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1. Introduction

In this paper, we study the phase segregation phenomenon in the ground states of the eigenvalue system consisting of
two interacting repulsive Hartree equations whose interaction, as well as the respective self-couplings, are nonlinear
and nonlocal, 

−∆φ1 + V1(x)φ1 + θ1
(
V ∗ |φ1|2

)
φ1 + κ

(
V ∗ |φ2|2

)
φ1 = µ1φ1 in RN,

−∆φ2 + V2(x)φ2 + θ2
(
V ∗ |φ2|2

)
φ2 + κ

(
V ∗ |φ1|2

)
φ2 = µ2φ2 in RN,

‖φ1‖2
L2 = N1,

‖φ2‖2
L2 = N2.

(1)

Here, the external potentials V1 and V2 are assumed to be nonnegative and confining, whereas the interaction potential
V is, for example, of Coulomb type. Moreover, the system is purely repulsive, i.e. the self-coupling constants and the
interaction strength are nonnegative,

θ1, θ2 ≥ 0, κ ≥ 0.
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For fixed θ1, θ2 ≥ 0 and fixed N1, N2 > 0, the phase segregation phenomenon in the ground state (φ1, φ2) with ground
state energy (µ1, µ2) of the system (1) is characterized by the decay to zero of the Coulomb energy functional

D(φ1, φ2) =
∫

RN

∫
RN

|φ1(x)|2 V (x − y) |φ2(y)|2 dx dy (2)

in the regime of large interaction strength κ, i.e. by

D(φ1, φ2) = o(1) for κ → ∞.

This study is not only of independent mathematical interest but it can also be motivated by various physical applications
like, e.g., electromagnetic waves in a Kerr medium in nonlinear optics, surface gravity waves in hydrodynamics, and ground
states in Bose-Einstein condensed bosonic quantum mechanical many-body systems (see also [1]). The latter domain
has been a subject of great interest since many years, both on the experimental and the theoretical side, starting off
from a series of successful experimental realizations of Bose-Einstein condensation for atomic gases, first achieved in
1995 for a single condensate (see e.g. [2]), then, in 1997, for a mixture of two interacting atomic species with equal
masses (see e.g. [13]), and, finally, in 2003 for triplet species states (see e.g. [17]). On the theoretical side, the standard
scenario of two interacting Bose-Einstein condensates for a very dilute system of repulsive bosons uses the description
based on a system of two coupled Gross-Pitaevskii equations (see e.g. [10, 11, 14, 15]). These equations are formally
contained in (1) for the case of the zero range interaction potential V = δ, i.e. in the case of local nonlinearities.1 For
a complete survey paper, we also refer the reader to [8] and references therein. One may argue that, for higher density
regimes, it is sensible to capture more of the boson-boson interaction by allowing for its nonlocal and, hence, less coarse
grained resolution by use of a potential V 6= δ (see e.g. [4]). The phase segregation phenomenon has been studied e.g.
in [14, 16, 18] for Gross-Pitaevskii equations, and it has been given a general variational framework in [7]. Recently, the
second author, jointly with M. Caliari, has investigated both numerically and analytically the behavior of ground state
solutions2 highlighting their location3 and the occurring phase segregation phenomena in the highly interacting regime
(see [6]).4
In the present paper, we extend the analysis to the nonlocal system (1) and give a proof of the phase segregation
phenomenon in the variational calculus setup. Moreover, in contradistinction to [6], we adopt a classical self-consistent
numerical approach to the solution of the ground state of (1) in order to compute the phase segregated states and to
monitor the decay of the Coulomb interaction (2).

As we aim at keeping the paper self-contained and easily readable also for those readers who are more acquainted with
the physical or the numerical side, we will provide rather detailed mathematical arguments throughout the paper.

2. Strong interaction and phase segregation

Throughout this section, we shall denote by C a generic positive constant which can vary from line to line inside the
proofs.

2.1. Functional setting

As described in the introduction, we are interested in the case of nonnegative confining external potentials V1 and V2.
More precisely, we make the following assumption.

1 For the case of a single condensate, the stationary and dynamical Gross-Pitavskii equation has been rigorously
derived from the many-body bosonic Schrödinger equation in the weak coupling limit, see e.g. [12] and [9], respectively.
2 And, in some particular cases, also excited state solutions.
3 With respect to the off-centering of the confining potentials Vi.
4 For a complete numerical study of ground states for vector like nonlinear Schrödinger systems with cubic coupling,
we also refer to [5].

231



On phase segregation in nonlocal two-particle Hartree systems

Assumption 2.1.
The external potentials Vi are nonnegative, continuous, and confining, i.e. for i = 1, 2, we have Vi ∈ C (RN ,R+

0 ) with

lim
|x|→∞

Vi(x) = ∞.

The functional setting we want to apply makes use of the following Hilbert space.

Definition 2.1.
Let the external potentials Vi satisfy Assumption 2.1 and let H be the Hilbert subspace of H1(RN ) ×H1(RN ) defined by

H =
{

(φ1, φ2) ∈ H1(RN ) ×H1(RN ) :
∫

RN
Vi(x) |φi(x)|2 dx < ∞, i = 1, 2

}
, (3)

where the scalar product of φ = (φ1, φ2) ∈ H with ψ = (ψ1, ψ2) ∈ H is given by

〈φ,ψ〉H =
2∑
i=1

(∫
RN

∇φi(x) · ∇ψi(x) dx +
∫

RN
Vi(x)φi(x)ψi(x) dx

)
. (4)

This functional setting is the natural framework for the study of bound states of systems (1) in external potentials as it
allows (together with Lemma 2.2) the associated energy functional (see (11)) to be well-defined and finite.

