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Abstract. We study the following Schrödinger-Poisson system involving critical nonlocal term with
indefinite steep potential well{

−∆u+ (λV (x)− µ)u− ϕ|u|3u = f(u), x ∈ R3,
−∆ϕ = |u|5, x ∈ R3,

where λ > 0 is a parameter, V ∈ C(R3,R+) admits a potential well Ω ≜ intV −1(0), and µ > µ1 is a

constant such that the operator Lλ ≜ −∆+ λV − µ is non-degenerate when λ is large enough with
{µj}∞j=1 denoting the Dirichlet eigenvalues of (−∆, H1

0 (Ω)). If f satisfies some suitable assumptions
involving critical growth, with the help of a linking-type result involving the modified Pankov-Nehari
manifold procedure, we establish the existence and concentrating behavior of positive solutions for
the given system using variational methods.

1. Introduction

1.1. Overview. Due to the real physical meaning, the following Schrödinger-Poisson system

(1.1)

{
−∆u+ V (x)u+ ϕu = f(x, u), x ∈ R3,
−∆ϕ = u2, x ∈ R3,

proposed by Benci-Fortunato [10] was used to describe solitary waves for nonlinear Schrödinger type
equations and search for the existence of standing waves interacting with an unknown electrostatic
field. We refer the reader to [10,31] and the references therein to get more physical background of it.
In recent years, by classical variational methods, there exist many interesting works concerning the
(non)existence of nontrivial solutions, multiple solutions, sign-changing solutions and semiclassical
states to the system with some different assumptions on the potential V and the nonlinearity f , see
e.g. [15, 16,20,23,38,41,44,47] and the references therein.

Nevertheless, the results for the generalized Schrödinger-Poisson system below

(1.2)

{
−∆u+ V (x)u+ εϕg(u) = f(x, u), x ∈ R3,
−∆ϕ = 2εG(u), x ∈ R3,

are not as fruitful as problem (1.1), where ε ∈ R, G(t) =
´ t
0 g(z)dz and |g(t)| ≤ C(|t|+ |t|s) with

s ∈ [1, 4), see [3] for instance. Given a constant R > 0, denoting µ0 to be the principle eigenvalue of
(−∆, H1

0 (BR(0)), Azzollini-d’Avenia [2] investigated the existence of positive ground state solutions
for the following Schrödinger-Poisson system

(1.3)

 −∆u = µu+ εϕ|u|3u, x ∈ BR(0),
−∆ϕ = ε|u|5, x ∈ BR(0),
u = ϕ = 0, on ∂BR(0),
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where µ ∈ (3µ010 , µ0) and ε > 0. They also considered the nonexistence of nontrivial solutions when

µ ≤ 0. Note that although the second equation can be solved by a Green function, the term ε|u|5
results in a critically nonlocal nonlinearity in (1.3). After it, by introducing a cut-off function (see
e.g. [22]) and utilizing a monotonic trick developed by L. Jeanjean [21], for sufficiently small ε > 0
and ε = −1, the authors in [26] proved that

(1.4)

{
−∆u+ V (x)u+ εϕ|u|3u = f(u), x ∈ R3,
−∆ϕ = |u|5, x ∈ R3,

possesses at least a positive radially symmetric solution if V > 0 is a constant. When V ≡ 1 and
f(u) = σ|u|q−1u with σ ≥ 0 and q ∈ [1, 5] in (1.4), authors in [27] contemplated the nonexistence,
existence, multiplicity and asymptotically behavior of nontrivial solutions for some ε ∈ R, respectively.

In [32], employing the mountain-pass theorem and the concentration-compactness principle, Liu
studied the existence of positive solutions of the Schrödinger-Poisson system{

−∆u+ V (x)u−K(x)ϕ|u|3u = f(x, u), x ∈ R3,
−∆ϕ = K(x)|u|5, x ∈ R3,

where V , K and f are asymptotically periodic functions with respect to the variable x ∈ R3.
In [18], Feng considered the existence of positive ground state solutions to the nonlinear Schrödinger-

Poisson system {
−∆u+ V (x)u− ϕ|u|3u = |u|4u+ g(u), x ∈ R3,
−∆ϕ = |u|5, x ∈ R3,

where V (x) = x21 + x22 + 1 is a partially periodic potential for all x = (x1, x2, x3) ∈ R3, and g is an
appropriate nonlinear function involving subcritcal growth. By assuming

(V̄ ) V∞ ≜ lim inf
|x|→∞

V (x) > V0 ≜ inf
x∈R3

V (x) > 0,

the author in [19] investigated the existence and concentration of ground state solutions of{
−ϵ2∆u+ V (x)u− ϕ|u|3u = |u|4u+ g(u), x ∈ R3,
−ϵ2∆ϕ = |u|5, x ∈ R3,

where ϵ > 0 is a parameter and g ∈ C(R,R) is a subcritical nonlinearity satisfying (AR) and (Ne)
(see Remark 1.3 below). There are also some other interesting works on system (1.3) or (1.4), we
refer the reader to [4, 25,48] and the references therein.

If ε = 0 and replacing V (x) with λV (x)− µ in (1.2), it comes from the Schrödinger equation

(1.5) −∆u+ (λV (x)− µ)u = f(x, u), x ∈ RN ,

where λ > 0 is a parameter, µ ∈ R is a constant such that the operator Lλ ≜ ∆ + λV (x) − µ is
non-degenerate for λ large, V ∈ C(RN ,R) and f ∈ C(RN × R,R). In the pioneer work [5], Bartsch
and Wang supposed that µ = −1 and V satisfies

(V1) V ∈ C(RN ,R) with V (x) ≥ 0 for all x ∈ RN ;
(V2) there is a constant M > 0 such that the set Σ ≜ {x ∈ RN : V (x) < M} is nonempty and has

finite measure;
(V3) Ω ≜ intV −1(0) is nonempty, where V −1(0) ≜ {x ∈ RN : V (x) = 0},

then established the existence and multiplicity nontrivial solutions to Eq. (1.5) under some mild
subcritical conditions on f for some large λ. In particular, if f(x, t) = |t|p−2t with 2 < p < 2∗ for all
(x, t) ∈ ×RN × R, Bartsch and Wang [7] assumed (V1)− (V2) and

(V4) Ω ≜ intV −1(0) is a nonempty set with smooth boundary and Ω = V −1(0);

to obtain the existence and concentration of ground state solutions for large λ. Meanwhile, by using
the Lusternik-Schnirelmann theory, they derived the multiple positive solutions to Eq. (1.5). The
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assumptions like (V1)− (V2) and (V3), or (V4), were proposed by Bartsch et al. in [5–7] to study the
nonlinear Schrödinger equation. Obviously, the harmonic trapping potential

V (x) =


N∑
i=1

ωi|xi|2 − ω, if |(√ω1x1,
√
ω2x2, · · · ,

√
ωNxN )|2 ≥ ω,

0, if |(√ω1x1,
√
ω2x2, · · · ,

√
ωNxN )|2 ≤ ω,

with ω > 0 satisfying (V1) − (V4), where ωi > 0 is called by the anisotropy factor of the trap in
quantum physics and trapping frequency of the ith-direction in mathematics, see e.g. [9, 12]. Indeed,
the potential λV with the above hypotheses is usually known as the steep potential well.

Concerning the critical case of (1.5) with steep potential well, Clapp-Ding [14] supposed f(x, u) =
|u|2∗−2u with 2∗ = 2N/(N−4) and N ≥ 4 to established the existence, multiplicity and concentration
of positive solutions for all µ > 0 small and λ > 0 large enough, where (V1)− (V2) are assumed and

(V5) Ω ≜ intV −1(0) is a nonempty and bounded set with smooth boundary and Ω = V −1(0).

Subsequently, Tang [43] improved and generalized the results in [14] by replacing (V2) with a stronger
condition

(V6) V∞ ≜ lim inf
|x|→+∞

V (x) > 0.

As to N = 3 in the critical case of (1.5) with steep potential well (V1)− (V2) and (V4), by letting
µ = −1, Zhang-Zou [46] proved the existence and concentration of positive ground state solutions
for λ > 0 sufficiently large by means of the penalized procedure. For µ > 0 large enough, as an
application of the modified Nehari-Pankov manifold method developed in [35], Li et al. [29] supposed
(V1) and (V5)− (V6) to study the existence and concentration of ground state solutions for Eq. (1.5)
with a critical convolution nonlinearity.

1.2. Functional framework. Before stating the main results in this article, we introduce several
notations and definitions. Let (X, ∥·∥X) be a Banach space with its dual space (X−1, ∥·∥X−1), and Φ
be its functional on X. The Cerami sequence at a level c ∈ R ((C)c sequence in short) corresponding
to Φ means that Φ(xn) → c and ∥Φ′(xn)∥X−1)(1 + ∥xn∥X) → 0 as n → ∞, where {xn} ⊂ X. If
for each (C)c sequence {xn} in X, there exists a subsequence {xnk

} such that xnk
→ x0 in X for

x0 ∈ X, then we can say that the functional Φ satisfies the so-called (C)c condition. The space
Lp(R3) denotes the usual Lebesgue space with the norm | · |p with 1 ≤ p ≤ +∞.

Throughout this paper, we denote H1(R3) by a Hilbert space equipped with the following inner
product and norm

(u, v)H1(R3) =

ˆ
R3

(
∇u∇v + uv

)
dx and ∥u∥H1(R3) =

√
(u, u)H1(R3).

Taking µ > µ1 into account, motivated by [37], we shall introduce a new work space as the operator

Lλ is indefinite. Let Vλ(x) ≜ λV (x)− µ and V ±
λ (x) = max{±Vλ(x), 0} ≥ 0, define the space

Xλ ≜

{
u ∈ H1(R3) :

ˆ
R3

V +
λ (x)|u|2dx < +∞

}
which is a Hilbert space with the inner product and norm

(u, v)Xλ
≜
ˆ
R3

[∇u∇v + V +
λ (x)uv]dx and ∥u∥Xλ

≜
√

(u, u)Xλ
.

