
Differential and Integral Equations Volume 14, Number 7, July 2001, Pages 785–800

A MULTIPLICITY RESULT FOR PERTURBED
SYMMETRIC QUASILINEAR ELLIPTIC SYSTEMS

Simone Paleari and Marco Squassina

Dipartimento di Matematica, Università degli studi di Milano
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Abstract. By means of nonsmooth critical-point theory, we prove
existence of infinitely many solutions (um) ⊆ H1

0 (Ω,RN ) for a class
of perturbed Z2−symmetric elliptic systems .

1. Introduction

In critical-point theory, an open problem concerning existence is the role
of symmetry in obtaining multiple critical points for even functionals .

Around 1980, the semilinear scalar problem−
n∑

i,j=1
Dj(aij(x)Diu) = g(x, u) + ϕ in Ω

u = 0 on ∂Ω ,

(1.1)

with g superlinear and odd in u and ϕ ∈ L2(Ω), has been the object of a
very careful analysis by A. Bahri and H. Berestycki in [3], M. Struwe in [23],
G-C. Dong and S. Li in [14] and by P. H. Rabinowitz in [19] via techniques
of classical critical-point theory. Around 1990, A. Bahri and P. L. Lions in
[4, 5] improved the previous results via a Morse-index-type technique.

Later on, since 1994, several efforts have been devoted to studying exis-
tence for quasilinear scalar problems of the type−

n∑
i,j=1

Dj(aij(x, u)Diu) + 1
2

n∑
i,j=1

Dsaij(x, u)DiuDju = g(x, u) in Ω

u = 0 on ∂Ω.
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We refer the reader to [2, 7, 8, 9, 24] and to [1, 18, 22] for a more general
setting. In this case the associated functional f : H1

0 (Ω)→ R given by

f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω
G(x, u) dx

is not even locally Lipschitz unless the aij ’s do not depend on u or n = 1.
Consequently, techniques of nonsmooth critical-point theory have to be

applied. We refer to [10, 13, 15, 17] for the abstract theory and in particular
to [9] for the main results we shall need in the following.

It seems now natural to ask whether some existence results for perturbed
even functionals still hold in a quasilinear setting, both scalar (N = 1) and
vectorial (N ≥ 2).

In [21] one of the authors has recently proved that diagonal quasilinear
elliptic systems of the type (k = 1, . . . , N)

−
n∑

i,j=1

Dj(akij(x, u)Diuk) +
1
2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh = DskG(x, u),

(1.2)
in Ω, possess a sequence (um) of weak solutions in H1

0 (Ω,RN ) under suitable
assumptions, including symmetry, on coefficients ahij andG. In order to prove
this result, we looked for critical points of the functional f0 : H1

0 (Ω,RN )→ R
defined by

f0(u) =
1
2

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx−
∫

Ω
G(x, u) dx . (1.3)

In this paper we want to investigate the effects of destroying the symmetry
of system (1.2) and show that for each ϕ ∈ L2(Ω,RN ) the perturbed problem

−
n∑

i,j=1

Dj(akij(x, u)Diuk) + 1
2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh=DskG(x, u)+ϕk

(1.4)
in Ω, still has infinitely many weak solutions. Of course, to this aim, we
shall study the associated functional

f(u)= 1
2

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx−
∫

Ω
G(x, u) dx−

∫
Ω
ϕ · u dx. (1.5)
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In the following, Ω will denote an open and bounded subset of Rn. In order
to adapt the perturbation argument of [19], we shall consider the following
assumptions:

(a) the matrix
(
ahij(x, s)

)
is measurable in x for each s ∈ RN and of class

C1 in s for almost every x ∈ Ω with ahij(x, s) = ahji(x, s). Moreover, there
exist ν > 0 and C > 0 such that

n∑
i,j=1

N∑
h=1

ahij(x, s)ξ
h
i ξ

h
j ≥ ν|ξ|2,

∣∣ahij(x, s)∣∣ ≤ C, ∣∣Dsa
h
ij(x, s)

∣∣ ≤ C, (1.6)

n∑
i,j=1

N∑
h=1

s ·Dsa
h
ij(x, s)ξ

h
i ξ

h
j ≥ 0 , (1.7)

for almost every x ∈ Ω and for all s ∈ RN and ξ ∈ RnN ;
(b) (if N ≥ 2) there exists a bounded Lipschitz function ψ : R → R such

that
n∑

i,j=1

N∑
h=1

(1
2
Dsa

h
ij(x, s)·expσ(r, s)+ahij(x, s)Dsh(expσ(r, s))h

)
ξhi ξ

h
j ≤ 0 , (1.8)

for almost every x ∈ Ω, for all ξ ∈ RnN , σ ∈ {−1, 1}N and r, s ∈ RN , where
(expσ(r, s))i := σi exp[σi(ψ(ri)− ψ(si))] , for each i = 1, . . . , N.