Lemma 2.1.
Under Assumption 2.1, for any N ≥ 3, the embedding

H ↪→ L2(RN ) ⊕ L2(RN )

is compact, H being the Hilbert space (3) equipped with the norm from (4). Also, for 3 ≤ N ≤ 5, the embedding

H ↪→ L 4N
N+2 (RN ) ⊕ L 4N

N+2 (RN )

is compact.

Proof. Let (φh1 , φh2 ) be a bounded sequence in H, say ‖(φh1 , φh2 )‖H ≤ C for all h ∈ N. Up to a subsequence,
it converges weakly in H to some (φ1, φ2) ∈ H. Moreover, by the Rellich-Kondrachov compactness theorem, up to
a further subsequence, (φh1 , φh2 ) converges strongly to (φ1, φ2) in L2(BR ) ⊕ L2(BR ) for any R > 0, where BR denotes the
open ball in RN of radius R , centered at the origin. Let now M > 0 be an arbitrary number. Then, by Assumption 2.1,
there exists an R > 0 such that Vi(x) ≥ M for all x ∈ RN \ BR and any i = 1, 2. Hence, we can write∫

RN
|φhi (x) − φi(x)|2 dx =

∫
BR

|φhi (x) − φi(x)|2 dx +
∫

RN\BR
|φhi (x) − φi(x)|2 dx

≤
∫
BR

|φhi (x) − φi(x)|2 dx + 1
M

∫
RN\BR
Vi(x) |φhi (x) − φi(x)|2 dx

≤
∫
BR

|φhi (x) − φi(x)|2 dx + 4C 2

M .

Let now ε > 0 be given and choose an M0 > 0 such that 4C 2/M0 < ε/2. Then, as the corresponding radius R0 > 0 is
fixed, take h0 ≥ 1 such that

∫
BR0

|φhi (x) − φi(x)|2 dx < ε/2 for any h ≥ h0. This yields ‖φhi − φi‖L2 → 0 for h → ∞ and
proves the first assertion. Moreover, by the Gagliardo-Nirenberg inequality and the boundedness in H, we have

‖φhi − φi‖4
L

4N
N+2

≤ C‖φhi − φi‖6−N
L2 ‖φhi − φi‖N−2

H1 ≤ C‖φhi − φi‖6−N
L2 ,

from which it follows that
lim
h→∞

‖φhi − φi‖
L

4N
N+2

= 0.

This completes the proof.
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The interaction between the components φ1 and φ2 is described by the following Coulomb energy functional which is
well-known from classical Hartree theory.

Definition 2.2.
The Coulomb energy functional 5

D : H1(RN ) ×H1(RN ) → R
is defined by

D(φ1, φ2) =
∫

RN

∫
RN

|φ1(x)|2 V (x − y) |φ2(y)|2 dx dy, (5)

where the interaction potential V is the Coulomb potential in RN for N ≥ 3,

V (x) = 1
|x|N−2 . (6)

Due to the following lemma, for any 3 ≤ N ≤ 6, the Coulomb energy functional with potential (6) is well-defined.

Lemma 2.2.
Let 3 ≤ N ≤ 6 and let φi ∈ H1(RN ) with ‖φi‖2

L2 = Ni > 0 for i = 1, 2. Then, there exists a constant C such that

D(φ1, φ2) ≤ C (N1N2)
6−N

4 ‖φ1‖
N−2

2
H1 ‖φ2‖

N−2
2

H1 .

Proof. Due to Schwarz’ inequality, we have

D(φ1, φ2)2 ≤ D(φ1, φ1) D(φ2, φ2). (7)

Hence, by the Hardy-Littlewood-Sobolev inequality (for N ≥ 3) and the Gagliardo-Nirenberg inequality (for 2 ≤ N ≤ 6),
we get

D(φi, φi) ≤ C‖φi‖4
L

4N
N+2

≤ C‖φi‖6−N
L2 ‖φi‖N−2

H1 = CN
6−N

2
i ‖φi‖N−2

H1 ,

which yields the assertion.

Remark 2.1.
If N ≥ 2 and the interaction potential is of the form

Vλ(x) = 1
|x|λ for some 0 < λ < min{4, N}, (8)

we can again estimate the energy functional

Dλ(φ1, φ2) :=
∫

RN

∫
RN

|φ1(x)|2 Vλ(x − y) |φ2(y)|2 dx dy (9)

by virtue of the Hardy-Littlewood-Sobolev inequality (for any 0 < λ < N) and the Gagliardo-Nirenberg inequality (for
any 0 < λ ≤ 4) as

Dλ(φ1, φ2) ≤ C‖φ1‖2
L

4N
2N−λ

‖φ2‖2
L

4N
2N−λ

≤ C (N1N2)
4−λ

4 ‖φ1‖λ/2H1 ‖φ2‖λ/2H1 .

In particular, if N = 2 and λ = 1, we have

D1(φ1, φ2) ≤ C (N1N2)3/4‖φ1‖1/2
H1 ‖φ2‖1/2

H1 .

If λ = N − 2 with N ≥ 3 then DN−2 = D and one recovers the estimate of the previous Lemma 2.2.