According to Lemma 2.1 below, we conclude that (Xλ, ∥ · ∥Xλ
) can be continuously embedded into

(H1(R3), ∥ · ∥H1(R3)) for some large λ > 0.
On the other hand, the operator Lλ = −∆+Vλ is self-adjoint with domain D(Lλ) = Xλ and as we

will see in Section 2, Lλ is invertible when λ > 0 is suitably large. So, it holds that Xλ = X−
λ ⊕X+

λ ,

where Lλ is positive definite on the infinite dimensional space X+
λ and negative definite on the finite
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dimensional space X−
λ . Hereafter, let us denote P

±
λ by the orthogonal projections from Xλ to X±

λ

with the decomposition Xλ = X−
λ ⊕X+

λ , respectively. What’s more, the projections P−
λ and P+

λ are
also orthogonal with respect to L2-inner product. For any u ∈ Xλ, setting

∥u∥2Lλ
= ∥P+

λ u∥
2
Lλ

+ ∥P−
λ u∥

2
Lλ
,

where 
∥P+

λ u∥
2
Lλ

=

ˆ
R3

[
|∇P+

λ u|
2 + (λV (x)− µ)|P+

λ u|
2
]
dx, ∀u ∈ Xλ,

∥P−
λ u∥

2
Lλ

= −
ˆ
R3

[
|∇P−

λ u|
2 + (λV (x)− µ)|P−

λ u|
2
]
dx, ∀u ∈ Xλ.

Particularly, one may observe thatˆ
R3

[
|∇u|2 + (λV (x)− µ)|u|2

]
dx = ∥P+

λ u∥
2
Lλ

− ∥P−
λ u∥

2
Lλ
.

We note that the norm ∥ · ∥Xλ
is equivalent to ∥ · ∥Lλ

for some large λ > 0, see Lemma 2 below.

1.3. Main results. In the present paper, we focus on the following Schrödinger-Poisson system
involving critical nonlocal term

(1.6)

{
−∆u+ (λV (x)− µ)u− ϕ|u|3u = f(u), x ∈ R3,
−∆ϕ = |u|5, x ∈ R3,

where λ > 0 is a parameter, V ∈ C(R3,R+) admits a potential well Ω ≜ intV −1(0), and µ > µ1 is a

constant such that the operator Lλ ≜ −∆+λV (x)−µ is non-degenerate when λ large. More precisely,
we always suppose that µ > µ1 and µ ≠ µj for every j ∈ N+, where {µj}∞j=1 denotes the Dirichlet

eigenvalues of (−∆, H1
0 (Ω)). Let {ej}∞j=1 be the corresponding eigenfunctions of L0 = −∆− µ in

H1
0 (Ω). It is clear that

(1.7) 0 < µ1 < · · · < µj < µj+1 < · · · and µj → +∞ as j → +∞,

where each µj has been repeated in the sequence according to its finite multiplicity. When µ ̸∈ {µj}∞j=1

and µ > µ1, under some suitable assumptions on f with critical growth, we study the existence
and concentrating behavior of positive solutions for (1.6). We shall get existence and concentrating
behavior of positive solutions for (1.6). From now on until the end of the paper, we would always
suppose that the assumptions (V1) and (V5)− (V6) hold true in R3. As to the nonlinearity f , it is
assumed that

f(t) =

{
g(t) + t5, if t > 0,
0, if t ≤ 0,

where g ∈ C0(R,R) vanishes in (−∞, 0] and satisfies

(g1) g(t) = o(t) as t→ 0;
(g2) there are C0 > 0 and p ∈ (2, 6) such that |g(t)| ≤ C0(1 + |t|p−1) for any t ∈ R;
(g3) there is η > 2 such that g(t)t ≥ ηG(t) > 0 for all t ∈ R, where G(t) =

´ t
0 g(z)dz;

(g4) there are r ∈ (4, 6), A > 0 and B > 0 such that G(t) ≥ A|t|r −B|t|2 for any t ∈ R.
We obtain the following result.

Theorem 1.1. Suppose (V1) and (V5)− (V6) as well as and (g1)− (g4) hold true, then there is a
constant Λ∗ > 0 such that (1.6) has a nontrivial solution (uλ, ϕuλ) ∈ Xλ ×D1,2(R3) for all λ > Λ∗.

It is very natural to wonder that whether the obtained solution in Theorem 1.1 is a ground state
solution. Thus, our next aim concerns this issue and try to give an affirmative answer to the question.

Theorem 1.2. Under the assumptions of Theorem 1.1, if in addition we suppose that

(g5) if g(t)s = g(s)t > 0, then G(t)−G(s) ≤ 1
2 [g(t) + g(s)](t− s) for all t, s ∈ R,
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then the solution obtained in Theorem 1.1 is a ground state for all λ > Λ∗.

Remark 1.3. The term |u|4u in the nonlinearity f(u) = g(u)+ |u|4u and the critically nonlocal term
ϕu|u|3u lead to system (1.6) has doubly critical growth, see [19] for instance. The assumption (g4) is
mainly exploited to estimate the critical value by pulling it down to a particular constant which is
independent of λ. As a direct byproduct, we shall combine (g3) and (g4) to verify that every (C)
sequence at this level is uniformly bounded in Xλ. It is worthy pointing out that the assumptions
(g3) and (g4) can be replaced with the following stronger Ambrosetti-Rabinowitz condition (which
plays a vital role in [19])

(AR) there exists a constant η > 4 such that g(t)t ≥ ηG(t) > 0 for all t ∈ R.
The reader is invited to see that (g5) is weaker than the following Nehari type monotone condition

(Ne) the function g(t)/|t| in nondecreasing for all t ∈ R\{0}.
Indeed, without loss of generality, we suppose that t > s > 0 in (g5). By (Ne), if g(t)s = g(s)t > 0,
one has

G(t)−G(s) =

ˆ t

s

g(z)

z
zdz ≤ g(t)

t

ˆ t

s
zdz =

g(t) + g(s)

t+ s

ˆ t

s
zdz =

[g(t) + g(s)](t− s)

2
.

As a consequence, the approach adopted in [19] would be unapplicable to our problem and there is a
new analytic technique to show that the (C) sequence is uniformly bounded. We highlight that the
assumptions (g1)− (g5) are suitable for the nonlinearity g(t) = |t|p−2t for all t ∈ R with 4 < p < 6.

Remark 1.4. To find a ground state solution for the indefinite variational problems, it is known that
the Nehari-Pankov manifold procedure introduced by Pankov in [36], later developed by Szulkin-Weth
in [42], is an effective and important method, see [1,29,43] for example. The authors in [35] proposed
a modified Nehari-Pankov manifold idea to investigate the concentrating behavior of ground state
solution for indefinite problems with steep potential well. Alternatively, the doubly critical growth
and the nonlinearity f ∈ C(R) appearing in system (1.6) prevent us repeating the relevant arguments
in [1,29,35,42]. Hence, some interesting tricks would be proposed in this paper to conclude Theorems
1.1 and 1.2, respectively.

To derive the proofs of Theorems 1.1 and 1.2, we firstly take advantage of the arguments introduced
in [33, Theorem 2.1] (see also [8,24,28,45] for example) to construct a (C)c sequence of the variational
functional Jλ : Xλ → R defined by

(1.8) Jλ(u) =
1

2

ˆ
R3

[
|∇u|2 + Vλ(x)u

2
]
dx− 1

10

ˆ
R3

ϕu|u|5dx−
ˆ
R3

F (u)dx, ∀u ∈ Xλ.

In order to explain it clearly, given a Hilbert space and a variational functional Ψ ∈ C1(E,R), we
denote un

T−→ u by the convergence of a sequence in topology T and suppose that

(A1) Ψ is T -upper semicontinuous, that is, Ψ−1([t,∞)) is T -closed for any t ∈ R;
(A2) Ψ′ is T -to-weak∗ continuous in Ψ−1([0,∞)), that is, Ψ′(un)⇀ Ψ′(u0) provided that un

T−→ u0
and Ψ(un) ≥ 0 for each n ∈ N;

(A3) There exists r > 0 such that m ≜ inf
{u∈Z:∥u∥E=r}

Ψ(u) > 0, where E = Y ⊕ Z;

(A4) For every u ∈ E\Y , there exists an R = R(u) > r such that sup
∂M(u)

Ψ ≤ Ψ(0) = 0, where

M(u) ≜
{
tu+ v ∈ E : v ∈ Y, ∥tu+ v∥E ≤ R, t ≥ 0

}
.

The following result can be found in [33, Theorem 2.1].

Proposition 1.5. If Ψ ∈ C1(E,R) satisfies (A1)− (A4), then there is a (C) sequence {un} at the
level

c = inf
E\Y

inf
h∈Γ(u)

sup
u′∈M(u)

Ψ(h(u′, 1)),
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where Γ(u) consists of h ∈ C(M(u)× [0, 1]) satisfying the following conditions

(h1) h is T -continuous with respect to norm ∥ · ∥T ;
(h2) h(u, 0) = u for all u ∈M(u);
(h3) Ψ(u) ≥ Ψ(h(u, t)) for all (u, t) ∈M(u)× [0, 1];
(h4) each (u, t) ∈ M(u) × [0, 1] has an open neighborhood W in the product topology of (E, T )

and [0, 1] such that the set {v − h(v, s) : (v, s) ∈W ∩ (M(u)× [0, 1])} is contained in a finite
dimentional subsequence of E.

Suppose in addition that

(A5) If u ∈ M ≜ {u ∈ E\Y : Ψ′(u)(u) = 0 and Ψ′(u)(v) = 0 for any v ∈ Y }, then for all v ∈ Y
and t ≥ 0, there holds Ψ(u) ≥ Ψ(tu+ v),

then it holds that

c ≤ cM ≜ inf
v∈M

Ψ(v).

Moreover, if c ≥ Ψ(u) for some critical point u ∈ E\Y , then c = cM = Ψ(u).

With Proposition 1.5 in hands, we are able to exhibit the detailed proofs of Theorems 1.1 and 1.2
by setting E = Xλ, Y = X−

λ , Z = X+
λ and Ψ = Jλ, respectively. Actually, if we can verify that the

variational functional Jλ satisfies the (C) condition for some suitably large λ > 0, then the proofs
become available. Nevertheless, the above choices of Y and Z would prevent us contemplating the
asymptotical behavior of the obtained solution when λ→ +∞. As a consequence, motivated by [35]
we shall reconstruct the pair Y and Z to reach our another aim in this paper.

According to (1.7), there is a j0 ∈ N+ such that 0 < µ1 < µ2 < · · · < µj0 < µ < µj0+1 < · · · . We
recall that {ej}∞j=1 are the corresponding eigenfunctions of L0 = −∆− µ in H1

0 (Ω) and define

X−
0 ≜ span{e1, e2, · · · , ej0} and X−

0 ≜ span{ej0+1, ej0+2, · · · },

then H1
0 (Ω) = X−

0 ⊕X+
0 . Moreover, one knows that L0 is negative and positive definite on X−

0 and
X+

0 , respectively. For each ej ∈ H1
0 (Ω) with j ∈ {1, 2, · · · , j0}, we denote by ẽj ∈ H1(R3) its trivial

extension, namely

(1.9) ẽj ≜

{
ej in Ω,

0 in Ωc = {x : x ∈ R3\Ω}.