(c) the function G(x, s) is measurable in x for all s ∈ RN , of class C1 in s
for almost every x ∈ Ω with G(x, 0) = 0 and g(x, ·) denotes the gradient of
G with respect to s.

(d) there exist q > 2 and R > 0 such that

|s| ≥ R =⇒ 0 < qG(x, s) ≤ s · g(x, s) , (1.9)

for almost every x ∈ Ω and all s ∈ RN ;
(e) there exists γ ∈ (0, q − 2) such that

n∑
i,j=1

N∑
h=1

s ·Dsa
h
ij(x, s)ξ

h
i ξ

h
j ≤ γ

n∑
i,j=1

N∑
h=1

ahij(x, s)ξ
h
i ξ

h
j , (1.10)

for almost every x ∈ Ω and for all s ∈ RN and ξ ∈ RnN .
Under the previous assumptions, the following is our main result .

Theorem 1.1. Assume that there exists σ ∈ (1, qn+(q−1)(n+2)
qn+(q−1)(n−2)) such that

|g(x, s)| ≤ a+ b|s|σ, (1.11)
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with a, b ∈ R and that for almost every x ∈ Ω and for each s ∈ RN ,
ahij(x,−s) = ahij(x, s), g(x,−s) = −g(x, s). Then there exists a sequence
(um) ⊆ H1

0 (Ω,RN ) of solutions to the system

−
n∑

i,j=1

Dj(akij(x, u)Diuk) + 1
2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh=DskG(x, u)+ϕk

in Ω, such that limm f(um) = +∞ .

This is clearly an extension of the results of [3, 14, 19, 23] to the quasilinear
case, both scalar (N = 1) and vectorial (N ≥ 2).

Let us point out that in the case N = 1 a stronger version of the previous
result can be proven. Indeed, we may completely drop assumption (b) and
replace Lemma 4.1 with [9, Lemma 2.2.4] .

To our knowledge, in the caseN > 1 only very few multiplicity results have
been obtained so far via nonsmooth critical-point theory (see [2, 21, 24]).

In [2], for coefficients of type ahkij = αijδ
hk, a new technical condition was

introduced to be compared with hypothesis (b). They assume that there exist
K > 0 and an increasing bounded Lipschitz function ψ : [0,+∞)→ [0,+∞),
with ψ(0) = 0, ψ′ nonincreasing, ψ(t)→ K as t→ +∞ and such that

n,N∑
i,j=1
k=1

|Dskaij(x, s)ξiξj | ≤ 2e−4Kψ′(|s|)
n∑

i,j=1

aij(x, s)ξiξj , (1.12)

for almost every x ∈ Ω and for all r, s ∈ RN and ξ ∈ Rn.
The proof itself of [2, Lemma 6.1] shows that condition (1.12) implies our

assumption (b). On the other hand, if N > 1, the two conditions look quite
similar. However, (b) seems to be preferable, because when N = 1 it reduces
to the inequality

∣∣∣ n∑
i,j=1

Dsaij(x, s)ξiξj
∣∣∣ ≤ 2ψ′(s)

n∑
i,j=1

aij(x, s)ξiξj ,

which is not so restrictive in view of (1.6), while (1.12) is in this case much
stronger. We refer the reader to [2, examples 9.1–9.3] for some classes of
coefficients fulfilling (1.12) and thus (b).
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2. Symmetry-perturbed functionals

Given ϕ ∈ L2(Ω,RN ), we shall now consider the functional f : H1
0 (Ω,RN )

→ R defined by

f(u) =
1
2

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx−
∫

Ω
G(x, u) dx−

∫
Ω
ϕ · u dx.

If ϕ 6≡ 0, clearly f is not even. Note that by (1.9) we find c1, c2, c3 > 0 such
that

1
q

(s · g(x, s) + c1) ≥ G(x, s) + c2 ≥ c3|s|q. (2.1)

Lemma 2.1. Assume that u ∈ H1
0 (Ω,RN ) is a weak solution to (1.4). Then

there exists σ > 0 such that∫
Ω

(G(x, u) + c2) dx ≤ σ
(
f(u)2 + 1

) 1
2 .