5 Also called direct term in the Hartree (-Fock) theory.
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2.2. Existence of a minimizer

Let us consider the following two component Hartree eigenvalue system in RN for 3 ≤ N ≤ 6 with Coulomb interaction
V from (6) and N1, N2 > 0,

−∆φ1 + V1(x)φ1 + θ1
(
V ∗ |φ1|2

)
φ1 + κ

(
V ∗ |φ2|2

)
φ1 = µ1φ1,

−∆φ2 + V2(x)φ2 + θ2
(
V ∗ |φ2|2

)
φ2 + κ

(
V ∗ |φ1|2

)
φ2 = µ2φ2,

‖φ1‖2
L2 = N1,

‖φ2‖2
L2 = N2.

(10)

Since we are interested in the phase segregation phenomenon in the case of a purely repulsive Hartree system, we
make the following assumption.

Assumption 2.2.
The self-coupling constants θ1, θ2 and the interaction strength κ are nonnegative,

θ1, θ2 ≥ 0, κ ≥ 0.

Remark 2.2.
In the case of coupled Bose-Einstein condensates discussed in the introduction (where the nonlinearities are local, i.e.
V = δ), the self-coupling constants θ1, θ2 as well as the interaction strength κ are explicitly related to the scattering
lengths and the masses of the atomic species in the condensates (see e.g. [10]).

In order to study the nonlinear ground states of the Hartree system (10), we make use of the following energy functional.6

Definition 2.3.
The Hartree energy functional Eκ : H → [0,∞) is defined by

Eκ(φ1, φ2) = E∞(φ1, φ2) + κ D(φ1, φ2), (11)

where the decoupled energy functional E∞ : H → [0,∞) consists of the sum of the two single particle energies
Ei : H → [0,∞),

E∞(φ1, φ2) =
2∑
i=1

Ei(φi), (12)

Ei(φi) =
∫

RN
|∇φi(x)|2 dx +

∫
RN
Vi(x) |φi(x)|2 dx + θi

2 D(φi, φi). (13)

In view of Lemma 2.2, the functional Eκ is well-defined for 3 ≤ N ≤ 6. Moreover, it is readily seen that Eκ is a C 1 smooth
functional and that its critical points constrained to the set {(φ1, φ2) ∈ H : ‖φi‖2

L2 = Ni for i = 1, 2} are weak solutions
of (10).

Remark 2.3.
The case κ = 0 corresponds to a noninteracting Hartree system (10) consisting of two independent Hartree equations,
each describing a repulsive single particle self-coupling.

6 From here on, since θ1, θ2 ≥ 0 and N1, N2 > 0 are fixed, we display the dependence of the energy functionals and
the ground state energies on the interaction strength κ only.
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Definition 2.4.
The ground state energy Eκ ≥ 0 of the Hartree functional (11) at interaction strength κ ∈ [0,∞) is defined by

Eκ = inf
(φ1,φ2)∈S

Eκ(φ1, φ2), (14)

where the infimum is taken over the set

S = {(φ1, φ2) ∈ H : ‖φi‖2
L2 = Ni for i = 1, 2}. (15)

Moreover, the segregated ground state energy E∞ ≥ 0 is defined by

E∞ = inf
(φ1,φ2)∈S∞

E∞(φ1, φ2),

where now the infimum is taken over the set

S∞ = {(φ1, φ2) ∈ S : D(φ1, φ2) = 0} .

Let us now prove that the Hartree functional (11) admits a real and positive minimizer for any positive interaction
strength κ.

Proposition 2.1.
Let κ ∈ (0,∞) and 3 ≤ N ≤ 6. Then, there exists a positive minimizer (φκ1 , φκ2 ) ∈ S of the Hartree functional (11) with
ground state energy Eκ given in (14).

Proof. In order to prove the assertion, we make use of the direct method in the calculus of variations. Hence, we
verify the three standard assumptions implying the existence of a minimizer. First, since by Lemma 2.1, the normed
space H from (3) with the norm from (4) is compactly embedded in L2(RN ) ⊕ L2(RN ), it follows that the set S from (15)
is weakly closed in H. Second, since

‖(φ1, φ2)‖2
H ≤ Eκ(φ1, φ2) = ‖(φ1, φ2)‖2

H +
2∑
i=1

θi
2 D(φi, φi) + κ D(φ1, φ2), (16)

the set {(φ1, φ2) ∈ S : Eκ(φ1, φ2) ≤ a} is a bounded nonempty subset of S for any positive number a. Third, we have
to show that the functional Eκ is weakly lower semicontinuous on S. For this purpose, consider a sequence of elements
(φh1 , φh2 ) ∈ S which converges for h → ∞ weakly in H to some (φ1, φ2) ∈ S. Since, for any i, j = 1, 2,

|φhi (x)|2|φhj (y)|2

|x − y|N−2 →
|φi(x)|2|φj (y)|2

|x − y|N−2 for a.e. (x, y) ∈ R2N ,

Fatou’s Lemma implies
D(φ1, φ2) ≤ lim inf

h→∞
D(φh1 , φh2 ), D(φi, φi) ≤ lim inf

h→∞
D(φhi , φhi ). (17)

Therefore, due to (16), the fact that the norm ‖ · ‖H from (4) on H is weakly lower semicontinuous on S, and (17), the
Hartree functional Eκ is indeed weakly lower semicontinuous on S. Hence, the three assumptions are verified and the
existence of a minimizer is proven. Moreover, due to the convexity inequality for gradients,∫

RN
|∇|φi|(x)|2 dx ≤

∫
RN

|∇φi(x)|2 dx,

the Hartree functional Eκ satisfies the following inequality for any (φ1, φ2) ∈ S,

Eκ(|φ1|, |φ2|) ≤ Eκ(φ1, φ2).