We now define

X̃−
0 ≜ span{ẽ1, ẽ2, · · · , ẽj0} and X̃+

0 = (X̃−
0 )⊥

indicating that Xλ = X̃−
0 ⊕ X̃+

0 and we shall denote P̃±
λ by the corresponding orthogonal projections

from Xλ to X̃±
0 with such a decomposition.

At this stage, we are going to choose (E, ∥ · ∥E) = (Xλ, ∥ · ∥Lλ
), Y = X̃−

0 , Z = X̃+
0 and Ψ = Jλ in

Proposition 1.5, respectively. Moreover, we define the ground state energy by

dλ ≜ inf
u∈Mλ

Jλ(u),

where and in the sequel

Mλ = {u ∈ Xλ\X̃−
0 : J ′

λ(u)(u) = 0 and J ′
λ(u)(v) = 0 for any v ∈ X̃−

0 }.

As a consequence, we are in a correct direction arrive at the proofs of Theorems 1.1 and 1.2 which
enable us to contemplate the asymptotical behavior of the obtained solution as follows.
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Theorem 1.6. Under the assumptions of Theorem 1.1 above and let (uλ, ϕuλ) ∈ Xλ ×D1,2(R3) be
a nontrivial solution of (1.6) for all λ > Λ∗. Then, passing to a subsequence if necessary, it holds
that uλ → u0 in H1(R3) and ϕuλ → ϕu0 in D1,2(R3), where (u0, ϕu0) is a solution of

(1.10)

 −∆u− µu−
(ˆ

Ω

|u(y)|5

|x− y|
dy

)
|u|3u = g(u) + |u|4u, x ∈ Ω,

u ∈ H1
0 (Ω).

We note that, to the best knowledge of us, the results in Theorems 1.1, 1.2 and 1.6 are new by now.
It should be mentioned here that this paper should be regarded as a supplement and generalization
as the works in [29,35]. Nevertheless, we prefer to emphasize that one cannot conclude our results
just by repeating the methods in these two quoted papers. On the one hand, the Lagrange multiplier
theorem, which played crucial roles in [29,35], is no longer applicable because g ∈ C0 leads to that
Mλ is not a C1-manifold; On the other hand, because of the appearance of doubly critical terms in
the system (1.6), compared with [29, Lemma 2.11], we have to take a different idea to pull down the
critical value. As a matter of fact, there are some other unpleasant barriers. For instance, to derive
the linking structure of Jλ, there are some deep analyses in Lemmas 3.3 and 3.4 below. Moreover,
even if one can borrow the techniques in the literature to prove Lemma 3.5, we have to introduce
some new tricks to deduce it because of (g5). As one can observe later, all of the above facts prevent
us applying the variational method to prove the main results in an usual way.

This paper is organized as follows. In Section 2, we shall provide some preliminaries. Section 3
is devoted to the verifications of the conditions (A1)− (A5) associated with Jλ in our variational
settings. In Section 4, we exhibit the detailed proofs of Theorems 1.1, 1.2 and 1.6, respectively.

Notations: From now on in this paper, otherwise mentioned, we ultilize the following notations:

• C,C1, C2, · · · denote any positive constant, whose value is not relevant and R+ ≜ (0,+∞).
• | · |p,Ω stands for the usual norm of the Lebesgue space Lp(Ω) for all p ∈ [1,+∞].

• For any ϱ > 0 and every x ∈ R3, Bϱ(x) ≜ {y ∈ R3 : |y − x| < ϱ}.
• on(1) denotes the real sequences with on(1) → 0 as n→ +∞.
• “ → ” and “⇀ ” stand for the strong and weak convergence in the related function spaces,
respectively;

2. Preliminaries

In this section, we introduce some preliminary results. From now on until the end of this article,
we shall always suppose that the assumptions (V1) and (V5)− (V6) hold just for simplicity.

As stated in the introduction, we will verify that the norms ∥ · ∥Xλ
and ∥ · ∥Lλ

are equivalent and

clarify the decompositions of the work space Xλ associated with Xλ = X−
λ ⊕X+

λ and Xλ = X̃−
0 ⊕X̃+

λ .
First of all, we prove the following imbedding result.

Lemma 2.1. There is a constant Λ0 > 0 such that for any λ > Λ0 and u ∈ Xλ, we have

(2.1) ∥u∥H1(R3) ≤ C̃0∥u∥Xλ
,

for some C̃0 > 0 independent of λ > Λ0.

Proof. Motivated by [35, Lemma 2.1], choosing M0 = 1
2V∞ > 0, then there exists an R > 0 such that

(2.2) V (x) ≥M0, ∀x ∈ Bc
R(0) and suppV −

λ ⊂ BR(0) whenever λ > µM0
−1,

where suppV −
λ denotes the support set of V −

λ . Define Λ0 ≜ (µ+M0)M0
−1 > 0, then for any u ∈ Xλ

and λ > Λ0, we apply (2.2) to obtain

(2.3)

ˆ
Bc

R(0)
|u|2dx ≤ 1

M0

ˆ
Bc

R(0)
(λV (x)− µ)|u|2dx ≤ 1

M0

ˆ
Bc

R(0)
V +
λ (x)|u|2dx ≤ 1

M0
∥u∥2Xλ

.
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Denoting the constant

(2.4) S ≜ inf{|∇u|22 : u ∈ D1,2(R3) and |u|6 = 1} > 0,

where D1,2(R3) = {u ∈ L6(R3) : |∇u| ∈ L2(R3)} with a norm ∥ · ∥D1,2(R3) ≜ |∇ · |2. Then, one has

ˆ
BR(0)

|u|2dx ≤ |BR(0)|
2
3

(ˆ
BR(0)

|u|6dx
) 1

3

≤ |BR(0)|
2
3

( ˆ
R3

|u|6dx
) 1

3

≤ S−1|BR(0)|
2
3

ˆ
R3

|∇u|2dx ≤ S−1|BR(0)|
2
3 ∥u∥2Xλ

, ∀u ∈ H1(R3).(2.5)

It follows from (2.3) and (2.5) that

∥u∥2H1(R3) ≤
(
1 +M0

M0
+ S−1|BR(0)|

2
3

)
∥u∥2Xλ

≜ C̃2
0∥u∥2Xλ

whenever λ > Λ0 ≜ (µ+M0)M0
−1 > 0. The proof is completed. □

As a corollary of Lemma 2.1, one may find that the work space Xλ can be continuously imbedded
into Lp(R3) and compactly imbedded into Lploc(R

3) for 2 ≤ p < 6 whence λ > Λ0. In particular, for
every u ∈ Xλ, there exists a constant Sp > 0 independent of λ > λ0 such that

(2.6) |u|p ≤ Sp∥u∥Xλ
, whenever λ > Λ0.

Moreover, let {µj(Lλ)}∞j=1 and {µj(L0)}∞j=1 be the class of all distinct eigenvalues of the operators

Lλ in Xλ and L0 in H1
0 (Ω), respectively. It is well known that µj(L0) = µj − µ→ +∞ as j → ∞,

where {µj}∞j=1 is the eigenvalue sequence of (−∆, H1
0 (Ω)). Since µ ∈ (µj0 , µj0+1) for some j0 ∈ N+,

there holds

(2.7) µ1(L0) < µ2(L0) < · · · < µj0(L0) < 0 < µj0+1(L0) < · · · < µj+1(L0) < · · · .

Let Vj(Lλ) and Vj(L0) be the eigenfunction spaces of the eigenvalues µj(Lλ) and µj(L0). If for
every sequence λn → +∞ and normalized eigenfunction ψn ∈ Vj(Lλn), there exists a normalized
eigenfunction ψ ∈ Vj(L0) such that ψn → ψ in H1(R3) along a subsequence, we say that Vj(Lλ) →
Vj(L0) as λ→ +∞.

The following lemma can be proved similarly as that of [35, Lemma 2.5], hence we just present
them without proof.

Lemma 2.2. For all j = 1, 2, · · · , one has

(2.8) µj(Lλ) → µj(L0) and Vj(Lλ) → Vj(L0) as λ→ +∞.

Moreover, there exists a Λ1 > Λ0 such that for any λ > Λ1 there holds

(2.9) µ1(Lλ) < µ2(Lλ) < · · · < µj0(Lλ) < 0 < µj0+1(Lλ) < · · · .

It follows from (2.7), (2.8) and (2.9) that there exists a Λ2 > Λ1 such that

(2.10) µj0(Lλ) <
1

2
µj0(L0) < 0 <

1

2
µj0+1(L0) < µj0+1(Lλ) whenever λ > Λ2.

This implies that X−
λ =

⊕j0
i=1Vj(Lλ), for all λ > Λ2.

Lemma 2.3. The norms ∥ · ∥Xλ
and ∥ · ∥Lλ

are equivalent on Xλ for each λ > Λ2, that is, there are
two constants C1, C2 > 0 independent of λ > Λ2 such that

C1∥u∥Xλ
≤ ∥u∥Lλ

≤ C2∥u∥Xλ
, ∀u ∈ Xλ.
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Proof. For all u ∈ Xλ, then u = P−
λ u+P

+
λ u, where P

−
λ u ∈ X−

λ and P+
λ u ∈ X+

λ . Since 0 ≤ V −
λ (x) =

max{µ− λV (x), 0
}
≤ µ jointly with the fact that P−

λ and P+
λ are orthogonal, we obtain

∥u∥2Xλ
=

ˆ
R3

[
|∇P+

λ u|
2 + V +

λ (x)|P+
λ u|

2
]
dx+

ˆ
R3

[
|∇P−

λ u|
2 + V +

λ (x)|P−
λ u|

2
]
dx

+ 2

ˆ
R3

[
∇(P+

λ u)∇(P−
λ u) + V +

λ (x)(P+
λ u)(P

−
λ u)

]
dx

= ∥P+
λ u∥

2
Xλ

+ ∥P−
λ u∥

2
Xλ

+ 2

ˆ
R3

[
V −
λ (x)(P+

λ u)(P
−
λ u)

