lemmas 3.3 and 3.8
as well as Claim 4.5 below for instance. Finally, it is worthy mentioning here that the so-called
cut-off technique of [11,62] and this paper is similar to that of [8–10,61].

Remark 2. Even if V (x) ≡ 0 for all x ∈ R2 in Eq. (1.1), according to the best knowledge
of us, it is the first time to investigate the existence of normalized solution to the planar
Schrödinger-Poisson equation with critical exponential growth, where the nonlinearity satisfies
the very mild assumptions (f1) − (f3) in contrast to the previous articles [4, 28]. As a matter
of fact, we also stress here that the argument adopted in the proof of Theorem 1.1 is adapted
to the existence of solutions with free mass for a class of planar Schrödinger-Poisson equations
with (super)critical exponential growth in [3, 5, 25, 29, 30, 32, 48–50, 59, 61] and their references
therein.

Let us sketch the main idea for the proof of Theorem 1.1, as explained in Remark 1, we shall
heavily depend on the so-called cut-off technique. Describing it more precisely, for every fixed
constant R > 0, we introduce the following continuous function fR : R → R defined by

(1.11) fR(s) =


0, if s ≤ 0,
f(s), if 0 ≤ s ≤ R,
f(R)

Rq−1
sq−1, if R ≤ s < +∞,

where the constant q ∈ (2, 4) comes from (f2). From now on until the end of the present article,

we define FR(s) =

∫ s

0
fR(t)dt for each s ∈ R to be the primitive function of fR. It follows from

a direct computation that

(1.12) qFR(s) ≤ fR(s)s, ∀s ∈ R.
Moreover, we can exploit the monotone assumption in (f2) to see that

(1.13) fR(s) ≤
f(R)

Rq−1
sq−1, ∀s ∈ R.

With such a nonlinearity fR defied in (1.11), we turn to contemplate the following auxiliary
problem

(1.14)


−∆u+ λV (x)u+ γ(ln | · | ∗ |u|2)u = µu+ κfR(u) in R2,
u(x) > 0 in R2,∫
R2

|u(x)|2dx = a2.

In view of (1.13), we know from [33] that Problem (1.14) above involves L2-subcritical growth
since q < 4. If the term (ln | · |∗|u|2)u vanishes, the existence result can be seen as a supplement
to the results explored by Alves and Ji in [6]. Whereas, because of the appearance of this term,
we can not borrow the arguments in it to obtain the existence result for Problem (1.14) due to
the difficulties depicted in Remark 1. Anyway, it permits us to reach the existence of solutions
for Problem (1.14).

When there is couple of weak solution in Xλ × R to Problem (1.14), saying it (uR, µR), the
reader is invited to find that such pair is a solution to the original Problems (1.1)-(1.2) as long
as |uR|∞ ≤ R owing to the definition of fR in (1.11). Have it in mind, we can receive the proof
of Theorem 1.1 combining the solvability of Problem (1.14) and the L∞-estimate.

Next, we shall contemplate the asymptotical behavior of the normalized solutions obtained
in Theorem 1.1 as λ→ +∞ when a > a∗ is fixed. Let (u, µ) ∈ Xλ×R be a positive normalized



CONCENTRATING NORMALIZED SOLUTIONS TO PLANAR SCHRÖDINGER-POISSON... 7

solution for Eq. (1.1), there is no doubt that it depends on the parameter λ > λ∗ > 1, thereby
we will relabeled the pair by (uλ, µλ) ∈ Xλ ×R to emphasize this dependence, where λ∗ > 1 is
a constant appearing in the proof of Lemma 3.8 below. Finally, we prove the following result.

Theorem 1.2. Under the assumptions in Theorem 1.1 and let a > a∗ be fixed, then, passing
to a subsequence if necessary, uλ → u0 in X and µλ → µ0 in R as λ→ +∞, where (u0, µ0) is
a couple of weak solution to the planar Schrödinger-Poisson problem below

(1.15)


−∆u+ γ

(∫
Ω
ln(|x− y|)u2(y)dy

)
u = µu+ κf(u), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,∫
Ω
|u|2dx = a2.

Remark 3. As far as we are concerned, there are currently no relevant results for the Problem
(1.15). Actually, it truly belongs to a class of L2-supercritical problems in the bounded domains
and we would like to refer the interested reader to [55–57] and the references therein to
acquaint this topic. In particular, the authors in [10, 11, 62] had investigated the existence
of normalized solution for several kinds of local elliptic problems with mass-supercritical
growth. Alternatively, there exist some new difficulties that caused by the nonlocal term(∫

Ω ln |x− y|u2(y)dy
)
u which prevents us repeating the approaches in [10,11,62] simply.

We remark that the essential difference between [61] and this paper is whether the obtained
solution involves a prescribed mass, so some additional efforts are needed to conclude the proofs
of Theorems 1.1 and 1.2 in the article. Again these results are new for planar Schrödinger-
Poisson equation up to now, although the subtle tricks have already appeared in the literatures
[10,11,62].

In our opinion, one of the most significant contributions is that we succeed in taking
advantage of the steep potential λV to investigate the existence and concentration of positive
normalized solutions to the type of planar Schrödinger-Poisson equations with a wider class of
nonlinearities that fulfill the critical exponential growth in (1.3). It is believed that the studies
in the present paper would prompt some further explorations on related topics.

This paper is organized as follows. In Section 2, we will introduce some preliminary results
dealing with the functionals Vi : Xλ → R with i ∈ {0, 1, 2}. Section 3 is devoted to the existence
result for the auxiliary Problem (1.14) above. Finally, the detailed proofs of Theorems 1.1 and
1.2 shall be exhibited in Section 4.

Notations: From now on in this paper, otherwise mentioned, we use the following notations:

• Br(x) ⊂ R2 is an open ball centered at x ∈ R2 with radius r > 0 and Br = Br(0).
• C,C1, C2, · · · denote any positive constant, whose value is not relevant.
• For all x ∈ R2, we define

u+(x) ≜ max{u(x), 0} ≥ 0 and u−(x) ≜ min{u(x), 0} ≤ 0.

• | · |p denotes the usual norm of the Lebesgue space Lp(R2), for every p ∈ [1,+∞]. ∥·∥Hi

denotes the usual norm of the Hilbert space for i ∈ {1, 2}.
• on(1) denotes a real sequence with on(1) → 0 as n→ +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related function
spaces, respectively.