Consequently, with no loss of generality, we can assume that any minimizer of Eκ is positive.
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Remark 2.4.
Note that, for 3 ≤ N ≤ 5, the Coulomb energy functional D is not only weakly lower semicontinuous as given in (17),
but even weakly continuous over H, i.e. for any sequence of elements (φh1 , φh2 ) ∈ S which converges for h → ∞ weakly
in H to some (φ1, φ2) ∈ S, we have

lim
h→∞

D(φh1 , φh2 ) = D(φ1, φ2), lim
h→∞

D(φhi , φhi ) = D(φi, φi). (18)

In order to prove this claim, we make use of Lemma 2.1, which states that the embedding H ↪→ L 4N
N+2 (RN ) ⊕ L 4N

N+2 (RN ) is
compact. Hence, up to a subsequence, it follows that, for i = 1, 2,

lim
h→∞

‖φhi − φi‖
L

4N
N+2

= 0. (19)

Using (19), we want to show that D(φhi , φhi ) → D(φi, φi) as h → ∞. To this end, we use that the Coulomb potential V
from (6) is even and write

|D(φhi , φhi ) − D(φi, φi)| ≤ D(||φhi |2 − |φi|2|1/2, (|φhi |2 + |φi|2)1/2).

By inequality (7), the Hardy-Littlewood-Sobolev inequality, and Hölder’s inequality, it follows that there exist a constant
C with

|D(φhi , φhi ) − D(φi, φi)|2 ≤ C‖ ||φhi |2 − |φi|2|1/2‖4
L

4N
N+2

‖ (|φhi |2 + |φi|2)1/2‖4
L

4N
N+2

≤ C‖φhi − φi‖2
L

4N
N+2

.

This implies, via (19), the desired convergence of D(φhi , φhi ) to D(φi, φi).7 Hence, it follows that all the terms in Eκ
containing the Coulomb energy functional D are weakly continuous on S. Notice that, as a consequence of (18), the
weak lower semicontinuity of Eκ over S also holds in the case of attractive self-coupling or attractive interaction, i.e. for
θ1, θ2 ≤ 0 or κ ≤ 0. In fact, this case amounts to the replacement of some (or all) D terms (with positive coupling) in
the Hartree functional by −D.

2.3. Phase segregation

As pointed out in the introduction, we are interested in the situation where the values of the self-coupling constants
θ1, θ2 (and N1, N2) remain fixed whereas the interaction strength κ becomes very large.

Definition 2.5.
A sequence of minimizers (φκ1 , φκ2 ) ∈ S of the Hartree energy functional Eκ from (11) is said to be phase segregating if

D(φκ1 , φκ2 ) = o(1) for κ → ∞.

Remark 2.5.
If the phase segregating sequence (φκ1 , φκ2 ) is convergent in H, then the limiting configuration (φ∞

1 , φ∞
2 ) satisfies

D(φ∞
1 , φ∞

2 ) = 0.

Let us now state our main assertion.

Theorem 2.1.
Let 3 ≤ N ≤ 6 and let D be the Coulomb energy functional from (5). Then, for κ ∈ (0,∞), any sequence of minimizers
(φκ1 , φκ2 ) ∈ S of the Hartree energy functional Eκ from (11) is phase segregating for κ → ∞, and

D(φκ1 , φκ2 ) = o(κ−1).

In addition, such a sequence converges in the H-norm to a minimizer (φ∞
1 , φ∞

2 ) ∈ S∞ of the decoupled functional E∞
from (12) and (13).

7 The convergence D(φh1 , φh2 ) → D(φ1, φ2) as h → ∞ can be proved in a similar fashion.
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Corollary 2.1.
Under the assumptions of Theorem 2.1, the limiting configuration satisfies the following set of uncoupled variational
inequalities,

− ∆φ∞
i + Vi(x)φ∞

i + θi
(
V ∗ |φ∞

i |2
)
φ∞
i ≤ µ∞

i φ∞
i , (20)

where Niµ∞
i = Ei(φ∞

i ) + θi
2 D(φ∞

i , φ∞
i ) and i = 1, 2.

Remark 2.6.
Although we stated Theorem 2.1 for minimizers of the Hartree functional in RN with 3 ≤ N ≤ 6 containing the Coulomb
energy functional D, it also holds for minimizers of the Hartree functional in RN with 0 < λ < min{4, N} containing
instead Dλ from (9). This corresponds to the system

−∆φ1 + V1(x)φ1 + θ1
(
Vλ ∗ |φ1|2

)
φ1 + κ

(
Vλ ∗ |φ2|2

)
φ1 = µ1φ1,

−∆φ2 + V2(x)φ2 + θ2
(
Vλ ∗ |φ2|2

)
φ2 + κ

(
Vλ ∗ |φ1|2

)
φ2 = µ2φ2,

‖φ1‖2
L2 = N1,

‖φ2‖2
L2 = N2,

(21)

where Vλ stems from (8). In particular, in view of the numerical setup, the case N = 2 and λ = 1 is covered.

Proof. Consider a sequence of minimizers (φκ1 , φκ2 ) ∈ S for κ → ∞ whose existence is assured by Proposition 2.1.
Note first that, in the light of Definition 2.4, the sequence of corresponding ground state energies (Eκ) is uniformly
bounded because

Eκ = inf
(φ1,φ2)∈ S

Eκ(φ1, φ2) ≤ inf
(φ1,φ2)∈ S∞

Eκ(φ1, φ2) = inf
(φ1,φ2)∈ S∞

E∞(φ1, φ2) = E∞. (22)

In particular, due to (16) and the definition of a minimizer, the sequence (φκ1 , φκ2 ) is uniformly bounded in H with respect
to κ,

‖(φκ1 , φκ2 )‖2
H ≤ Eκ(φκ1 , φκ2 ) = Eκ ≤ E∞.