]
dx

≥ ∥P+
λ u∥

2
Xλ

+ ∥P−
λ u∥

2
Xλ

− 2µ|P+
λ u|2|P

−
λ u|2

≥ ∥P+
λ u∥

2
Xλ

+ ∥P−
λ u∥

2
Xλ

− 2µS2
2∥u∥2Xλ

, provided λ > Λ0,(2.11)

where S2 > 0 comes from (2.6). Some simple observations give us that

∥P+
λ u∥

2
Lλ

=

ˆ
R3

[
|∇P+

λ u|
2 + Vλ(x)|P+

λ u|
2
]
dx

≤
ˆ
R3

[
|∇P+

λ u|
2 + V +

λ (x)|P+
λ u|

2
]
dx = ∥P+

λ u∥
2
Xλ
,(2.12)

and since Vλ(x) = V +
λ (x)− V +

λ (x) ≥ −V −
λ (x) ≥ −µ, there holds

∥P−
λ u∥

2
Lλ

= −
ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx ≤

ˆ
R3

V −
λ (x)|P−

λ u|
2dx

≤ µ

ˆ
R3

|P−
λ u|

2dx ≤ µS2
2∥P−

λ u∥
2
Xλ
, provided λ > Λ0.(2.13)

Combining (2.11), (2.12) and (2.13), there holds

∥u∥2Lλ
= ∥P+

λ u∥
2
Lλ

+ ∥P−
λ u∥

2
Lλ

≤ max
{
1, µS2

2

}
(1 + 2µS2

2)∥u∥2Xλ

≜ C2
2∥u∥2Xλ

, whenever λ > Λ0.(2.14)

On the other hand, due to the Cauchy-Schwarz inequality, we apply (2.10) to get

∥u∥2Xλ
=

ˆ
R3

[
|∇u|2 + V +

λ (x)|u|2
]
dx =

ˆ
R3

[
|∇u|2 + Vλ(x)|u|2

]
dx+

ˆ
R3

V −
λ (x)|u|2dx

≤ ∥u∥2Lλ
+ 2µ(|P+

λ u|
2
2 + |P−

λ u|
2
2) ≤ ∥u∥2Lλ

+ 2µ

( ∥P+
λ u∥

2
Lλ

µj0+1(Lλ)
+

∥P−
λ u∥

2
Lλ

−µj0(Lλ)

)
≤
(
1 + 4µmax

{
1

µj0+1(L0)
,

1

−µj0(L0)

})
∥u∥2Lλ

≜ C−2
1 ∥u∥2Lλ

.(2.15)

Combining (2.14) and (2.15), we can arrive at the desired results. The proof is completed. □

Once the work space Xλ is built, we turn to establish the variational structure of system (1.6).
Following the classic Schrödinger-Poisson system, it can reduce to be a single equation. Actually,
according to the Hölder’s inequality, for every u ∈ H1(R3) and v ∈ D1,2(R3), one has

ˆ
R3

|u|5vdx ≤
( ˆ

R3

|u|6dx
) 5

6
( ˆ

R3

|v|6dx
) 1

6

≤ S− 1
2 |u|56∥v∥D1,2(R3) ≤ S− 1

2S5
6∥u∥5H1(R3)∥v∥D1,2(R3),(2.16)

where we have used the inequality (2.6).
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Given u ∈ H1(R3), one can make use of the Lax-Milgram theorem and then there exists a unique
ϕtu ∈ D1,2(R3) such that

(2.17)

ˆ
R3

(−∆ϕu)vdx =

ˆ
R3

∇ϕu∇vdx =

ˆ
R3

|u|5vdx, ∀v ∈ D1,2(R3),

showing that ϕtu satisfies the Poisson equation

−∆ϕu = |u|5, x ∈ R3.

In view of [30, Theorem 6.21], its integral expression can be characterized by

(2.18) ϕu(x) =

ˆ
R3

|u(y)|5

|x− y|
dx, x ∈ R3,

which is called by the Riesz potential. It follows from (2.18) that ϕu(x) ≥ 0 for all x ∈ R3. Taking
v = ϕu in (2.16) and (2.17), we derive

(2.19) ∥ϕu∥D1,2(R3) ≤ S−1S10
6 ∥u∥10H1(R3).

Substituting (2.18) into (1.6), one can rewrite (1.6) in the following equivalent form

(2.20) (−∆)su+ Vλ(x)u+ ϕuu = g(u) + |u|4u, x ∈ R3,

whose variational functional is exactly defined by (1.8) above. It would be simply verified that Jλ is
well-defined in Xλ and belongs to C1(Xλ,R) with derivative given by

J ′
λ(u)(v) =

ˆ
R3

[∇u∇v + Vλ(x)uv]dx−
ˆ
R3

ϕu|u|3uvdx−
ˆ
R3

(g(u) + |u|4u)vdx

for any u, v ∈ Xλ. It is clear to see that if u is a critical point of Jλ, then the pair (u, ϕu) is a
solution of system (1.6).

Definition 2.4. The solutions of (1.6) and (2.20) have the following relationships:
(l) We call (u, ϕ) ∈ H1(R3)×D1,2(R3) is a weak solution of problem (1.6) if u is a weak solution

of problem (2.20).
(2) We call u ∈ H1(R3) is a weak solution of (2.20) ifˆ

R3

[
∇u∇v + Vλ(x)uv + ϕu|u|3uv − g(u)v − |u|4uv

]
dx = 0,

for any v ∈ H1(R3).
(3) If u ∈ H1(R3) is a positive solution of (2.20), then we call (u, ϕ) ∈ H1(R3)×D1,2(R3) to be a

positive solution of (1.6). If u is a ground state of (2.20), then so is (u, ϕ) ∈ H1(R3)×D1,2(R3) of
(1.6).

Let us define the variational functional N : H1(R3) → R by

N(u) =
1

10

ˆ
R3

ϕu|u|5dx ≜
1

10

ˆ
R3

(Ie ∗ |u|5)|u|5dx,

where Ie(x) = |x|−1 for all x ∈ R3\{0} and ∗ denotes the convolution operator.
In the following, we collect some important properties for N as follows.

Lemma 2.5. For every u ∈ H1(R3), one has the following conclusions:

(i) For any t > 0, there holds ϕtu = t5ϕu.
(ii) N(u) ≥ 0 and N(tu) = t10N(u) for any t > 0.
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(iii) If un ⇀ u in H1(R3), then, going to a subsequence if necessary,

(2.21) N(un)−N(un − u)−N(u) → 0,

and

(2.22) N ′(un)(φ)−N ′(u)(φ) → 0, ∀φ ∈ C∞
0 (R3).

(iv) N(u) = 1
10 |Ie/2 ∗ |u|

5|22, where Ie/2(x) = |x|−2 for all x ∈ R3\{0}.
(v) Let w = tu+ v for all v ∈ H1(R3) and t > 0, then

N ′(u)

(
t2 − 1

2
u+ tv

)
−N(w) +N(u) ≤ 0.

Proof. For the proofs of Points (i)-(iii), we refer the reader to the counterparts in [26, 27] and so the
details are omitted.

Then, we begin verifying the Point (iv). Thanks to [30, Theorem 5.10], it holds that Ie = Ie/2 ∗Ie/2
and so

N(u) =
1

10

ˆ
R3

(Ie ∗ |u|5)|u|5dx =
1

10

ˆ
R3

(Ie/2 ∗ Ie/2 ∗ |u|5)|u|5dx =
1

10

ˆ
R3

(Ie/2 ∗ |u|5)2dx

which is the result in Point (iv).
Finally, we show the verification of Point (v). Clearly, it follows from the Holder’s inequality that(

Ie/2 ∗ |u|3uw
)2 ≤ (Ie/2 ∗ |u|5) 8

5
(
Ie/2 ∗ |w|5

) 2
5 .

From which, we are able to take advantage of Point (iv) to deriveˆ
R3

ϕu|u|3u
(
t2 − 1

2
u+ tv

)
dx− 1

10

ˆ
R3

ϕw|w|5dx+
1

10

ˆ
R3

ϕu|u|5dx

=

ˆ
R3

(
Ie/2 ∗ |u|5

)(
tIe/2 ∗ |u|3uw − t2

2
Ie/2 ∗ |u|5

)
dx− 1

10

ˆ
R3

(
Ie/2 ∗ |w|5

)2
dx

−2

5

ˆ
R3

(
Ie/2 ∗ |u|5

)2
dx

= −1

2

ˆ
R3

(
tIe/2 ∗ |u|5 − Ie/2 ∗ |u|3uw

)2
dx

− 1

10

ˆ
R3

{(
Ie/2 ∗ |w|5

)2
+ 4

(
Ie/2 ∗ |u|5

)2 − 5
(
Ie/2 ∗ |u|3uw

)2}
dx

≤ − 1

10

ˆ
R3

{(
Ie/2 ∗ |w|5

)2
+ 4

(
Ie/2 ∗ |u|5

)2 − 5
(
Ie/2 ∗ |u|5

) 8
5
(
Ie/2 ∗ |w|5

) 2
5

}
dx

= − 1

10

ˆ
R3

(
Ie/2 ∗ |u|5

)2
(
Ie/2 ∗ |w|5

Ie/2 ∗ |u|5

)2

− 5

(
Ie/2 ∗ |w|5

Ie/2 ∗ |u|5

) 2
5

+ 4

 dx.

According to the obvious fact that t2 − 5t
2
5 + 4 ≥ 0 for each t ∈ (0,+∞), we shall immediately reach

the desired result. The proof is completed. □

3. Topological and linking structures

In this section, we shall mainly pay our attentions to the verifications of the conditions (A1)− (A5)
associated with Jλ in our variational settings

First of all, it follows from (g1)− (g2) that for each ε > 0, there is a constant Cε > 0 such that

(3.1)

ˆ
R3

max
{
|G(u)|, |g(u)u|

}
dx ≤ ε|u|22 + Cε|u|pp, where p ∈ (2, 6).
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Then, let us prove the T -topology properties for Jλ.

Lemma 3.1. Let λ > Λ2 with Λ2 > 0 given by Lemma 2.3 and suppose that (g1)− (g2), then the
variational functional Jλ defined by (1.8) is T -upper semicontinuous.

Proof. For each t ∈ R, we shall suppose that {un} ⊂ J−1
λ ([t,∞)) satisfies un

T−→ u. According to the

definition of T -norm, we have that {∥P+
λ un∥Lλ

} is uniformly bounded and P+
λ un → P+

λ u. Since

G(s) ≥ 0 for all s ∈ R and N ≥ 0 by Lemma 2.5-(ii), one can find that {∥P−
λ un∥Lλ

} is uniformly

bounded and P−
λ un ⇀ P−

λ u. It follows from the Fatou’s lemma that

−Jλ(u) =
1

2

(
∥P−

λ u∥
2
Lλ

− ∥P+
λ u∥

2
Lλ

)
+

1

10

ˆ
R3

ϕu|u|5dx+

ˆ
R3

F (u)dx

≤ lim inf
n→∞

{
1

2

(
∥P−

λ un∥
2
Lλ

− ∥P+
λ un∥

2
Lλ

)
+

1

10

ˆ
R3

ϕun |un|5dx+

ˆ
R3

F (un)dx

}
= lim inf

n→∞
−Jλ(un) ≤ −t

implying that Jλ(u) ≥ t. The proof is completed. □

Lemma 3.2. Let λ > Λ2 and assume (g1)− (g2), then Jλ is T -to-weak∗ continuous in Ψ−1([0,∞)).