• We recall the celebrated Gagliardo-Nirenberg inequality, given an l ∈ [2,+∞),

(1.16) |u|ll ≤ C|u|(1−γl)l
2 |∇u|γll2 in H1(R2), γl = 2

(
1

2
− 1

l

)
,
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where the constant C > 0 is just dependent of l.

2. Preliminary stuff

In this section, we shall present some preliminary results which will be exploited frequently
in this paper. The following lemma is due to [34, Lemma 2.2] and we introduce them without
the detailed proofs.

Lemma 2.1. Let the space X and the functionals Vi : X → R with i ∈ {0, 1, 2} be defined as
in the Introduction, then we have the following conclusions:

(i) The space X is compactly embedded in Ls(R2), for all s ∈ [2,∞).
(ii) 0 ≤ V1(u) ≤ 2|u|22|u|2∗ ≤ 2∥u∥4X and V1 is weakly semicontinuous in H1(R2).
(iii) V ′

i (u)[u] = 4Vi(u) for all u ∈ X and i ∈ {0, 1, 2}.
(iv) There is a constant K0 > 0 such that

(2.1) |V2(u)| ≤ K0|u|48
3

, ∀u ∈ L
8
3 (R2).

(v) V2 is completely continuous in X, that is,

un ⇀ u in X =⇒ V2(un) → V2(u).

For any given Lebesgue measurable functions u, v : R2 → R, we introduce the following three
auxiliary symmetric bilinear forms X ×X → R

(u, v) 7→ B1(u, v) =

∫
R2

∫
R2

ln(1 + |x− y|)u(x)v(y)dxdy,

(u, v) 7→ B2(u, v) =

∫
R2

∫
R2

ln

(
1 +

1

|x− y|

)
u(x)v(y)dxdy,

(u, v) 7→ B(u, v) = B1(u, v)−B2(u, v) =

∫
R2

∫
R2

ln(|x− y|)u(x)v(y)dxdy.

Obviously, V ′
i (u)[v] = 4Bi(u

2, uv) for i ∈ {0, 1, 2}. By [34, Lemma 2.6], there holds

Lemma 2.2. Let {un}, {vn} and {wn} be some bounded sequences in X such that un ⇀ u in
X. Then, for all z ∈ X, it holds that B1(vnwn, z(un − u)) → 0, as n→ +∞.

Taking into account the uniform L∞-estimate, the following lemma will plays a crucial role.

Lemma 2.3. Define gu(x) ≜ ln(1 + | · |−1) ∗ |u|2 for all u ∈ H1(R2) and x ∈ R2, then we have
that gu ∈ L∞(R2). Moreover

(2.2) |gu|∞ ≤ 4π

(
|u|22 + C

1
3 |u|

2
3
2 |∇u|

4
3
2

)
.

Proof. We follow [61, Lemma 2.3] to conclude the proof. For all x ∈ R2, there holds

|gu(x)| =
∫
B1(x)

ln

(
1 +

1

|x− y|

)
|u(y)|2dy +

∫
R2\B1(x)

ln

(
1 +

1

|x− y|

)
|u(y)|2dy

≤
∫
B1(x)

|u(y)|2

|x− y|
dy + ln 2

∫
R2\B1(x)

|u(y)|2dy.(2.3)



CONCENTRATING NORMALIZED SOLUTIONS TO PLANAR SCHRÖDINGER-POISSON... 9

It follows from the Hölder’s inequality that
(2.4)∫

B1(x)

|uR(y)|2

|x− y|
dy ≤

(∫
B1(x)

1

|x− y|
3
2

dy

) 2
3
(∫

R2

|u(y)|6dy
) 1

3

= (4π)
2
3

(∫
R2

|u(y)|6dy
) 1

3

.

Combining (2.3) and (2.4), we apply (1.16) with l = 6 to get the desired result (2.2). The proof
is completed. □

3. On the auxiliary problem

In this section, we are going to investigate the existence of solutions for the auxiliary problem
(1.14). More precisely, we shall contemplate the following planar Schrödinger-Poisson equation

(3.1) −∆u+ λV (x)u+ γ(ln | · | ∗ |u|2)u = µu+ κfR(u) in R2,

under the constraint

(3.2)

∫
R2

|u|2dx = a2,

where a > 0, µ ∈ R is an unknown parameter that appears as a Lagrange multiplier, λ, γ, κ > 0
are parameters. The potential V : R2 → R satisfies (V1)−(V3) and the nonlinearity fR is defined
by (1.11) meeting (1.3) and (f1)− (f3).

We recall that a solution u to the Problems (3.1)-(3.2) corresponds to a critical point of the
variational functional Jλ,R : Xλ → R below

(3.3) Jλ,R(u) =
1

2

∫
R2

[|∇u|2 + λV (x)|u|2]dx+
γ

4
V0(u)− κ

∫
R2

FR(u)dx

restricted to the sphere

(3.4) S(a) =

{
u ∈ H1(R2) :

∫
R2

|u|2dx = a2
}
.

Here the functional V0 and the work spaceXλ could be reviewed in (1.8) and (1.10), respectively.
Recalling [61, Lemma 2.4] again, for all fixed λ ≥ 1 and R > 0, we can infer from (f1) that the
variational functional Jλ,R is well-defined and belongs to C1(Xλ,R) with its derivative defined
by

J ′
λ,R(u)[v] =

∫
R2

[∇u∇v + λV (x)uv]dx+
γ

4
V ′
0(u)[v]− κ

∫
R2

fR(u)v dx, ∀u, v ∈ Xλ.

The main result concerning Problems (3.1)-(3.2) is the following:

Theorem 3.1. Let V satisfy (V1)− (V3) and f meet (1.3) with (f1)− (f3), then there exists an
R∗ > 0 such that for all fixed R > R∗ and κ ∈ (0, 1), there are some consatnts γ′ = γ′(R) > 0,
a∗ = a∗(R) > 0 and λ∗ = λ∗(R) > 1 such that the Problems (3.1)-(3.2) have a couple of weak
solution (uR, µR) ∈ Xλ × R with uR(x) > 0 for all x ∈ R2 if γ ∈ (0, γ′), a > a∗ and λ > λ∗.