Hence, since H is weakly sequentially compact, there exists a pair (φ∞
1 , φ∞

2 ) ∈ H and a subsequence of (φκ1 , φκ2 ), again
denoted by (φκ1 , φκ2 ) which, for κ → ∞, converges weakly in H to (φ∞

1 , φ∞
2 ). Next, we want to show that (φ∞

1 , φ∞
2 ) ∈ S∞.

Since (φκ1 , φκ2 ) ∈ S and the embedding H ↪→ L2(RN ) ⊕ L2(RN ) is compact, we have, for i = 1, 2,

‖φ∞
i ‖2

L2 = Ni.

Hence, (φ∞
1 , φ∞

2 ) ∈ S. Moreover, again due (16) and (22), we have

κ D(φκ1 , φκ2 ) ≤ Eκ(φκ1 , φκ2 ) ≤ E∞, (23)

which implies that the sequence (φκ1 , φκ2 ) is phase segregating for κ → ∞,

D(φκ1 , φκ2 ) = O(κ−1).

Also, since we know from the proof of Proposition 2.1 that the Coulomb energy D is weakly lower semicontinuous on S,
we get

D(φ∞
1 , φ∞

2 ) = 0,

and, therefore, (φ∞
1 , φ∞

2 ) ∈ S∞. In order to prove that (φ∞
1 , φ∞

2 ) is a minimizer of E∞ and that (φκ1 , φκ2 ) converges strongly
in H to (φ∞

1 , φ∞
2 ), we next show that D(φκ1 , φκ2 ) = o(κ−1). To this end, consider the sequence κ D(φκ1 , φκ2 ) which is
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bounded due to (23), and pick a convergent subsequence, denoted by κn D(φκn1 , φ
κn
2 ). Then, using that (φ∞

1 , φ∞
2 ) ∈ S∞,

the weak lower semicontinuity of the decoupled energy functional E∞ on S, and (22), we get

E∞(φ∞
1 , φ∞

2 ) + lim
n→∞

κn D(φκn1 , φ
κn
2 ) ≤ lim inf

n→∞
Eκn (φ

κn
1 , φ

κn
2 ) ≤ E∞ ≤ E∞(φ∞

1 , φ∞
2 ), (24)

with the consequence that κn D(φκn1 , φ
κn
2 ) = 0 as n → ∞. Therefore, since this holds for all convergent subsequences of

κ D(φκ1 , φκ2 ), we arrive at

D(φκ1 , φκ2 ) = o(κ−1). (25)

This implies, on one hand, that (φκ1 , φκ2 ) converges strongly in H to (φ∞
1 , φ∞

2 ) since from Ek ≤ E∞(φ∞
1 , φ∞

2 ), (25), and the
weak continuity of D(φκi , φκi ), we get

lim sup
κ→∞

‖(φκ1 , φκ2 )‖2
H ≤ ‖(φ∞

1 , φ∞
2 )‖2

H.

On the other hand, using (24) and (25), we see that (φ∞
1 , φ∞

2 ) is a minimizer of E∞, that is E∞ = E∞(φ∞
1 , φ∞

2 ). Finally,
we note that, again due to (24), we have Eκ → E∞ as κ → ∞. This brings the proof of Theorem 2.1 to an end.

Finally, we prove the assertion of Corollary 2.1.

Proof. Observe that, by virtue of

µκi = 1
Ni

{
Ei(φκi ) + θi

2 D(φκi , φκi ) + κ D(φκ1 , φκ2 )
}
, (26)

the inequality (23) and Ei(φκi ) ≤ E∞, we get
sup
κ≥1

µκi < ∞,

where µκi denotes the nonlinear eigenvalue of the minimizer φκi as the weak nonlinear ground state in the corresponding
nonlinear eigenvalue system (10). Then, up to a subsequence, µκi → µ∞

i as κ → ∞. Testing the equations of (10) with
arbitrary nonnegative functions η of compact support, we get, recalling that φi ≥ 0,

∫
RN

∇φκi (x) · ∇η(x) dx +
∫

RN
Vi(x)φκi (x) η(x) dx + θi

∫
RN

∫
RN

φκi (y)2 φκi (x) η(x)
|x − y|N−2 dx dy

≤ µκi
∫

RN
φκi (x) η(x) dx.

Hence, letting κ → ∞, it turns out that φ∞
i satisfies the variational inequality (20). Finally, the strong convergence

and (26) yields, for i = 1, 2,

Ni µ∞
i = Ei(φ∞

i ) + θi
2 D(φ∞

i , φ∞
i ).

This ends the proof of Corollary 2.1.
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3. Numerical approach

3.1. Galerkin approximation of the nonlinear eigenvalue system

In order to carry out the numerical simulation, we treat the Hartree system in the plane from (21) with N = 2 and λ = 1
in the framework of the following finite element approximation. As physical subdomain of R2, we choose the open square

Ω = (0, D)×2 (27)

with D > 0 whose closure is the union of the (m− 1)2 congruent closed subsquares generated by dividing each side of
Ω equidistantly into m− 1 intervals. Let us denote by M = (m− 2)2 the total number of interior vertices of this lattice
and by h = D/(m− 1) the lattice spacing.8 Moreover, let us choose the Galerkin space Sh to be spanned by the bilinear
Lagrange rectangle finite elements φj ∈ C (Ω).9

Figure 1. φ0(x, y) on its support [0, 2h]×2 with maximum at vertex (h, h).