Proof. Given a sequence {un} ⊂ Xλ satisfying {un} ⊂ J−1
λ ([0,∞)) and un

T−→ u, then, proceeding

as the proof of Lemma 3.1, one sees that {∥un∥Lλ
} is uniformly bounded. Moreover, P+

λ un → P+
λ u

and P−
λ un ⇀ P−

λ u. Becasue dimX−
λ = j0 < +∞, one has that P−

λ un → P−
λ u. As a consequence, it

holds that un → u in Xλ. Recalling Lemma 2.3, we can make use of Lemma 2.5-(iii) and (3.1) finish
the proof of this lemma immediately. □

Finally, we begin verifying the geometry structures of Jλ.

Lemma 3.3. Suppose that (g1)− (g4), then there is a constant Λ3 > Λ2 such that, for all λ > Λ3,
there holds

(3.2) inf
{u∈X̃+

0 : ∥u∥Lλ
=r}

Jλ(u) ≥ ϱ,

where r, ϱ > 0 are some constants independent of λ > Λ3.

Proof. First of all, we claim that there exists a Λ3 > Λ2 such that for any λ > Λ3 and u ∈ X̃+
0 , we

have the following inequality

(3.3)

ˆ
R3

[
|∇u|2 + Vλ(x)u

2
]
dx ≥ C0

ˆ
R3

[
|∇u|2 + V +

λ (x)u2
]
dx,

where C0 > 0 is a constant independent of λ > Λ3. Since u ∈ Xλ, one has that

u = P+
λ u+ P−

λ u,

where P+
λ u ∈ X+

λ and P−
λ u ∈ X−

λ . Recalling Vλ(x) = V +
λ (x)− V −

λ (x) for all x ∈ R3 and V −
λ (x) ≤ µ

in R3, it follows from some simple calculations that

(3.4)

ˆ
R3

[
|∇P+

λ u|
2 + V +

λ (x)|P+
λ u|

2
]
dx

=

ˆ
R3

[
|∇P+

λ u|
2 + Vλ(x)|P+

λ u|
2
]
dx+

ˆ
R3

V −
λ (x)|P+

λ u|
2dx

≤
ˆ
R3

[
|∇P+

λ u|
2 + Vλ(x)|P+

λ u|
2
]
dx+ µ

ˆ
R3

|P+
λ u|

2dx

≤
(
1 +

µ

µj0+1(Lλ)

) ˆ
R3

[
|∇P+

λ u|
2 + Vλ(x)|P+

λ u|
2
]
dx,
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where we have used the fact that µj0+1(Lλ) is the smallest eigenvalue in the space X+
λ .

Then, due to (3.4) and Vλ(x) = V +
λ (x)− V −

λ (x) for all x ∈ R3, some elementary computations
give us that
(3.5)ˆ

R3

[
|∇u|2 + Vλ(x)u

2
]
dx

=

ˆ
R3

[
|∇P+

λ u|
2 + Vλ(x)|P+

λ u|
2
]
dx+

ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx

≥ µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P+

λ u|
2 + V +

λ (x)|P+
λ u|

2
]
dx+

ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx

=
µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P+

λ u|
2 + V +

λ (x)|P+
λ u|

2
]
dx

+
µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P−

λ u|
2 + V +

λ (x)|P−
λ u|

2
]
dx− µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

V −
λ (x)|P−

λ u|
2dx

+
µ

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx

=
µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

[
|∇u|2 + V +

λ (x)|u|2
]
dx+

µ

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx

− µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

V −
λ (x)

(
|P−
λ u|

2 + 2P+
λ uP

−
λ u
)
dx.

We denote ej and eλ,j by the eigenfunctions of L0 and Lλ corresponding to µj(L0) and µj(Lλ) for
j ∈ {1, 2, · · · }, respectively. Moreover, without loss of generality, we would suppose that |ej |2,Ω = 1

and |eλ,j |2 = 1 for j ∈ {1, 2, · · · }. Then, for all u ∈ X̃+
0 and so (u, ẽj)Lλ

= 0, we obtain

P−
λ u =

j0∑
j=1

∥eλ,j∥−2
Lλ

(u, eλ,j)Lλ
eλ,j =

j0∑
j=1

∥eλ,j∥−2
Lλ

(u, eλ,j − ẽj)Lλ
eλ,j

which together with (2.6), (2.8) and Lemma 2.3 implies that

ˆ
R3

|P−
λ u|

2dx =

j0∑
j=1

∥eλ,j∥−4
Lλ

|(u, eλ,j − ẽj)Lλ
|2|eλ,j |22 ≤ S2

2C
−2
1

j0∑
j=1

∥eλ,j∥−2
Lλ

|(u, eλ,j − ẽj)Lλ
|2

≤ −j0µj0(Lλ)S2
2∥u∥2Xλ

j0∑
j=1

∥eλ,j − ẽj∥2Lλ
= oλ(1)∥u∥2Xλ

.

Adopting (2.8) again, there is a Λ3 > Λ2 such that, for all λ > Λ3,

µj0+1(Lλ)

µj0+1(Lλ) + µ
≥ µj0+1(L0)

2(µj0+1(L0) + µ)

and
µj0+1(Lλ)

µj0+1(Lλ) + µ

ˆ
R3

V −
λ (x)

(
|P−
λ u|

2 + 2P+
λ uP

−
λ u
)
dx ≤ µj0+1(L0)

4(µj0+1(L0) + µ)
∥u∥2Xλ

.

It is clear that
µ

µj0+1(Lλ) + µ

ˆ
R3

[
|∇P−

λ u|
2 + Vλ(x)|P−

λ u|
2
]
dx ≤ 0.

Inserting the above formulas into (3.5), we obtain the desired result by choosing C0 =
µj0+1(L0)

4(µj0+1(L0)+µ)
.
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With (3.3) in hands, for all u ∈ X̃+
0 , we combine (2.1), (2.6), (2.19) and (3.1) to derive

Jλ(u) ≥
C0

2
∥u∥2Xλ

− 1

10

ˆ
R3

ϕu|u|5dx−
ˆ
R3

G(u)dx− 1

6

ˆ
R3

|u|6dx

≥ C0

4
∥u∥2Xλ

− Ĉ0∥u∥10Xλ
− Ĉ0∥u∥pXλ

− Ĉ0∥u∥6Xλ
.

Since p > 2, there exists a constant r > 0 small to reach the desired result. The proof is completed. □

Lemma 3.4. Let λ > Λ2 and suppose that (g1)− (g4), then for all u0 ∈ Xλ\X̃−
0 , there is an R0 > r

such that

max
u∈∂M(u0)

Jλ(u) ≤ 0,

where M(u0) = {tu0 + v ∈ Xλ : v ∈ X̃−
0 , ∥tu0 + v∥Lλ

≤ R0 and t ≥ 0}.

Proof. First of all, we claim that

(3.6)

ˆ
R3

[
|∇v|2 + Vλ(x)v

2
]
dx < 0, ∀v ∈ X̃−

0 \{0}.

Actually, one can conclude that v =
j0∑
j=1

βj ẽj for some βj ∈ R with j ∈ {1, 2, · · · , j0} according to

the definition of X̃−
0 , where ej comes from (1.9). So, we have that

ˆ
R3

[
|∇v|2 + Vλ(x)v

2
]
dx =

j0∑
j=1

ˆ
Ω

[
|∇ej |2 − µe2j

]
dx =

j0∑
j=1

(µj − µ)

ˆ
Ω
e2jdx < 0

showing (3.6). Since G(t) ≥ 0 for all t ∈ R, we are able to gather Lemma 2.5-(ii) and (3.6) to obtain

that Jλ(v) ≤ 0 for all v ∈ X̃−
0 .

Combining G(t) ≥ 0 for all t ∈ R and Lemma 2.5-(ii) again, one has

(3.7) Jλ(u) ≤
1

2

(
∥P+

λ u∥
2
Lλ

− ∥P−
λ u∥

2
Lλ

)
− 1

6
|w|66∥u∥6Lλ

, ∀u = P+
λ u+ P−

λ u ∈ Xλ.

where w = u/∥u∥Lλ
, which reveals that w ∈ X̃−

0

⊕
R+u0 if u ∈ ∂M(u0). Motivated by [40, Lemma

2.2], we claim that for each fixed constant α ∈ (0, 1), there exists a constant Cα > 0 such that

(3.8) ∥P+
λ w∥Lλ

≥ sin(arctanα) =⇒ |w|66 ≥ Cα.

In fact, let γ ≜ sin(arctanα) ∈ (0, 1) and define

Fα ≜
{
v ∈ X̃−

0

⊕
R+u0 : ∥v∥Lλ

= 1 and ∥P+
λ v∥Lλ

≥ γ
}
.

Obviously, |w|66 ≥ inf
v∈Fα

|v|66 ≜ Cα ≥ 0. Arguing it by contradiction, we could suppose that Cα = 0.

Thereby, there exists a sequence {vn} ⊂ Fα such that |vn|66 → 0 as n→ ∞. Passing to a subsequence
if necessary, there is v ∈ Xλ such that vn ⇀ v in Xλ and P+

λ vn → P+
λ v because {P+

λ vn} ⊂ R+u0.

Therefore, ∥P+
λ v∥Lλ

≥ γ > 0 and |v|66 ≤ lim inf
n→∞

|vn|66 = 0, a contradiction. Hence, (3.8) holds true.

To proceeed the proof, we distinguish it two cases:

(I) ∥P+
λ u∥Lλ

/∥P−
λ u∥Lλ

< α and (II) ∥P+
λ u∥Lλ

/∥P−
λ u∥Lλ

≥ α.

If (I) occurs, then ∥u∥2Lλ
< (1 + α2)∥P−

λ u∥
2
Lλ

. By (3.7), we obtain

Jλ(u) ≤
1

2
∥u∥2Lλ

− ∥P−
λ u∥

2
Lλ

≤ − 1− α2

2(1 + α2)
∥u∥2Lλ

→ −∞ as ∥u∥Lλ
→ ∞ and u ∈ ∂M0.