The proof of the above theorem will be divided into several lemmas. Before exhibiting them,
we will always suppose that the potential V and the nonlinearity fR do satisfy (V1)− (V3) and
(1.3) with (f1)− (f3) in this section, respectively.

Lemma 3.2. For all fixed R > 0, the variational functional Jλ,R is coercive and bounded from
below on S(a) for all γ ∈ (0, 1), κ ∈ (0, 1), a > 0 and λ ≥ 1, where Jλ,R and S(a) are appearing
in (3.3) and (3.4), respectively.
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Proof. By (1.12)-(1.13) and (2.1), for all u ∈ S(a), we use (1.16) with l = 8
3 and l = q to reach

Jλ,R(u) ≥
1

2

∫
R2

|∇u|2 dx−K0C
3
2a3

(∫
R2

|∇u|2 dx
) 1

2

− Cf(R)a(1−γq)q

Rq−1q

(∫
R2

|∇u|2 dx
) γqq

2

.

As q ∈ (2, 4) in (f2), clearly γqq < 2, then the statement concludes. □

As a direct consequence of Lemma 3.2, for each fixed R > 0, γ ∈ (0, 1), κ ∈ (0, 1), a > 0 and
λ ≥ 1, the real number

(3.5) Υλ,R ≜ min
u∈S(a)

Jλ,R(u)

is well-defined and it will be exploited to look for nontrivial solutions for Problems (3.1)-(3.2).
Alternatively, we need to conclude that Υλ,R is uniformly bounded above with respect to λ > 1
and so there is the result below.

Lemma 3.3. There exists an R∗ > 0 such that for each fixed R > R∗ and κ ∈ (0, 1), there are
constants ΘR = Θ(R) < 0, γ′ = γ′(R) > 0 and a∗ = a∗(R) > 0, which are independent of λ,
such that Υλ,R ≤ ΘR for all γ ∈ (0, γ′), a > a∗ and λ ≥ 1.

Proof. Without loss of generality, we are assuming that 0 ∈ intV −1(0). Therefore, there exists
a sufficiently small r > 0 such that Br(0) ⊂ intV −1(0). Choose ψ ∈ C∞

0 (Br(0)) to be a function
satisfying

∫
Br(0)

|ψ|2dx = 1 and so ψ ∈ S(1). Due to the definition of Ω, there holds

(3.6)

∫
R2

V (x)|ψ|2dx =

∫
Ω
V (x)|ψ|2dx+

∫
Ωc

V (x)|ψ|2dx = 0.

Adopting (1.3), then lim
R→+∞

f(R)

Rq−1
= +∞ and so there is an R∗ > 0 such that

f(R)

Rq−1
≥ c0 for

all R > R∗. Owing to (f3) and the definition of fR in (1.11), it holds that

fR(s) ≥ c0s
q−1, ∀s ≥ 0 and R > R∗,

from where it follows that

(3.7)

∫
R2

FR(tψ) dx ≥ c0t
q

q

∫
R2

|ψ|q dx, ∀t > 0 and R > R∗.

Combining (3.6) and (3.7), for all R > R∗, one sees Iλ,R(tψ) → −∞ as t→ +∞, where

Iλ,R(u) ≜
1

2

∫
R2

[
|∇u|2 + λV (x)|u|2

]
dx− κ

∫
R2

FR(u)dx, ∀u ∈ Eλ.

Consequently, we can determine a t∗ = t∗(R) > 0 to satisfy Iλ,R(tψ) ≤ At∗ < 0 for all t > t∗.
Letting a∗ = t∗, for all a > a∗ and u0 = aψ, then u0 ∈ S(a) and so

(3.8) Iλ,R(u0) = Iλ,R(aψ) ≤ At∗ , ∀R > R∗ and a > a∗.

On the other hand, using Lemma 2.1-(ii) and V0(u0) = V1(u0)− V2(u0) ≤ V1(u0), we have

(3.9) V1(u0) ≤ 2|u0|22
∫
R2

ln(1 + |x|)|u0|2dx ≤ 2a4 ln(1 + r).

As a consequence of (3.8) and (3.9), we reach

Υλ,R ≤ Iλ,R(u0) +
γ

4
V1(u0) ≤ At∗ +

γ

2
a4 ln(1 + r).

Thereby, define γ′ = min

{
− At∗

a4 ln(1 + r)
, 1

}
> 0 for all R > R∗ and a > a∗. So, it permits us

to choose ΘR = Θ(R) ≜ 1
2At∗ < 0 for all R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ ≥ 1.

The proof is completed. □
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With Lemmas 3.2 and 3.3 in hands, we can just deduce that every minimizing sequence {un}
of Υλ,R is uniformly bounded in H1(R2). To derive such a desired result in the work space Xλ,
we have to take some delicate analysis. First of all, let us introduce the following two lemmas
due to Lions [47].

Lemma 3.4. Let {ρn} ⊂ L1(R2) be a bounded sequence and ρn ≥ 0, then there is a subsequence,
still denoted by ρn, such that one of the following two possibilities occurs:

(i) (Vanishing) lim
n→∞

sup
y∈R2

∫
Bϱ(y)

ρndx = 0 for all ϱ > 0;

(ii) (Non-Vanishing) there are β > 0 and ϱ < +∞ such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

ρndx = β.

Lemma 3.5. Assume {|∇un|} is bounded in L2(R2) and {un} is bounded in Lq0(R2) for some
q0 > 2 as well as

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|q0dx = 0.

Then un → 0 in Ls(R2) for s ∈ (2,+∞).

We now begin with the verification that {un} is uniformly bounded in Xλ.

Lemma 3.6. Let R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′) and λ ≥ 1 be fixed. Suppose {un} ⊂ S(a) is
a minimizing sequence of Υλ,R for all a > a∗, then {∥un∥Eλ

} is uniformly bounded in n ∈ N.
Moreover, for all ϱ > 0,

(3.10) lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|q0dx = 0

could never occur, where q0 > 2.