Hence, with this choice, we have
Sh ⊂ C (Ω) ∩H1

0 (Ω),

and dimSh = (m− 2)2. The Hartree system (21) in its weak finite element approximation form reads, for all φ ∈ Sh,10


(∇φ,∇φ1) + (φ, V1φ1) + (φ, (V ∗ [θ1|φ1|2 + κ|φ2|2])φ1) = µ1,0 (φ, φ1) ,
(∇φ,∇φ2) + (φ, V2φ2) + (φ, (V ∗ [θ2|φ2|2 + κ|φ1|2])φ2) = µ2,0(φ, φ2),
‖φ1‖2

L2 = N1,
‖φ2‖2

L2 = N2.

(29)

8 As bijection from the one-dimensional to the two-dimensional lattice numbering, we may use the mapping τ : {0, ..., m−
1}×2 → {0, ..., m2 − 1} with j = τ(m1, m2) := m1 +m2m.
9 The reference basis function φ0 : Ω → [0,∞) is defined on its support [0, 2h]×2 by

φ0(x, y) := 1
h2


xy, if (x, y) ∈ [0, h]×2,

(2h− x)y, if (x, y) ∈ [h, 2h] × [0, h],
(2h− x)(2h− y), if (x, y) ∈ [h, 2h]×2,

x(2h− y), if (x, y) ∈ [0, h] × [h, 2h],

(28)

see Figure 1. The functions φj are then defined to be of the form (28) having their support translated by (m1h,m2h)
with m1, m2 = 0, ..., m− 3.
10 In this section, (·, ·) and ‖·‖ stand for the L2(Ω)-scalar product and L2(Ω)-norm, respectively. Moreover, the convolution
on the finite domain Ω is defined, for any (x, y) ∈ Ω, by (V ∗ φ)(x, y) :=

∫
Ω V (x − x ′, y − y′)φ(x ′, y′) dx ′ dy′. See also

[3] for the analysis of the continuum, the semidiscrete, and the fully discrete setting for the dynamical single particle
Hartree equation.
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If we expand φα ∈ Sh with expansion coefficients zα = (zα,1, ..., zα,M ) ∈ CM w.r.t. the finite element basis {φj}Mj=1 of Sh,

φα =
M∑
j=1

zα,j φj , (30)

and if we plug this expansion together with φ = φi, i = 1, ...,M, into (29), we get the following coupled matrix system
on CM ,11 

Q1[z1, z2]z1 = µ0,1z1,
Q2[z1, z2]z2 = µ0,2z2,
|z1|22 = N1,
|z2|22 = N2.

(31)

Here, the matrix-valued mappings Q1, Q2 : CM × CM → CM×M are defined by

Q1[z1, z2] := A−1(B + Y1 + θ1 G[z1] + κ G[z2]),
Q2[z1, z2] := A−1(B + Y2 + θ2 G[z2] + κ G[z1]),

and A ∈ CM×M is the mass matrix, B ∈ CM×M the stiffness matrix, and Yα ∈ CM×M the matrices generated by the
external potentials Vα ,

Aij := (φi, φj ), Bij := (∇φi,∇φj ), (Yα )ij := (φi, Vαφj ). (32)

Moreover, the matrix-valued mapping G : CM → CM×M is defined on w = (w1, ..., wM ) ∈ CM by

G[w]ij :=
(
φi, g

[ M∑
k=1

wk φk
]
φj

)
=

M∑
k,l=1

wkwl Viklj ,

where the function g and the Hartree convolution term Viklj are defined by

g[φ] := V ∗ |φ|2, Viklj := (φi, V ∗ (φkφl)φj ). (33)

Remark 3.1.
We avoid the inversion of the mass matrix A and simplify the evaluation of the double integral in the Hartree convolution
term (33) by approximating the integrals over Ω by the standard mass lumping quadrature procedure.

In order to simplify the eigenvalue system (31) with the help of Remark 3.1, let us introduce the mappings H1, H2 :
CM × CM → CM×M defined by

H1[z1, z2] := 1
h2 (B + Y1 + θ1 diag(G0[z1]) + κ diag(G0[z2])),

H2[z1, z2] := 1
h2 (B + Y2 + θ2 diag(G0[z2]) + κ diag(G0[z1])),

11 |z|22 := 〈z, z〉2 denotes the L2-norm on CM , where 〈z, w〉 :=
∑M

j=1 zjwj and 〈z, w〉2 := 〈z, Aw〉 are the Euclidean and
the L2-scalar product on CM , respectively. For φα from (30), we have ‖φα‖2 = 〈zα , Azα〉 = |zα |22 = Nα for α = 1, 2.
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where diag : CM → CM×M is defined to be the matrix-valued mapping on w = (w1, ..., wM ) ∈ CM defined by diag(w)ij :=
δijwj for all i, j = 1, ...,M, and G0 : CM → CM is defined by

G0[w]i := h4
M∑
j=1

|wj |2 V (h(τ−1(i) − τ−1(j))),

where τ is the grid numbering bijection from footnote 8. Hence, Remark 3.1 amounts to the replacement G[z] 7→ diag(G0[z])
and we get the approximated Hartree system


H1[z1, z2]z1 = µ0,1z1,
H2[z1, z2]z2 = µ0,2z2,
|z1|22 = N1,
|z2|22 = N2.