Proof. If u ∈ H1
0 (Ω,RN ) is a weak solution to (1.4), taking into account

(1.10), we deduce that

f(u) =f(u)− 1
2
f ′(u)(u) =

∫
Ω

[1
2
g(x, u) · u−G(x, u)− 1

2
ϕ · u

]
dx

−1
4

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · uDiuhDjuh dx

≥
(1

2
− 1
q

) ∫
Ω

(g(x, u) · u+ c1) dx− 1
2
‖ϕ‖2‖u‖2

−γ
4

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx− c4

≥
(q

2
− 1− γ

2
) ∫

Ω
(G(x, u) + c2) dx− γ

2
f(u)− ε‖u‖qq − β(ε)‖ϕ‖q

′

2 − c5

with ε→ 0 and β(ε)→ +∞. Choosing ε > 0 small enough, by (2.1) we have

σf(u) ≥
∫

Ω
(G(x, u) + c2) dx− c6,

where σ = 2+γ
q−2−γ , and the assertion follows as in [19, Lemma 1.8]. ¤

We now want to introduce the modified functional, which is the main tool
used to obtain our result. Let us define χ ∈ C∞(R) by setting χ = 1 for
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s ≤ 1, χ = 0 for s ≥ 2 and −2 < χ′ < 0 when 1 < s < 2, and let for each
u ∈ H1

0 (Ω,RN )

φ(u) = 2σ
(
f(u)2 + 1

) 1
2 , ψ(u) = χ

(
φ(u)−1

∫
Ω

(G(x, u) + c2) dx
)
.

Finally, we define the modified functional by

f̃(u) = 1
2

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx−
∫

Ω
G(x, u) dx− ψ(u)

∫
Ω
ϕ · u dx.

(2.2)
The Euler’s equation associated with the previous functional is given by

−
n∑

i,j=1

Dj(akij(x, u)Diuk) + 1
2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh = g̃(x, u) (2.3)

in Ω, where we set g̃(x, u) = g(x, u) + ψ(u)ϕ + ψ′(u)
∫

Ω ϕ · u dx. Note that
taking into account the previous lemma, if u ∈ H1

0 (Ω,RN ) is a weak solution
to (1.4), we have that ψ(u) = 1, and therefore f̃(u) = f(u). In the next result,
we measure the defect of symmetry of f̃ , which turns out to be crucial in
the final comparison argument.

Lemma 2.2. There exists β > 0 such that for all u ∈ H1
0 (Ω,RN )

|f̃(u)− f̃(−u)| ≤ β
(
|f̃(u)|

1
q + 1

)
.

Proof. Note first that if u ∈ supt(ψ), then∣∣∣ ∫
Ω
ϕ · u dx

∣∣∣ ≤ α(|f(u)|
1
q + 1), (2.4)

where α > 0 depends on ‖ϕ‖2. Indeed, by (2.1), we have∣∣∣ ∫
Ω
ϕ · u dx

∣∣∣ ≤ ‖u‖2‖ϕ‖2 ≤ c‖u‖q ≤ ĉ(∫
Ω

(G(x, u) + c2) dx
) 1
q
,

and since u ∈ supt(ψ),∫
Ω

(G(x, u) + c2) dx ≤ 4σ
(
f(u)2 + 1

) 1
2 ≤ c̃(|f(u)|+ 1),

inequality (2.4) easily follows. Now, since of course

|f(u)| ≤ |f̃(u)|+ 2
∣∣∣ ∫

Ω
ϕ · u dx

∣∣∣,
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by (2.4) we immediately get for some b > 0

ψ(u)
∣∣∣ ∫

Ω
ϕ · u dx

∣∣∣ ≤ bψ(u)
(
|f̃(u)|

1
q +

∣∣∣ ∫
Ω
ϕ · u dx

∣∣∣ 1
q + 1

)
.

Using Young’s inequality, for some b1, b2 > 0, we have that

ψ(u)
∣∣∣ ∫

Ω
ϕ · u dx

∣∣∣ ≤ b1(|f̃(u)|
1
q + 1),

and

ψ(−u)
∣∣∣ ∫

Ω
ϕ · u dx

∣∣∣ ≤ b2(|f̃(u)|
1
q + 1),

and since

|f̃(u)− f̃(−u)| = (ψ(u) + ψ(−u))
∣∣∣ ∫

Ω
ϕ · u dx

∣∣∣,
the assertion follows. ¤

Theorem 2.3. There exists M > 0 such that if u ∈ H1
0 (Ω,RN ) is a weak

solution to (2.3) with f̃(u) ≥ M then u is a weak solution to (1.4) and
f̃(u) = f(u).