Proof. Using Lemma 3.2, we know that {|∇un|2} is uniformly bounded in n ∈ N and so {|un|r}
is uniformly bounded in n ∈ N for all r ∈ [2,+∞) by (1.16). Because Jλ,R(un) = Υλ,R+on(1),
combining Lemma 3.3, (1.13) and (2.1), we have that∫

R2

λV (x)|un|2dx ≤ 2Υλ,R +
1

2
V2(un) + 2

∫
R2

FR(un) + on(1)

≤ 2ΘR +
1

2
K0|un|48

3

+
2F (R)

qRq−1

∫
R2

|un|qdx+ on(1)

showing the first part of this lemma. To reach the remainder, arguing it indirectly, we suppose
that (3.10) holds true. As a consequence, un → 0 in Ls(R2) for all s ∈ (2,+∞) by Lemma 3.5.
Adopting (1.13) and (2.1) again, we have that∫

R2

FR(un) = on(1) and V2(un) = on(1),

from where it follows that

Υλ,R =
1

2

∫
R2

[|∇un|2 + λV (x)|un|2]dx+
1

4
V1(un) + on(1) ≥ on(1).

It is impossible because of Lemma 3.3. The proof is completed. □

Thanks to Lemma 3.4, with the help of Lemma 3.6, we are able to prove the following result
which is crucial to prove that the sequence {un} ⊂ Xλ is uniformly bounded in Xλ.
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Lemma 3.7. Under the assumptions in Lemma 3.6, there exists a constant β0 > 0, independent
of λ ≥ 1, such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|q0dx = β0.

Proof. Let ρn = |un|q0 ∈ L1(R2), we immediately see that only the Non-Vanishing in Lemma
3.4 occurs due to Lemma 3.6. Then, we divide the proof into intermediate steps.

Step 1: There exists a constant βλ = β(λ) > 0 such that

lim
n→∞

sup
y∈R2

∫
Bϱ(y)

|un|q0dx = βλ.

Suppose, by contradiction, that un → 0 in Ls(R2) for s ∈ (2,+∞). It is very similar to the
proof of Lemma 3.6, we can arrive at a contradiction.

Step 2: Conclusion.
Suppose by contradiction that the uniform control from below of Lq0(R2)-norm is false. So,

for any k ∈ N, k ̸= 0, there exist λk > 1 and a minimizing sequence {uk,n} of Υλk,R such that

|uk,n|q0 <
1

k
, definitely.

Then, by a diagonalization argument, for any k ≥ 1, it permits us to find an increasing sequence
{nk} in N and unk

∈ Xλnk
such that

{unk
} ⊂ S(a), Jλnk

,R(unk
) = Υλnk

,R + ok(1) and |unk
|q0 = ok(1).

where ok(1) → 0 as k → +∞. In this situation, we can repeat the proof of Lemma 3.6 to reach
a contradiction, again. The proof of this lemma is finished. □

At this stage, the proof of verifying that the minimizing sequence {un} ⊂ Xλ in Lemma 3.6
is uniformly bounded in Xλ for some sufficiently large λ > 1 becomes available.

Lemma 3.8. Let R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′) and λ ≥ 1 be fixed. Suppose {un} ⊂ S(a) is a
minimizing sequence of Υλ,R for all a > a∗, then there exists a λ∗ = λ∗(R) > 1 such that the
sequence {∥un∥Xλ

} is uniformly bounded in n ∈ N provided λ > λ∗.

Proof. Although the proof originates from [61, Lemma 3.10], we exhibit the detailed proofs for
the sake of reader. Combining Lemmas 3.6 and 3.7, there is a constant β0 > 0, independent of
λ ≥ 1, such that

lim
n→∞

sup
y∈R2

∫
B1(y)

|un|2dx = β0,

where we have just supposed that ϱ = 1 in Lemma 3.7 for simplicity. Exacting a subsequence
if necessary, there exists a sequence {yn} ⊂ R2 such that

(3.11)

∫
B1(yn)

|un|2dx =
1

2
β0.

Claim 3.9. The sequence {yn} above is uniformly bounded in n ∈ N.

Otherwise, we could suppose that |yn| → ∞ in the sense of a subsequence. Define

Ξ1
n ≜ {x ∈ B1(yn) : V (x) < b} and Ξ2

n ≜ {x ∈ B1(yn) : V (x) ≥ b}.

Since the set Ξ ≜ {x ∈ R2 : V (x) < b} is nonempty and has finite measure, one concludes that

(3.12) meas(Ξ1
n) ≤ meas({x ∈ R2 : |x| ≥ |yn| − 2, V (x) < b}) → 0 as n→ ∞.
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In view of Lemma 3.6, |un|r with r > 2 is uniformly bounded in n ∈ N, using (3.12) to get∫
Ξ1
n

|un|2dx ≤ [meas(Ξ1
n)]

r−2
r |un|2r = on(1)

leading to ∫
Ξ2
n

|un|2dx =

∫
B1(yn)

|un|2dx−
∫
Ξ1
n

|un|2dx =
1

2
β0 + on(1).

Thanks to V (x) ≥ 0 for all x ∈ R2 by (V1), using the definition of Ξ2
n,

(3.13)

∫
R2

V (x)|un|2dx ≥
∫
Ξ2
n

V (x)|un|2dx ≥ b

∫
Ξ2
n

|un|2dx =
1

2
bβ0 + on(1).

Recalling the proof of Lemma 3.6 again, we have that

(3.14) {V2(un)} and

{∫
R2

FR(un)dx

}
are uniformly bounded in n ∈ N and λ ≥ 1.

So, as a consequence of (3.13) and (3.14), it holds that

Υλ,R ≥ 1

2

∫
R2

λV (x)|un|2dx− 1

4
V2(un)−

∫
R2

FR(un)dx+ on(1) ≥
λbβ0
4

− C + on(1)(3.15)

where the positive constants b, β0 and C are independent of λ ≥ 1. According to Lemma 3.3,
there exists a sufficiently large λ∗ = λ∗(R) > 1 such that (3.15) is false provided λ > λ∗. Hence,
the sequence {yn} ⊂ R2 appearing in (3.11) is uniformly bounded in n ∈ N.

Consequently, passing to a subsequently if necessary, we suppose that yn → y0 in R2. Taking
(3.11) into account, there holds

(3.16)

∫
B2(y0)

|un|2dx ≥ 1

4
β0 > 0.

Since {∥un∥Eλ
} is uniformly bounded in n ∈ N by Lemma 3.6, the proof of this lemma would

be done by the following claim

Claim 3.10. The sequence ∥un∥∗ = (
∫
R2 ln(1 + |x|)u2ndx)

1
2 is uniformly bounded in n ∈ N.