(34)

3.2. Algorithms

In order to solve the nonlinear coupled eigenvalue system (34), we make use of the method of successive substitution12

whose fixed-point map is constructed with the help of the power method used for the solution of the corresponding
linearized problem. In the following, we briefly describe the basic ideas of these algorithms.

Method of successive substitution (MSS)
Let M be the compact set

M := {[z1, z2] ∈ CM × CM | |z1|22 = N1, |z2|22 = N2}.

The MSS is an iterative method of the form

[z(n+1)
1 , z(n+1)

2 ] = F [z(n)
1 , z(n)

2 ], (35)

where the fixed point map F : M → M is constructed as follows. Given an approximate nonlinear system ground state
[z(n)

1 , z(n)
2 ] ∈ M at iteration level n ∈ N, the approximate nonlinear system ground state [z(n+1)

1 , z(n+1)
2 ] ∈ M at iteration

level n+ 1 is defined to be the linear system ground state of the linearized eigenvalue system


H1[z(n)

1 , z(n)
2 ]z(n+1)

1 = ε(n+1)
0,1 z(n+1)

1 ,
H2[z(n)

1 , z(n)
2 ]z(n+1)

2 = ε(n+1)
0,2 z(n+1)

2 ,
|z(n+1)

1 |22 = N1,
|z(n+1)

2 |22 = N2.

(36)

Remark 3.2.
Here and in the following, we make the assumption that Hα [z(n)

1 , z(n)
2 ] has a unique linear ground state. E.g., using

perturbation theory in the regime of small nonlinear couplings, this holds as soon as the linear operator Hα [0, 0] has
a nondegenerate ground state energy.

12 Also called nonlinear Richardson iteration or Picard iteration.
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Remark 3.3.
We can write the fixed point map Fα [z(n)

1 , z(n)
2 ] from (35) with the help of the linear ground state projection

Pα [z1, z2] = − 1
2πi

∮
Γα [z1,z2 ]

(Hα [z1, z2] − ζ)−1 dζ,

where Γα [z1, z2] is a path which encircles the linear ground state energy of Hα [z1, z2] in the positive direction and no
other point of the spectrum of Hα [z1, z2]. The map F can now be written as

Fα [z(n)
1 , z(n)

2 ] =
√
Nα

Pα [z(n)
1 , z(n)

2 ]z(n)
α

|Pα [z(n)
1 , z(n)

2 ]z(n)
α |2

. (37)

Since Hα [·, ·] is Lipschitz continuous on M, the map F has a not necessarily unique fixed point due to Schauder’s fixed
point theorem.

The system (36) being not only linearized but also decoupled, we can solve the two linear eigenvalue problems
separately. In order to approximately determine the ground states of the linear eigenvalue problems, we make use of
the power method which works as follows.

Power method (PM)
The PM computes the eigenvector of Hα [z(n)

1 , z(n)
2 ] whose eigenvalue has largest modulus amongst all the eigenvalues

whose eigenvectors appear in the eigenvector expansion of the starting approximation. To access the ground state of
Hα [z(n)

1 , z(n)
2 ], we apply the following spectral shift13

s(n)
α := |Hα [z(n)

1 , z(n)
2 ]|1 + 1.

Moreover, we define the shifted operator by

Ĥα [z(n)
1 , z(n)

2 ] := Hα [z(n)
1 , z(n)

2 ] − s(n)
α .

Now, the p-th iterate of the PM iteration is defined by14

z(n+1),p
α := Ĥα [z(n)

1 , z(n)
2 ]

p
z(n)
α

|Ĥα [z(n)
1 , z(n)

2 ]
p
z(n)
α |

. (38)

Remark 3.4.
Since Ĥα [z(n)

1 , z(n)
2 ] is real symmetric, the spectral theorem implies the existence of an orthonormal basis of CM of

eigenvectors {wα,k}M−1
k=0 of Ĥα [z(n)

1 , z(n)
2 ].15 Moreover, since the spectral radius of Ĥα [z(n)

1 , z(n)
2 ] is smaller than s(n)

α , we have
for all eigenvalues of the shifted operator ε̂α,k ∈ spec(Hα [z(n)

1 , z(n)
2 ]) − s(n)

α that

−2s(n)
α < ε̂α,0 < ε̂α,1 ≤ ... ≤ ε̂α,M−1 < 0.

13 For A = [aij ] ∈ CM×M , we define the `1- matrix norm by |A|1 :=
∑M

i,j=1 |aij |.
14 |z| := 〈z, z〉1/2 denotes the Euclidean norm of z ∈ CM .
15 We suppress the superscript n in the eigenvectors, eigenvalues, and in the expansion coefficients, since the PM
iteration acts at a fixed n. Moreover, the numbering starts at 0 being the index of the ground state.
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Let us expand z(n)
α w.r.t. the orthonormal basis {wα,k}M−1

k=0 as

z(n)
α =

M−1∑
k=0

ξα,kwα,k ,

use that Ĥα [z(n)
1 , z(n)

2 ]wα,k = ε̂α,k wα,k , and divide the numerator and the denominator in (38) by |ε̂α,0|p. Moreover, let us
assume that ξα,0 6= 0. Then, in the large p limit, (−1)pz(n+1),p

α converges to a multiple of the ground state of Hα [z(n)
1 , z(n)

2 ],

z(n+1),p
α = (−1)p ξ0,α∣∣ξ0,α

∣∣ w0,α + o(1). (39)

Remark 3.5.
Using formula (39), the fixed point map F from (35), (37) can also be written as

Fα [z(n)
1 , z(n)

2 ] =
√
Nα lim

p→∞

(−1)pz(n+1),p
α

|z(n+1),p
α |2

.