SCHRÖDINGER-POISSON SYSTEM INVOLVING CRITICAL NONLOCAL TERM 15

If (II) occurs, then ∥P+
λ w∥Lλ

≥ sin(arctanα). Combining (3.7) and (3.8), we have

Jλ(u) ≤
1

2
∥u∥2Lλ

− Cα
6
∥u∥6Lλ

→ −∞ as ∥u∥Lλ
→ ∞ and u ∈ ∂M0.

In summary, there is a sufficiently large R0 > r to reach the desired result. The proof is completed. □

Lemma 3.5. Let λ > Λ2 and suppose that (g1)− (g5), then for any u ∈ Xλ\X̃−
0 and v ∈ X̃−

0 with
t ≥ 0, there holds

(3.9) Jλ(u) ≥ Jλ(tu+ v)− J ′
λ(u)

(
t2 − 1

2
u+ tv

)
.

In particular, the condition (A5) holds true.

Proof. Some elementary calculations provide us that

Jλ(tu+ v)− Jλ(u)− J ′
λ(u)

(
t2 − 1

2
u+ tv

)
=

1

2

ˆ
R3

[
|∇v|2 + Vλ(x)v

2
]
dx+N ′(u)

(
t2 − 1

2
u+ tv

)
−N(w) +N(u)

+

ˆ
R3

{
f(u)

(
t2 − 1

2
u+ tv

)
+ F (u)− F (tu+ v)

}
dx.

In view of Lemma 2.5-(v) and (3.6), to derive (3.9), it suffices to show that

Φ(t, ψ) ≜ f(u)

(
t2 − 1

2
u+ tψ

)
+ F (u)− F (tu+ ψ) ≤ 0

for all (t, ψ) ∈ R+ × R. We shall follow the idea used in [34, Proposition 4.1] to achieve this goal.
Without loss of generality, we would suppose that u ≥ 0 and the nonlinearity f , therefore, satisfies

the assumptions (g1), (g3) and (g5). By (g3), we see Φ(0, ψ) ≤ 0 and

Φ(t, ψ) ≤ f(u)

(
t2 − 1

2
u+ tψ

)
+

1

2
f(u)u− F (tu+ ψ)

=

(
− t

2

2
f(u)u+ tf(u)ζ −A0|ζ|2

)
+
(
A0|ζ|2 − F (ζ)

)
≜ Φ1(t, ψ) + Φ2(t, ψ),

where ζ = tu+ ψ and A0 > 0 is a sufficiently large constant satisfying Φ1 is negative definite with
respect to (t, ψ) ∈ R+ ×R and so Φ1 is bounded from above for all (t, ψ) ∈ R+ ×R. Then, it cleanly
knows that Φ(t, ψ) → −∞ as |(t, ψ)| = (t2 + |ψ|2)1/2 → ∞ and there exists a (t0, ψ0) corresponding
to the maximum of Φ. Since Φ(0, ψ) ≤ 0, we can assume that t0 > 0. Moreover, one has that

(3.10)

{
∂tΦ(t0, ψ0) = f(u)(t0u+ ψ0)− f(t0u+ ψ0)u = 0,
∂ψΦ(t0, ψ0) = t0f(u)− f(t0u+ ψ0) = 0,

yielding that

(3.11) f(u)ψ0 = 0.

Inserting (3.11) into the first equality in (3.10), by t0 > 0 and (g3), we reach

(3.12) f(t0u+ ψ0)u = f(u)(t0u+ ψ0) = t0f(u)u > 0.

Let t ≜ u and s ≜ t0u+ ψ0 in (g5), it follows from (3.10), (3.11) and (3.12) that

Φ(t, ψ) ≤ Φ(t0, ψ0) =
t20 − 1

2
f(u)u+ F (u)− F (t0u+ ψ0)
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≤ t20 − 1

2
f(u)u+

[
f(u) + f(t0u+ ψ0)

][
(1− t0)u− ψ0

]
2

≤ t20 − 1

2
f(u)u+

(1 + t0)f(u)
[
(1− t0)u− ψ0

]
2

= 0.

The proof is completed. □

4. Proofs of the main results

In this section, we are going to focus on showing the detailed proofs of Theorems 1.1, 1.2 and 1.6,
respectively.

According to Section 3, under the assumptions (V1) and (V5)− (V6) as well as (g1)− (g4), by the

settings (E, ∥ · ∥E) = (Xλ, ∥ · ∥Lλ
), Y = X̃−

0 , Z = X̃+
0 and Ψ = Jλ in Proposition 1.5, there is a (C)

sequence {un} ⊂ Xλ at the level

(4.1) cλ ≜ inf
Xλ\X̃−

0

inf
h∈Γ(u)

sup
u′∈M(u)

Jλ(h(u
′, 1)).

Speaking it clearly, the sequence {un} satisfies

(4.2) Jλ(un) → cλ and (1 + ∥un∥Lλ
)∥J ′

λ(un)∥X−1
λ

→ 0 as n→ ∞.

First of all, we shall show that the mountain-pass value cλ can be controlled by a positive constant
which is independent of λ > Λ3.

Lemma 4.1. Soppose µ ∈ (µj0 , µj0+1) and (g1)− (g4), then

sup
λ>Λ3

cλ < c∗ ≜
13−

√
5

30

(√
5− 1

2

) 1
2

S
3
2 ,

where Λ3 > 0 is determined by Lemma 3.3.

Proof. Without loss of generality, we are assuming that 0 ∈ Ω and B̄2(0) ⊂ Ω. Let ψ ∈ C∞
0 (R3) be a

cutoff function with its support set located in B2(0) such that 0 ≤ ψ(x) ≤ 1 and ψ(x) ≡ 1 on B1(0).

It is well-known that S > 0 in (2.4) is achieved by Uε(x) = (3ε)1/4(ε+ |x|2)−1/2, where ε > 0. Then,
set uε(x) = ψ(x)Uε(x) ∈ H1

0 (Ω), inspired by [11], one can obtain the following estimates

(4.3) |∇uε|22,Ω = S
3
2 +O(ε

1
2 ), |uε|66,Ω = S

3
2 +O(ε

3
2 ), |uε|22,Ω = O(ε

1
2 ),

and for some constant Ks > 0 with s ∈ (3, 6) such that

(4.4) |uε|ss,Ω = Ksε
6−s
4 .

Thanks to the Cauchy inequality and Diamagnetic inequality (see e.g. [30, Theorem 7.21]),ˆ
Ω
|uε|6dx =

ˆ
Ω
∇ϕuε∇|uε|dx ≤ 1

2

ˆ
Ω
|∇ϕuε |2dx+

1

2

ˆ
Ω
|∇uε|2dx

which together with (4.3) gives thatˆ
Ω
|∇ϕuε |2dx ≥ 2

ˆ
Ω
|uε|6dx−

ˆ
Ω
|∇uε|2dx

= S
3
2 +O(ε

1
2 ).(4.5)

To continue the proof, we define

IΩ(u) =
1

2

ˆ
Ω
|∇u|2dx− 1

10

ˆ
Ω

ˆ
Ω

|u(x)|5|u(y)|5

|x− y|
dxdy −

ˆ
Ω
G(u)dx− 1

6

ˆ
Ω
|u|6dx, ∀u ∈ H1

0 (Ω).
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We claim that max
t>0

IΩ(tuε) < c∗ if ε > 0 small enough. Indeed, it is standard to find a constant

tε ∈ [T0, T
0] such that IΩ(tεuε) = max

t>0
IΩ(tuε), where T0, T

0 ∈ (0,+∞) are two constants independent

of ε > 0. As a consequence, it follows from (4.3)-(4.4) and (g4) that

IΩ(tεuε) ≤
t2ε
2
|∇uε|22,Ω − t10ε

10
|∇ϕuε |22,Ω − t6ε

6
|uε|66,Ω −

(
A|tε|r|uε|rr,Ω −B|tε|2|uε|22,Ω

)
≤ max

t>0

{
t2

2
|∇uε|22 −

t10

10
|∇ϕuε |22 −

t6

6
|uε|66

}
− C

(
O(ε

6−r
4 )−O(ε

1
2 )
)
.

In view of [18, Lemma 3.4], we can apply (4.3), (4.4) and (4.5) to conclude that

(4.6) max
t>0

IΩ(tuε) ≤ c∗ +O(ε
1
2 )− CO(ε

6−r
4 ) < c∗

if ε > 0 is sufficiently small since r > 4. So, the claim is true.
Finally, for any v ∈ X−

0 ⊂ H1
0 (Ω) and all t > 0, it easily concludes from (V5) that

Jλ(tuε + v) =
1

2

ˆ
Ω

(
|∇(tuε + v)|2 − µ|tuε + v|2

)
dx− 1

10

ˆ
Ω

ˆ
Ω

|tuε + v|5|tuε + v|5

|x− y|
dxdy

−
ˆ
Ω
G(tuε + v)dx− 1

6

ˆ
Ω
|tuε + v|6dx

≤ t2

2

ˆ
Ω
|∇uε|2dx− t10

10

ˆ
Ω

ˆ
Ω

|uε|5|uε|5

|x− y|
dxdy −

ˆ
Ω
G(tuε)dx− t6

6

ˆ
Ω
|uε|6dx

≤ max
t>0

IΩ(tuε) = IΩ(tεuε) < c∗,

where we have made use of [13, Proposition 4.2] in the first inequality and (4.6) in the last inequality,
respectively. In view of the definition of cλ in (4.1), the proof concludes. □

Next, we mainly focus on verifying that the variational functional Jλ satisfies the (C)cλ for some
suitably large λ > 0. Before proceeding it, we shall deduce that any (C)cλ sequence of Jλ is uniformly
bounded for all λ > Λ3.

Lemma 4.2. If µ ∈ (µj0 , µj0+1) and (g1)− (g4) hold, suppose that {un} ⊂ Xλ is a (C)cλ sequence
of Jλ for any λ > Λ3, then {un} is uniformly bounded in Xλ.

Proof. Suppose it by contradiction, we would suppse that ∥un∥Xλ
→ +∞ as n→ ∞. Let vn = un

∥un∥Xλ
,

passing to a subsequence if necessary, there exists a v ∈ Xλ such that vn ⇀ v in Xλ, vn → v in
Lploc(R

3) with p ∈ [2, 6) and vn → v a.e. in R3. Firstly, we claim that v ≡ 0 a.e. in R3. Otherwise,

the set Υ ≜ {x ∈ R3 : |v(x)| > 0} possesses a positive Lebesgue measure and so |un| → +∞ on Υ as
n→ ∞. It follows from (g3) and (g4) that

(4.7) lim inf
n→∞

ˆ
Υ

g(un)un
|un|2

|vn|2dx = +∞.