Indeed, we choose a constant δ > 0 large enough to satisfy δ > |y0|+ 2. Moreover, one has

1 + |x− y| ≥ 1 +
|y|
2

≥
√
1 + |y|, ∀x ∈ Bδ(0), ∀y ∈ R2\B2δ(0).

Due to this choice for δ implying that B2(y0) ⊂ Bδ(0), by means of (3.16),

V1(un) =

∫
R2

(∫
R2

ln(1 + |x− y|)u2n(x)dx
)
u2n(y)dy

≥
∫
R2\B2δ(0)

(∫
Bδ(0)

ln(1 + |x− y|)u2n(x)dx
)
u2n(y)dy

≥
(∫

Bδ(0)
u2n(x)dx

)[∫
R2\B2δ(0)

ln

(
1 +

|y|
2

)
u2n(y)dy

]
≥ β0

8

∫
R2\B2δ(0)

ln(1 + |y|)u2n(y)dy =
β0
8

(
∥un∥2∗ −

∫
B2δ(0)

ln(1 + |y|)u2n(y)dy
)

≥ β0
8
(∥un∥2∗ − ln(1 + 2δ)a2).(3.17)
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On the other hand, adopting (3.14) and Lemma 3.2 again,

(3.18) 0 ≤ γV1(un) ≤ 4ΘR + V2(un) + 4

∫
R2

FR(un)dx+ on(1)

which together with (3.17) concludes the claim. The proof is completed. □

We now can show the proof of Theorem 3.1 in detail.

Proof of Theorem 3.1. First of all, by Lemma 3.2, we know that the minimization constant
Υλ,R defined in (3.5) is well-defined for all fixed R > 0, γ ∈ (0, 1), κ ∈ (0, 1), a > 0 and λ ≥ 1.
Secondly, there exists a sequence {un} ⊂ S(a) such that Jλ,R(un) = Υλ,R + on(1). According
to Lemma 3.8, there exist R∗ > 0, γ′ > 0, a∗ > 0 and λ∗ > 1 such that, for all fixed R > R∗,
γ ∈ (0, γ′), a > a∗ and λ > λ∗, the sequence {∥un∥}Xλ

is uniformly bounded in n ∈ N for every
κ ∈ (0, 1). Let us take Lemma 2.1-(i) into account, passing to a subsequence if necessary, there
is a uR ∈ Xλ such that un ⇀ uR in Xλ, un → uR in Ls(R2) for each s ∈ [2,+∞) and un → uR
a.e. in R2. So, one immediately concludes that uR ∈ S(a), then it depends on Lemma 2.1-(v)
and (1.13) to reach

lim
n→∞

V2(un) = V2(uR)

and

lim
n→∞

∫
R2

FR(un)dx =

∫
R2

FR(uR)dx,

from where and the Fatou’s lemma it follows that

Υλ,R ≤ 1

2

∫
R2

[|∇uR|2 + λV (x)|uR|2]dx+
γ

4
V0(uR)− κ

∫
R2

FR(uR)dx

≤ lim inf
n→∞

{
1

2

∫
R2

[|∇un|2 + λV (x)|un|2]dx+
γ

4
V0(un)− κ

∫
R2

FR(un)dx

}
= lim inf

n→∞
Jλ,R(un) = Υλ,R

which indicates that uR is a minimizer of Υλ,R for every R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗

and λ > λ∗. Thereby, thanks to the Lagrange multiplier theorem, there is a µR ∈ R such that
(uR, µR) is a couple of weak solution to Problems (3.1)-(3.2).

Finally, to conclude the proof we are going to certify that uR is in fact positive in whole R2.
To see why, we recall that (uR, µR) is a couple of weak solution to Problems (3.1)-(3.2). Owing
to (f1), one sees that uR is nonnegative in R2. Moreover, (uR, µR) satisfies the equality below

−∆uR + V̂λ,R(x)uR = γ

[
ln

(
1 +

1

|x|

)
∗ |uR|2

]
uR + (µR + |µR|)uR + κfR(uR) in R2,

where
V̂λ,R(x) ≜ λV (x) + γ

[
ln(1 + |x|) ∗ |uR|2

]
(x) + |µR|, ∀x ∈ R2.

The following elementary ineuality

ln(1 + |x− y|) ≤ ln(1 + |x|) + ln(1 + |y|), ∀x, y ∈ R2,

implies that

V̂1(x) ≜
[
ln(1 + | · |) ∗ |uR|2

]
(x) =

∫
R2

ln(1 + |x− y|)|uR(y)|2 dy

≤ ln(1 + |x|)
∫
R2

|uR(y)|2 dy +
∫
R2

ln(1 + |y|)|uR(y)|2 dy.

By means of the fact that uR ∈ Xλ and |uR|2 = a, there is C > 0 such that

0 ≤ V̂1(x) ≤ a2 ln(1 + |x|) + C, ∀x ∈ R2,
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and so, V̂λ,R ∈ L∞
loc(R2) for all fixed R > R∗, κ ∈ (0, 1), γ ∈ (0, γ∗), a > a∗ and λ > λ∗. Using

the elliptic regularity theory, we know that uR ∈W 2,s(R2) for all s ∈ [2,+∞) and

−∆uR + V̂λ,R(x)uR ≥ 0 in D′(R2).

Consider V̂λ,R(x) ≥ 0 for all x ∈ R2 and the nonnegative uR ̸≡ 0, then we are able to exploit the
strong maximum principle developed by Gilbarg and Trundiger [40, Theorem 8.19] to conclude
that uR(x) > 0 for all x ∈ R2, proving the desired result. Then proof is completed. □

4. Proofs of the main results

In this section, we address the existence and concentration of positive solutions to the planar
Schrödinger-Poisson equation (1.1) under the mass-constraint (1.2).

4.1. Preliminary lemmas. First of all, there are some growth conditions for the nonlinearity
f and fR which play crucial roles in this section. It follows from (f1)− (f2) that

(4.1) lim
s→0+

fR(s)

s
= 0 and lim

s→0+

f(s)

s
= 0.

In fact, we are derived from (f1) and (f2) with q > 2 that

0 ≤ lim
s→0+

fR(s)

s
= lim

s→0+

f(s)

s
= lim

s→0+

f(s)

sq−1
sq−2 ≤ f(1) lim

s→0+
sq−2 = 0.