Stopping criteria
Both for the inner PM iteration and the outer MSS iteration, we use a relative error stopping criterion in the numerical
computation. For the PM iteration, let us define the energy

ε̂(n+1),p
α,0 := 〈z(n+1),p

α , Ĥα [z(n)
1 , z(n)

2 ]z(n+1),p
α 〉. (40)

Then, for suitably chosen accuracy tolerance δPM > 0, we stop the PM iteration for each component α = 1, 2 as soon as

|(Ĥα [z(n)
1 , z(n)

2 ] − ε̂(n+1),p
α,0 ) z(n+1),p

α |
|ε̂(n+1),p
α,0 + s(n)

α |
≤ δPM. (41)

Remark 3.6.
Note that the quotient (41) does not depend on the shift s(n)

α , since the iterates z(n+1),p
α are normalized w.r.t. the Euclidean

norm on CM .

Remark 3.7.
Clearly, the stopping criterion (41) is satisfied for any eigenvector of Ĥα [z(n)

1 , z(n)
2 ]. But as soon as ξα,0 6= 0, e.g. due to

finite precision arithmetic, the PM iterate z(n+1),p
α converges to a multiple of the ground state wα,0. But note that the

chosen accuracy may be reached before a nonvanishing ξα,0 is generated.

For the MSS iteration, we implement a similar stopping criterion. To this end, we define the approximate nonlinear
ground state energies as

µ(n+1)
α,0 := 1

Nα
〈z(n+1)
α , Hα [z(n+1)

1 , z(n+1)
2 ]z(n+1)

α 〉2,

where, compared to (40), the Hartree energy Hα depends on iteration level n+ 1 instead of level n. We stop the MSS
iteration as soon as

|(Hα [z(n+1)
1 , z(n+1)

2 ] − µ(n+1)
0,α ) z(n+1)

α |2
|µ(n+1)

0,α |
≤ δMSS,

where δMSS > 0 is some suitably chosen accuracy tolerance.
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3.3. Phase segregation

As it has been defined above in Definition 2.5, a sequence of nonlinear ground state solutions (φκ1 , φκ2 ) is phase segre-
gating if its Coulomb energy vanishes in the limit of large interaction strength κ, i.e.

D(φκ1 , φκ2 ) = (φκ1 , (V ∗ |φκ2 |2)φκ1 ) → 0 for κ → ∞. (42)

Plugging the expansions (30) into (42), we get

D
( M∑

i=1

z1,i φi,
M∑
j=1

z2,j φj
)

= 〈z1, G[z2]z1〉.

Hence, making use of Remark 3.1, we define the approximated Coulomb energy D0 : CM × CM → R by

D0[z1, z2] := 〈z1, diag(G0[z2])z1〉. (43)

Below, we will use this approximation in the numerical computation of the Coulomb energy.

4. Figures

The numerical computations leading to the following figures visualize the qualitative picture of the approach to the
segregated regime. First, we exhibit the densities of the wave functions φ1 and φ2 for increasing values of the interaction
strength κ approaching the segregated regime. Second, we report on the decay of the Coulomb energy (43).

We choose the external potentials Vα for α = 1, 2 to be isotropic harmonic potentials,

Vα (x, y) = cα
(
(x − aα )2 + (y− bα )2) , (44)

and the interaction potential V to be a regularized Yukawa potential,

V (x, y) = e−Γ
√
x2+y2√

x2 + y2 + γ
. (45)

Remark 4.1.
The potential (45) being the regularized three-dimensional Yukawa potential, it may be argued that we consider a phys-
ically three-dimensional system constrained to a two-dimensional submanifold of the three-dimensional configuration
space.

The specification of the parameters used in the simulations below is summarized in the following table (cf. (27), (29),
(44), and (45)).16

N1 N2 a1 b1 c1 a2 b2 c2 θ1 θ2 κ Γ γ

1 1 D/2 D/2 105 D/2 D/2 103 0 0 cf. below 102 10−1

Remark 4.2.
All the qualitative features of the following simulations have been tested for stability in different physical and numerical
parameter ranges.

16 The code is part of our Hartree package written in C++.
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4.1. κ = 0
For the interaction strength κ = 0, the system is uncoupled and linear, and we find the ground state wave functions of
the harmonic oscillator. The supports are fully overlapping, see Figure 2.17

Figure 2. The wave function densities |zα |2 and their contours with α = 1 above and α = 2 below for the interaction strength κ = 0.

4.2. κ = 0.5
The wave functions φ1 and φ2 start to feel their respective repulsion. The support of φ1 is retracting whereas the one
of φ2 gets pushed outwards. The supports are still heavily overlapping, see Figure 3.

4.3. κ = 10
In the regime of large interaction strength κ, the segregation phenomenon occurs: the supports get more and more
disjoint, see Figure 4.

Remark 4.3.
Up to the shape of the support of φi, there is no qualitative change in the picture if the two harmonic potentials are
slightly dislocated with respect to each other.

17 All the figures have been produced with the help of gnuplot.
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Figure 3. The interaction strength is κ = 0.5.

Figure 4. The interaction strength is κ = 10.
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4.4. Coulomb energy

Finally, we monitor the decay of the Coulomb energy from formula (43), see Figure 5.

Figure 5. The decay of D0 [zκ1 , zκ2 ] as a function of κ.
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