Since {un} ⊂ Xλ is a (C)cλ sequence of Jλ, we apply (g3) to obtain

cλ = lim sup
n→∞

[
Jλ(un)−

1

2
J ′
λ(un)(un)

]
= lim sup

n→∞

{
2

5

ˆ
R3

ϕun |un|5dx+
1

2

ˆ
R3

[
g(un)un − 2G(un)

]
dx+

1

3

ˆ
R3

|un|6dx
}

≥ 1

3
lim sup
n→∞

[
N(un) + |un|66

]
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which together with Lemma 4.1 indicates that {N(un)} and {|un|6} are uniformly bounded for every
λ > Λ2. Consequently, we have

0 = lim sup
n→∞

J ′
λ(un)(un)

∥un∥2Xλ

≤ C2
2 − lim inf

n→∞

ˆ
R3

g(un)un
|un|2

|vn|2dx,

a contradiction to (4.7), where C2 > 0 comes from Lemma 2.3. Thereby, v = 0 a.e. in R3. Because
dimX−

λ < +∞, v−n → 0, where v−n = P−
λ vn ∈ X−

λ and v+n = P+
λ vn ∈ X+

λ . According to Lemma 2.3,
without loss of generality, we can suppose that ∥v+n ∥2Lλ

+ ∥v−n ∥2Lλ
≡ 1, then it permits us to see that

∥v+n ∥2Lλ
− ∥v−n ∥2Lλ

≥ 1
2 for some sufficiently large n ∈ N. Taking (g3) into account, then

cλ = lim sup
n→∞

[
Jλ(un)−

1

η
J ′
λ(un)(un)

]
= lim sup

n→∞

{
η − 2

2η
∥un∥2Lλ

(∥v+n ∥2Lλ
− ∥v−n ∥2Lλ

) + 10

(
1

η
− 1

10

)
N(un)

+
1

η

ˆ
R3

[
g(un)un − ηG(un)

]
dx+

(
1

η
− 1

6

)
|un|66

}
≥ lim sup

n→∞

{
η − 2

4η
∥un∥2Lλ

+ 10

(
1

η
− 1

10

)
N(un) +

(
1

η
− 1

6

)
|un|66

}
+∞

which is impossible, where we depend on Lemmas 2.3 and 4.1 as well as the facts that {N(un)} and
{|un|6} are uniformly bounded for all λ > Λ3. The proof is completed. □

Lemma 4.3. If µ ∈ (µj0 , µj0+1) and (g1) − (g4) hold. Let λ > Λ3 and {un} ⊂ Xλ be a (C)cλ
sequence, then there exist r ∈ (2, 6) and σ0 > 0, independent of λ, such that |un|r ≥ σ0, for all n ≥ 1.

Proof. First of all, by Lemma 4.2, the sequence {un} is uniformly bounded in n ∈ N for all λ > Λ3.
Motivated by the counterparts in [37,39], let us divide the proof into intermediate steps.

Step I: Let λ > Λ3 and {un} ⊂ Xλ be a (C)cλ sequence, then there are r ∈ (2, 6) and σ = σ(λ) > 0
such that |un|r ≥ σ, for all n ≥ 1.

Suppose, by contradiction, that un → 0 in Lr(R3) for every r ∈ (2, 6). Owing to the boundedness
of {un} in Xλ, we conclude that {un} is uniformly bounded in Lq(R2) for all q ∈ [2, 6), too. As a
consequence, one simply invokes from (3.1) that

(4.8) lim
n→∞

ˆ
R3

g(un)undx = 0 and lim
n→∞

ˆ
R3

G(un)dx = 0.

In view of (2.2), by using the Hölder’s inequality, we have

0 ≤
ˆ
R3

V −
λ (x)|un|2dx =

ˆ
BR(0)

V −
λ (x)|un|2dx ≤ µ

ˆ
BR(0)

|un|2dx

≤ µ|BR(0)|
s−2
s

( ˆ
BR(0)

|un|sdx
) 2

s

→ 0, as n→ ∞.(4.9)

According to (4.8)-(4.9) and lim
n→∞

J ′
λ(un)(un) = 0, it holds that

(4.10) ∥un∥2Xλ
− 10N(un)− |un|66 = on(1).

Without loss of generality, we could suppose that ∥un∥2Xλ
→ l as n→ ∞. Obviously, we conclude

l > 0. Otherwise, ∥un∥2Xλ
→ 0 which indicates N(un) → 0 and |un|66 → 0 by Lemma 2.5-(ii) and
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(2.4), respectively. Combining these facts and (4.8), it reveals that cλ = lim
n→∞

Jλ(un) = 0, which is

absurd because of Lemma 3.3. Now, we suppose that 10N(un) → l1 and |un|66 → l2. By the Cauchy
inequality and Diamagnetic inequality (see e.g. [30, Theorem 7.21]), one hasˆ

R3

|un|6dx =

ˆ
R3

∇ϕun∇|un|dx ≤
√
5 + 1

4

ˆ
R3

|∇ϕun |2dx+

√
5− 1

4

ˆ
R3

|∇un|2dx

=

√
5 + 1

4

ˆ
R3

ϕun |un|5dx+

√
5− 1

4

ˆ
R3

|∇un|2dx

which implies that

(4.11) l2 ≤
√
5 + 1

4
l1 +

√
5− 1

4
l.

Recalling l = l1 + l2, we apply (4.11) to reach l1 ≥ 3−
√
5

2 l. So, by (4.11), there holds

(4.12) cλ = lim
n→∞

Jλ(un) =
1

2
l − 1

10
l1 −

1

6
l2 =

1

3
l +

1

15
l1 ≥

13−
√
5

30
l.

In view of (2.4) and (2.16), by (4.10), one has

l ≤ S−6l5 + S−3l3

yielding that l2 ≥
√
5−1
2 S3 since l > 0. Whereas, with the help of (4.12), we reach

cλ ≥ 13−
√
5

30

(√
5− 1

2

) 1
2

S
3
2 .

which contradicts with Lemma 4.1. The proof of this step is done.

Step II: Conclusion.

Let r ∈ (2, 6) be as in Step I. Suppose by contradiction that the uniform control from below of
Lr(R3)-norm is false. Then, for all k ∈ N, k ̸= 0, there exist λk > Λ3 and a (C)cλk sequence {uk,n}
such that

|uk,n|r <
1

k
, definitely.

Then, by a diagonalization argument, for any k ≥ 1, we can find an increasing sequence {nk} in N
and unk

∈ Xλnk
such that

Jλnk
(unk

) = cλnk
+ ok(1), (1 + ∥un∥Lλnk

)∥J ′
λnk

(un)∥X−1
λnk

→ 0, |unk
|r = ok(1),

where ok(1) is a positive quantity which goes to zero as k → +∞. Then, we are able to arrive at a
same contradiction in the Step I with Lemma 4.1, again. The proof is completed. □

Lemma 4.4. If µ ∈ (µj0 , µj0+1) and (g1)− (g4) hold. Assume λ > Λ3 and {un} ⊂ Xλ is a (C)cλ
sequence, then there is a constant Λ∗ > Λ3 such that Jλ satisfies the (C)cλ condition for any λ > Λ∗.

Proof. Let {un} be a (C)cλ sequence of Jλ, then {∥un∥Xλ
} is uniformly bounded by Lemma 4.2 for

each λ > Λ3. Passing to a subsequence if necessary, there exists a u ∈ Xλ such that un ⇀ u in Xλ,
un → u in Lploc(R

3) with p ∈ [2, 6) and un → u a.e. in R3. To show the proof clearly, we shall split
it into several steps:

Step 1: J ′
λ(u) = 0 and Jλ(u) ≥ 0.
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To show J ′
λ(u) = 0, since C∞

0 (R3) is dense in Xλ, then it suffices to exhibit that J ′
λ(u)(φ) = 0 for

every φ ∈ C∞
0 (R3). Thanks to Lemma 2.5-(iii), it is a direct conclusion. Because u is a critical point

of Jλ, according to (g3), one has that

Jλ(u) = Jλ(u)−
1

2
J ′
λ(u)(u) ≥ 0.

Step 2: Define vn ≜ un − u, then there is a Λ∗ > Λ3 such that vn → 0 in Lq(R3) for all q ∈ (2, 6)
along a subsequence as n→ ∞ when λ > Λ∗.

Actually, since {vn} is uniformly bounded in n ∈ N for all λ > Λ3, then we have one of the
following two possibilities for some r > 0:

(i) lim
n→∞

sup
y∈R3

ˆ
Br(y)

|vn|2dx > 0,

(ii) lim
n→∞

sup
y∈R3

ˆ
Br(y)

|vn|2dx = 0.

As a consequence, the conclusion would be clear if we could demonstrate that the case (i) cannot
occur for sufficiently large λ > 0. Now, we suppose, by contradiction, that (i) was true. Proceeding

as the very similar way in Lemma 4.3, there is a constant δ̂ > 0 independent of λ > Λ3 such that

lim
n→∞

sup
y∈R3

ˆ
Br(y)

|vn|2dx ≥ δ̂

for some r > 0. Since {un} is uniformly bounded in Xλ, without loss of generality, we can assume that
lim
n→∞

∥un∥2Xλ
≤ Θ for some Θ ∈ (0,+∞). Clearly, there holds lim

n→∞
∥vn∥2Xλ

≤ 4Θ. Recalling vn → 0 in

Lqloc(R
3) with q ∈ (2, 6) and |Aρ| → 0 as ρ→ +∞ by (2.2), whereAρ ≜ {x ∈ R3\Bρ(0) : V (x) < M0},

we can determine a sufficiently large but fixed ρ > 0 to satisfy

(4.13) lim sup
n→∞

ˆ
Bρ(0)

|vn|2dx <
δ̂

4

and

(4.14) |Aρ| <

(
δ̂

16ΘS2
q

) q
q−2

,

where Sq > 0 comes from (2.6). Combining (2.6) and (4.14), one sees that

(4.15) lim sup
n→∞

ˆ
Aρ

|vn|2dx ≤ lim sup
n→∞

(ˆ
AR

|vn|qdx
) 2

q

|Aρ|
q−2
q ≤ 4ΘS2

q |Aρ|
q−2
q <

δ̂

4
.