Combining (1.3) and (4.1), given a fixed ε > 0, for every p̄ > 2 and ν > 1, we are able to search

for two constants such that b̃1 = b̃1(p̄, α, ε) > 0 and b̃2 = b̃2(p̄, α, ε) > 0 satisfying

(4.2) |f(s)| ≤ ε|s|+ b̃|s|p̄−1(e4πνs
2 − 1), ∀s ∈ R,

and

(4.3) |F (s)| ≤ ε|s|2 + b̃|s|p̄(e4πνs2 − 1), ∀s ∈ R.
Because the nonlinearity f admits the critical exponential growth at infinity, we introduce

the famous Trudinger-Moser inequality found in [23,54,66].

Lemma 4.1. If α > 0 and u ∈ H1(R2), then∫
R2

(eα|u|
2 − 1)dx < +∞.

Moreover, if |∇u|22 ≤ 1, |u|22 ≤M < +∞ and α < 4π, then there exists Kα,M = K(M,α) such
that

(4.4)

∫
R2

(eα|u|
2 − 1)dx ≤ Kα,M .

Next, we recall from Theorem 3.1 that the minimization constant Υλ,R defined in (3.5) can
be achieved by some nontrivial function in Xλ for every fixed R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′),
a > a∗ and λ > λ∗. In other words, there is a function uR ∈ Xλ such that

(4.5) uR ∈ S(a) and Jλ,R(uR) = Υλ,R, ∀R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗.

Moreover, there is a µR ∈ R such that the couple (uR, µR) is a solution of Problems (3.1)-(3.2)
for all R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗, where uR(x) > 0 for all x ∈ R2.

According to the discussions in the Introduction, the reader could observe that if uR in (4.5)
satisfies |uR|∞ ≤ R, then uR is in fact a solution of the original Eq. (1.1) with µ = µR, thereby
it is available to arrive at the proof of Theorem 1.1. As a consequence, the foremost objection
for us is to take the L∞-estimate on uR.

For the purpose above, we firstly have the uniform estimate on |∇uR|22 below.
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Lemma 4.2. Suppose that V satisfies (V1)− (V3) and f meets (1.3) with (f1)− (f2). Let uR
be given by (4.5) for all R > R∗, a > a∗ and λ > λ∗, then there exist some κ∗ = κ∗(R) > 0
and γ∗ = γ∗(R) > 0 such that if κ ∈ (0, κ∗) and γ ∈ (0, γ∗), it holds that |∇uR|22 < 1

2ν2
for all

R > R∗, a > a∗ and λ > λ∗, where the constant ν > 1 is appearing in (4.2) and (4.3).

Proof. We continue to argue as in Lemma 3.2 to get

Jλ,R(u) ≥
1

2

∫
R2

|∇u|2 dx− γK0C
3
2a3

(∫
R2

|∇u|2 dx
) 1

2

− κCf(R)a(1−γq)q

Rq−1q

(∫
R2

|∇u|2 dx
) γqq

2

for all u ∈ S(a). Since γqq < 2, taking Young’s inequality into account, there are two constants
c1, c2 > 0, independent of R > R∗ and λ > λ∗, such that

κCf(R)a(1−γq)q

Rq−1q

(∫
R2

|∇u|2 dx
) γqq

2

≤ c1

[
κCf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

+
1

8

∫
R2

|∇u|2 dx

and

γK0C
3
2a3

(∫
R2

|∇u|2 dx
) 1

2

≤ c2(γK0C
3
2a3)2 +

1

8

∫
R2

|∇u|2 dx.

Therefore, for the minimizer uR of Υλ,R = min
u∈S(a)

Jλ,R(u) in (3.5), we obtain

|∇uR|22 ≤ 4Jλ,R(uR) + 4c1

[
κCf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

+ 4c2(γK0C
3
2a3)2,

for all R > R∗ and λ > λ∗. Assuming that

c1

[
κCf(R)a(1−γq)q

Rq−1q

] 2
2−γqq

≤ 1

16ν2
and c2(γK0C

3
2a3)2 ≤ 1

16ν2
,

and taking advantage of Lemma 3.3 to get

|∇uR|22 ≤
1

2ν2
, ∀R > R∗ and λ > λ∗.

Now, we can fix the constant κ∗ = κ∗(R) and γ∗ = γ∗(R) by

(4.6) κ∗ = min

 Rq−1q

Cf(R)a(1−γq)q

(
1

16ν2c1

) 2−γqq

2

, 1

 and γ∗ = min

{
1

4ν
√
c2K0C

3
2a3

, γ′, 1

}
to meet the requirement. So, the proof is done by the choices of κ∗ and γ∗ above. □

Taking the study made above into account, we are ready to conclude this section by showing
our main estimate for |uR|∞.

Lemma 4.3. Suppose that V satisfies (V1)− (V3) and f meets (1.3) with (f1)− (f3). Let uR
be given by (4.5) for all R > R∗, κ ∈ (0, 1), γ ∈ (0, γ′), a > a∗ and λ > λ∗, then for every fixed
κ ∈ (0, κ∗) and γ ∈ (0, γ∗), there exists a M > 0 independent of R > R∗ and λ > λ∗ such that
|uR|∞ ≤M .

Proof. In order to show the proof clearly, we are going to divide the proof into several different
parts. First of all, we have the following two claims.

Claim 4.4. There is a K1 > 0 independent of R > R∗ and λ > λ∗ such that

|f(uR)|2 ≤ K1, ∀R > R∗, κ ∈ (0, κ∗), γ ∈ (0, γ∗), a > a∗ and λ > λ∗.



CONCENTRATING NORMALIZED SOLUTIONS TO PLANAR SCHRÖDINGER-POISSON... 17

Actually, according to |uR|22 = a2 and (4.2), to arrive at the proof of this claim, it suffices to

look for a constant C > 0 independent of R > R∗ and λ > λ∗ such that |up̄−1
R e4πνu

2
R |2 ≤ C for

all fixed κ ∈ (0, κ∗), γ ∈ (0, γ∗) and a > a∗, where p̄ > 2. It then concludes from the Hölder’s
inequality together with (1.16) with l = p̄′ that∫

R2

|uR|2(p̄−1)e4πνu
2
Rdx ≤

(∫
R2

|uR|4(p̄−1)dx

) 1
2
(∫

R2

e8πνu
2
Rdx

) 1
2

≤
√
C|uR|

(1−γp̄′ )p̄
′

2
2 |∇uR|

γp̄′ p̄
′

2
2

(∫
R2

e4πν
−1ū2

Rdx

) 1
2

,

where

p̄′ = 4(p̄− 1) and ūR =
√
2νuR.

Since |ūR|22 = 2ν2a2 and |∇ūR|22 = 2ν2|∇uR|22 ≤ 1 for all R > R∗ and λ > λ∗ by Lemma 4.2.
the claim is done by (4.4).

Claim 4.5. For all fixed κ ∈ (0, κ∗), γ ∈ (0, γ∗) and a > a∗, then the Lagrange multiplier µR
is uniformly bounded with respect to R > R∗ and λ > λ∗. In other words, there is a constant
Γ > 0 independent of R and λ such that |µR| ≤ Γ for all κ ∈ (0, κ∗), γ ∈ (0, γ∗) and a > a∗.

Indeed, recalling J ′
λ,R(uR)−µRuR = 0 in X−1

λ , we can combine Lemma 3.3, Lemma 2.1-(iii)

and (1.12) with 2 < q < 4 to have that

0 > Υλ,R = Jλ,R(uR)

= Jλ,R(uR)−
1

q

{∫
R2

[|∇uR|2 + λV (x)|uR|2]dx+ γV0(uR)− κ

∫
R2

fR(uR)uR dx− µRa
2

}
≥ q − 4

4q
γ[V1(uR)− V2(uR)] +

µR
q
a2 ≥ q − 4

4q
γV1(uR) +

1

4
µRa

2,

from where it follows that

µR ≤ 4− q

qa2
γV1(uR).

According to the definition of uR in Section 3, it is the weak limiting, actually strong limiting,
of the minimizing sequence {un} ⊂ S(a) of Υλ,R, then it follows from the Fatou’s lemma, (1.12)
and (3.18) that

µR ≤ 4− q

qa2
lim inf
n→∞

γV1(un) ≤
4− q

qa2

{
γV2(uR) + qκ

∫
R2

fR(uR)uR dx

}
≤ 4− q

qa2

{
K0|uR|48

3

+ q|fR(uR)|2|uR|2
}
≤ 4− q

qa2

{
K0C

3
2 |uR|32|∇uR|2 + q|fR(uR)|2|uR|2

}
,

where we have applied (2.1) and (1.16) with l = 8
3 to the last inequality. Taking into account

J ′
λ,R(uR)− µRuR = 0 in X−1

λ again, we easily conclude that

µR =
1

a2

{∫
R2

[|∇uR|2 + λV (x)|uR|2]dx+ γV0(uR)− κ

∫
R2

fR(uR)uR dx

}
≥ − 1

a2

{
V2(uR) +

∫
R2

fR(uR)uR dx

}
≥ − 1

a2

{
K0|uR|48

3

+ |fR(uR)|2|uR|2
}

≥ − 1

a2

{
K0C

3
2 |uR|32|∇uR|2 + |fR(uR)|2|uR|2

}
.

The above two facts together with Lemma 4.2 and Claim 4.4 reveal this claim immediately.
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Secondly, because V (x) ≥ 0 for every x ∈ R2, we make full use of Lemmas 2.3 and 4.2 jointly
with Claim 4.5 to determine a constant Π > 0, independent of R > R∗ and λ > λ∗, such that
the function uR(x) > 0 for all x ∈ R2 must satisfy

(4.7)

{
−∆uR + uR ≤ ΠuR + f(uR), in R2,
uR > 0, in R2,

Taking advantage of the Lax-Milgram theorem combined with Claim 4.4, there exists a function
wR ∈ H2(R2) ∩H1(R2) such that it is a solution of the problem

(4.8)

{
−∆wR + wR ≤ ΠuR + f(uR), in R2,
wR > 0, in R2,

for each R > R∗ and λ > λ∗. With problems (4.7) and (4.8) in hands, we then take the claim:

Claim 4.6. For all R > R∗ and λ > λ∗, it holds that

0 < uR(x) ≤ wR(x), ∀x ∈ R2.

In fact, let us fix the test function

ϕ(x) = (uR − wR)
+(x) ∈ H1(R2).

Muitiplying this function ϕ on both sides of −∆(uR −wR)+ (uR −wR) ≤ 0 in R2, we shall get
the following inequality ∫

R2

[∇(uR − wR)∇ϕ+ (uR − wR)ϕ]dx ≤ 0.

An elementary computation gives us that∫
R2

[|∇(uR − wR)
+|2 + |(uR − wR)

+|2]dx = 0

yielding the claim.
Finally, we are ready to conclude the proof of this lemma. Thanks to the powerful theorem,

c.f. [22, Theorem 9.25], there is K2 > 0 independent of R > R∗ and λ > λ∗ such that

∥wR∥H2 ≤ K2|fR(uR)|2, ∀R > R∗ and λ > λ∗.

which leads to

∥wR∥H2 ≤ K3, ∀R > R∗ and λ > λ∗,

for some K3 > 0 independent of R > R∗ and λ > λ∗. According to the continuous embedding
H2(R2) ↪→ L∞(R2), there is K4 > 0 independent of R > R∗ and λ > λ∗ such that

|wR|∞ ≤ K4, ∀R > R∗ and λ > λ∗.

From which, we are derived from Claim 4.6 that

|uR|∞ ≤M, ∀R > R∗ and λ > λ∗.

Thereby, we finish the proof of this lemma. □
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4.2. Proof of Theorem 1.1. According to the above discussions, we derive the proof of
Theorem 1.1 by fixing R > {R∗,M}, because in this case the function uR ∈ S(a) is a positive
solution of Eq. (1.1) with µ = µR for all κ ∈ (0, κ∗), γ ∈ (0, γ∗), a > a∗ and λ > λ∗. Thereby,
the proof is completed.

At this stage, we are going to contemplate the asymptotical behavior of normalized solutions
of Eq. (1.1) obtained in Theorem 1.1 as λ→ +∞.

Before showing the proof of Theorem 1.2, using the same constant R > 0 determined in the
proof of Theorem 3.1, we need the variational functionals below

JΩ(u) =
1

2

∫
Ω
|∇u|2dx+

γ

4
V0|Ω(u)− κ

∫
Ω
F (u)dx,

JΩ,R(u) =
1

2

∫
Ω
|∇u|2dx+

γ

4
V0|Ω(u)− κ

∫
Ω
FR(u)dx,

∀u ∈ H1
0 (Ω),

where the functional V0|Ω : H1
0 (Ω) → R which is defined by V0|Ω = V1|Ω − V2|Ω with

V1|Ω(u) ≜
∫
Ω

∫
Ω
ln(1 + |x− y|)u2(x)u2(y)dxdy,

V2|Ω(u) ≜
∫
Ω

∫
Ω
ln

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy,

∀u ∈ H1
0 (Ω).