Let us choose Λ∗ = max
{
1,Λ3,

16Θ
δ̂M0

}
, then for all λ > Λ̂, we reach

(4.16) lim sup
n→∞

ˆ
Bρ

|vn|2dx ≤ lim sup
n→∞

1

λM0

ˆ
Bρ

[λV (x)− µ] |vn|2dx ≤ 4Θ

λM0
<
δ̂

4
,

where Bρ ≜ {x ∈ R3\Bρ(0) : V (x) ≥M0}. We gather (4.13), (4.15) and (4.16) to derive

δ̂ ≤ lim
n→∞

sup
y∈R3

ˆ
Br(y)

|vn|2dx ≤ lim sup
n→∞

ˆ
R3

|vn|2dx

= lim sup
n→∞

(ˆ
R3\Bρ(0)

|vn|2dx+

ˆ
Bρ(0)

|vn|2dx

)
≤ 3δ̂

4
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which is impossible. The proof of this step is done.
Step 3: Passing to a subsequence if necessary, un → u in Xλ as n→ ∞.

Since vn ≜ un − u, by Lemma 2.5-(iii) and the Brézis-Lieb lemma, one has

(4.17) Jλ(vn) = Jλ(un)− Jλ(u) + on(1) and J
′
λ(vn) = J ′

λ(un) + on(1).

According to Step 2, we take advantage of (3.1) to deduce that

lim
n→∞

ˆ
R3

g(vn)vndx = 0 and lim
n→∞

ˆ
R3

G(vn)dx = 0.

A similar argument in (4.9) provides us that

lim
n→∞

ˆ
R3

V −
λ (x)|vn|2dx = 0.

The above two formulas together with Lemma 2.5-(iii) and the Brézis-Lieb lemma indicate that

on(1) = J ′
λ(un)(un − u)− J ′

λ(u)(un − u) = ∥vn∥2Xλ
− 10N(vn)− |vn|66.

If ∥vn∥Xλ
→ l̄ > 0, proceeding as the very similar calculations in Step I in the proof of Lemma 4.3,

we are able to apply the Step 1 and (4.17) to get

(4.18) cλ ≥ cλ − Jλ(u) = lim
n→∞

Jλ(vn) ≥
13−

√
5

30

(√
5− 1

2

) 1
2

S
3
2 ,

which is absurd because of Lemma 4.1. Therefore, l̄ = 0 and it is the desired result. The proof is
completed. □

Now, we are in a position to show the detailed proofs of the main results in this paper.

4.1. Proof of Theorem 1.1. First of all, due to the discussions in Section 3, there is a sequence
{un} ⊂ Xλ satisfying (4.2) for all λ > Λ3. Then, we are derived from Lemma 4.2 that {un} ⊂ Xλ is
uniformly bounded in Xλ for all λ > Λ3. So, passing to a subsequence of necessary, there is a u ∈ Xλ

such that un ⇀ u in Xλ, un → u in Lploc(R
3) for all 2 < p < 6 and un → u a.e. in R3. Recalling

Lemma 4.4, there is a Λ∗ > Λ3 such that un → u in Xλ for all λ > Λ∗. As a consequence, we have
that J ′

λ(u) = 0 and Jλ(u) = cλ, with cλ given by (4.1). As to the positivity of u, it is trivial and we
omit it here. The proof is completed.

4.2. Proof of Theorem 1.2. If in addition (g5) is supposed, we conclude that (A5) holds true by
Lemma 3.5 and so cλ ≤ dλ. The proof would be done if cλ ≥ Jλ(u). Actually, since un → u in Xλ

for all λ > Λ∗, we see that ∥un − u∥Lλ
→ 0 by Lemma 2.3. Thereby, for un = P+

λ un + P−
λ un with

P+
λ un ∈ X+

λ and P−
λ un ∈ X−

λ , it holds that ∥P
+
λ un − P+

λ u∥Lλ
→ 0 and ∥P−

λ un − P−
λ u∥Lλ

→ 0. So,
combining (g3) and the Fatou’s lemma,

cλ = lim inf
n→∞

[
Jλ(un)−

1

η
J ′
λ(un)(un)

]
= lim inf

n→∞

{
η − 2

2η
(∥u+n ∥2Lλ

− ∥u−n ∥2Lλ
) + 10

(
1

η
− 1

10

)
N(un)

+
1

η

ˆ
R3

[
g(un)un − ηG(un)

]
dx+

(
1

η
− 1

6

)
|un|66

}
≥ η − 2

2η
(∥u+∥2Lλ

− ∥u−∥2Lλ
) + 10

(
1

η
− 1

10

)
N(u) +

1

η

ˆ
R3

[
g(u)u− ηG(u)

]
dx

+

(
1

η
− 1

6

)
|u|66
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≥ Jλ(u)−
1

η
J ′
λ(u)(u) = Jλ(u)

finishing the proof.

4.3. Proof of Theorem 1.6. Suppose {uλn} ⊂ Xλn to be a sequence satisfying J ′
λn
(uλn) = 0 and

Jλn(uλn) = c̄λn . Passing to a subsequence if necessary, we are derived from Lemmas 3.3 and 4.1 that

(4.19) 0 < ϱ ≤ lim
λn→∞

Jλn(uλn) = lim
λn→∞

c̄λn ≜ c̄Ω < c∗.

Adopting (4.19), we can argue as the proof of Lemma 4.2 to prove that {uλn} is uniformly bounded
in Xλn . Up to a subsequence if necessary, there exists a u ∈ H1(R3) such that uλn ⇀ u in H1(R3),
uλn → u in Lploc(R

3) with 2 ≤ p < 6 and uλn → u a.e. in R3. Then, we are ready to prove u ≡ 0 in
Ωc = {x : x ∈ R3\Ω}. Otherwise, there is a compact subset Σu ⊂ Ωc with dist(Σu, ∂Ω

c) > 0 such
that u ̸= 0 on Σu and by Fatou’s lemma

(4.20) lim inf
n→∞

ˆ
R3

u2ndx ≥
ˆ
Σu

u2dx > 0.

Moreover, there exists ε0 > 0 such that V (x) ≥ ε0 for any x ∈ Σu by the assumptions (V1) and (V6).
Combining (g3), (4.19) and(4.20),

c̄Ω ≥ lim inf
n→∞

Jλn(uλn) = lim inf
n→∞

[
Jλn(uλn)−

1

η
J ′
λn(uλn)(uλn)

]
≥ lim inf

n→∞

[
η − 2

2η

ˆ
R3

[λnV (x)− µ]u2λndx− η − 10

η
N(uλn)−

η − 6

6η
|uλn |66

]
≥
(
(θ − 2)ε0

2θ

ˆ
Σu

u2dx

)
lim inf
n→∞

λn − C = +∞,

a contradiction because {N(uλn)} and |uλn |66 are uniformly bounded in Xλn . Hence, by the fact that
∂Ω is smooth, one can conclude that u ∈ H1

0 (Ω).
For the above u ∈ H1

0 (Ω), we denote by ũ ∈ H1(R3) its trivial extension, namely

ũ ≜

{
u in Ω,

0 in Ωc = {x : x ∈ R3\Ω}.

We now define J0|Ω : H1
0 (Ω) → R as

J0|Ω(v) =
1

2

ˆ
Ω

(
|∇v|2 − µv2

)
dx− 1

10

ˆ
Ω

ˆ
Ω

|v(x)|5|v(y)|5

|x− y|
dxdy −

ˆ
Ω
G(v)dx− 1

6

ˆ
Ω
|v|6dx.

Let us claim that J0|Ω(u) = 0. In fact, by using (2.22), we have

0 = J ′
λn(uλn)(φ) =

ˆ
R3

[∇uλn∇φ+ Vλn(x)uλnφ]dx− 10N ′(un)[φ]−
ˆ
R3

[g(un) + |un|4un]φdx

→
ˆ
Ω
[∇u∇φ− µuφ]dx− 10N ′

Ω(u)[φ]−
ˆ
Ω
[g(u) + |u|4u]φdx = J ′

0|Ω(u)(u)(φ), ∀φ ∈ C∞
0 (Ω),

which shows that J ′
0|Ω(u) = 0. Next, we define ūn ≜ un − u ⇀ 0, thenˆ

R3

Vλn(x)|un|2dx =

ˆ
R3

Vλn(x)|ūn|2dx+ 2

ˆ
R3

Vλn(x)ūnudx+

ˆ
R3

Vλn(x)|u|2dx

=

ˆ
R3

Vλn(x)|ūn|2dx− 2µ

ˆ
Ω
ūnudx− µ

ˆ
Ω
|u|2dx

=

ˆ
R3

Vλn(x)|ūn|2dx− µ

ˆ
Ω
|u|2dx+ on(1)



SCHRÖDINGER-POISSON SYSTEM INVOLVING CRITICAL NONLOCAL TERM 23

which together with the Brézis-Lieb lemma and (2.21) gives that

Jλn(un) = J0|Ω(u) + Jλn(ūn) + o(1) and J ′
λn(un)(un) = J ′

λn(ūn)(ūn) + J ′
0|Ω(u)(u) + o(1).

On the other hand, since {ūn} is uniformly bounded in H1(R3), by (2.2), we have

lim
n→∞

ˆ
R3

|un|2dx = lim
n→∞

ˆ
R3\BR(0)

|ūn|2dx ≤ lim
n→∞

1

λnM0 − µ

ˆ
R3\BR(0)

Vλn(x)|ūn|2dx

≤ lim
n→∞

1

λnM0 − µ

ˆ
R3

V +
λn
(x)|ūn|2dx ≤ lim

n→∞

∥ūn∥2Xλn

λnM0 − µ
≤ lim

n→∞

C

λnM0 − µ
= 0,

which indicates that ūn → 0 in Lp(R3) with 2 ≤ p < 6 as n→ ∞. Hence, (4.8) and (4.8) hold true
for {ūn}. Combining lim

n→∞
J ′
λn
(uλn)(uλn) = 0 and J ′

0|Ω(u)(u) = 0, we obtain

c̄Ω − J0|Ω(u) = lim
n→∞

Jλn(ūλn) = lim
n→∞

(
1

2
∥ūλn∥2Xλn

−N(ūλn)−
1

6
|ūλn |66

)
and

0 = lim
n→∞

J ′
λn(ūλn)ūλn = lim

n→∞

(
∥ūn∥2Xλn

− 10N(ūλn)− |ūλn |66
)
.

Due to (g3) again, one easily sees that J0|Ω(u) = J0|Ω(u)− 1
2J

′
0|Ω(u)(u) ≥ 0. Repeating the arguments

explored in Lemma 4.4, we immediately derive that ūλn → u in H1(R3).
If in addition (g5) is supposed, we can further conclude that c̄Ω = cΩ, where

cΩ ≜ inf
w∈MΩ

J0|Ω(w)

with MΩ = {u ∈ H1
0 (Ω)\X

−
0 : J ′

0|Ω(u)(u) = 0 and J ′
0|Ω(u)(v) = 0 for any v ∈ X−

0 }. Since the proof
would be easier, we omit the details. The proof is completed.
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