Since meas(Ω) < +∞, there is a constant ϱ > 0 such that Ω ⊂ Bϱ(0) and so

0 ≤ ln(1 + |x− y|) ≤ ln(1 + 2ϱ), ∀x, y ∈ Ω

indicating that V1|Ω is well-defined and of class of C1(H1
0 (Ω),R) endowed with its usual norm.

Moreover, we define the minimization problems associated with (1.15) by

ΥΩ,R ≜ inf
u∈SΩ(a)

JΩ,R(u) and ΥΩ ≜ inf
u∈SΩ(a)

JΩ(u)

where

SΩ(a) =

{
u ∈ H1

0 (Ω) :

∫
Ω
u2dx = a2

}
.

Now, we are in a position to present the proof of Theorem 1.2.

4.3. Proof of Theorem 1.2. Let (uλ, µλ) ∈ Xλ×R be a couple of weak solution to Problems
(1.1)-(1.2), choosing a subsequence λn → +∞ as n → ∞, we denote {(uλn , µλn)} by a
subsequence of {(uλ, µλ)}. In view of the proofs of Lemmas 4.2 and 4.3, we know that

(4.9) sup
n∈N

|∇uλn |22 ≤
1

2ν2
and sup

n∈N
|uλn |∞ ≤M.

Moreover, due to the proof of Lemma 3.8, we conclude that ∥uλn∥Xλn
is uniformly bounded in

n ∈ N since we have showed the constant ΘR < 0 in Lemma 3.3 is independent of λ. Going to
a subsequence if necessary, there is a u0 ∈ X such that uλn ⇀ u0 in X, uλn → u0 in Ls(R2)
for all 2 ≤ s < ∞ by Lemma 2.1-(i) and uλn → u0 a.e. in R2 as n → ∞. Obviously, we have
u0 ∈ S(a) since {uλn} ⊂ S(a). Recalling Claim 4.5, it permits to suppose that µλn → µ0 along
a subsequence. As a consequence, we shall conclude that (u0, µ0) is a couple of weak solution
to Problem (1.15).

Claim 4.7. u0 ≡ 0 in Ωc ≜ R2\Ω and so u0 ∈ SΩ(a).
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Otherwise, there exists a compact subset Ω̂u0 ⊂ Ωc with dist(Ω̂u0 , ∂Ω
c) > 0 such that u0 ̸= 0

on Ω̂u0 and by Fatou’s lemma

(4.10) a2 = lim inf
n→∞

∫
R2

u2λn
dx ≥

∫
Θ̂u0

u0
2dx > 0.

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for every x ∈ Ω̂u0 by the assumptions (V1)
and (V2). Combining Lemma 3.3, (1.12), (3.18), Claim 4.5 and (4.10), we derive

0 ≥ lim inf
n→∞

Υλn,R = lim inf
n→∞

Jλn,R(uλn)

= lim inf
n→∞

{
Jλn,R(uλn)−

1

q

{∫
R2

[|∇uλn |2 + λnV (x)|uλn |2]dx+ γV0(uλn)

− κ

∫
R2

fR(uλn)uλn dx− µλna
2

}}
≥ q − 2

2q
ε0

(∫
Θ̂u0

u20dx

)
lim inf
n→∞

λn + lim inf
n→∞

[
q − 4

4q
V1(uλn) +

1

q
µλna

2

]
= +∞

which is impossible. Consequently, u0 ∈ H1
0 (Ω) by the fact that ∂Ω is smooth.

Claim 4.8. JΩ(u0) = ΥΩ.

Indeed, since (4.9) gives us that FR = F and then JΩ,R = JΩ. Obviously, SΩ(a) ⊂ S(a) and
so uλn → u0 in Ls(R2) for each 2 ≤ s <∞ and the Fatou’s lemma provide us that

ΥΩ ≥ lim inf
n→∞

Jλn,R(uλn)

≥ lim inf
n→∞

{
1

2

∫
R2

|∇uλn |2dx+
γ

4
V0(uλn)− κ

∫
R2

FR(uλn)dx

}
≥ JΩ,R(u0) = JΩ(u0) ≥ ΥΩ

indicating that uλn → u0 in X and JΩ(u0) = ΥΩ.
Finally, we shall prove that J ′

Ω(u0)−µ0u0 = 0 in (H1
0 (Ω))

−1. To see it, for every ψ ∈ C∞
0 (Ω),

it follows from Lemma 2.1-(iii) as well as Lemma 2.2 that

V ′
1(uλn)[ψ]− V ′

1(u0)[ψ] = 4B1(u
2
λn
, unψ)− 4B1(u

2
0, u0ψ)

= 4B1(u
2
λn
, (un − u0)ψ) + 4B1(u

2
λn

− u20, u0ψ)

= on(1).

Using Lemma 2.1-(i) and (iv),∣∣V ′
2(uλn)[ψ]− V ′

2(u0)[ψ]
∣∣ ≤ 4

∣∣B2(u
2
λn
, (un − u0)ψ)

∣∣+ 4
∣∣B2(u

2
λn

− u20, u0ψ)
∣∣

≤ 4K0|uλn |28
3

|(un − u0)ψ|28
3

+ 4K0|u2λn
− u20|28

3

|u0| 8
3
|ψ| 8

3

= on(1).

As a direct byproduct of the above two facts and

lim
n→∞

{
J ′
λn,R(uλn)[ψ]− µλn

∫
R2

uλnψdx

}
= 0, ∀ψ ∈ C∞

0 (Ω),

we can arrive at the desired result. The proof is completed.
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References

[1] N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004),
423–443. 3

[2] Adimurthi, S.L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of R2

involving critical exponent, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17 (1990), no. 4, 481–504. 2
[3] F.S. Albuquerque, J.L. Carvalho, G.M. Figueiredo, E. Medeiros, On a planar non-autonomous Schrödinger-

Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021),
no. 1, Paper No. 40, 30 pp. 6
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