Proof. Let us first prove that there exist M̃ > 0 and α̃ > 0 such that

∀M ∈ [M̃,+∞) : f̃(u) ≥M, u ∈ supt(ψ) =⇒ f(u) ≥ α̃M. (2.5)

Since we have f(u) ≥ f̃(u)−
∣∣ ∫

Ω ϕ · u
∣∣, by (2.4) we deduce that

f(u) + α |f(u)|
1
q ≥ f̃(u)− α ≥ M

2
for M ≥ M̃,

with M̃ large enough. Now, if it was f(u) ≤ 0, we would obtain

αq
′

q′
+

1
q
|f(u)| ≥ α |f(u)|

1
q ≥ M

2
+ |f(u)|,

which is not possible if we take M̃ > 2αq
′
(q′)−1. Therefore it is f(u) > 0

and f(u) > M
4 or f(u) ≥

(
M
4α

)q
, and (2.5) is proven. Of course, taking into

account the definition of ψ, to prove the theorem it suffices to show that if
M > 0 is sufficiently large and u ∈ H1

0 (Ω,RN ) is a weak solution to (2.3)
with f̃(u) ≥M, then

φ(u)−1

∫
Ω

(G(x, u) + c2) dx ≤ 1.
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If we set ϑ(u) = φ(u)−1
∫

Ω (G(x, u) + c2) dx, it follows that

ψ′(u)(u) = χ′(ϑ(u))φ(u)−2
[
φ(u)

∫
Ω
g(x, u) · u dx− (2σ)2ϑ(u)f(u)f ′(u)(u)

]
.

Define now T1, T2 : H1
0 (Ω,RN )→ R by setting

T1(u) = χ′(ϑ(u))(2σ)2ϑ(u)φ(u)−2f(u)
∫

Ω
ϕ · u dx,

and

T2(u) = χ′(ϑ(u))φ(u)−1

∫
Ω
ϕ · u dx+ T1(u).

Then we obtain

f̃ ′(u)(u) = (1 + T1(u))
∫

Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx

+
1
2

(1 + T1(u))
∫

Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · uDiuhDjuh dx

− (1 + T2(u))
∫

Ω
g(x, u) · u dx− (ψ(u) + T1(u))

∫
Ω
ϕ · u dx.

Consider now the term f̃(u)− 1
2(1+T1(u)) f̃

′(u)(u). If ψ(u) = 1 and T1(u) = 0 =
T2(u), the assertion follows from Lemma 2.1. Otherwise, since 0 ≤ ψ(u) ≤ 1,
if T1(u) and T2(u) are both small enough the computations we have made
in Lemma 2.1 still hold true with σ replaced by (2− ε)σ, for a small ε > 0,
and again the assertion follows as in Lemma 2.1.

It then remains to show that if M →∞, then T1(u), T2(u)→ 0. We may
assume that u ∈ supt(ψ); otherwise Ti(u) = 0, for i = 1, 2. Therefore, taking
into account (2.4), there exists c > 0 with

|T1(u)| ≤ c |f(u)|
1
q + 1

|f(u)| .

Finally, by (2.5) we deduce |T1(u)| → 0 as M →∞. Similarly, |T2(u)| → 0.

3. Boundedness of concrete Palais–Smale sequences

Definition 3.1. Let c ∈ R. A sequence (um) ⊆ H1
0 (Ω,RN ) is said to be a

concrete Palais–Smale sequence at level c ((CPS)c−sequence, in short) for
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f̃ , if f̃(um)→ c,

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u

m)Diu
m
h Dju

m
h ∈ H−1(Ω,RN )

eventually as m→∞ and

−
n∑

i,j=1

Dj(akij(x,u
m)Diu

m
k )+ 1

2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x,u

m)Diu
m
h Dju

m
h −g̃k(x, um)→0,

strongly in H−1(Ω,RN ), where g̃(x, u) = g(x, u) +ψ(u)ϕ+ψ′(u)
∫

Ω ϕ · u dx.
We say that f̃ satisfies the concrete Palais–Smale condition at level c, if
every (CPS)c sequence for f̃ admits a strongly convergent subsequence in
H1

0 (Ω,RN ).

Lemma 3.2. There exists M > 0 such that each (CPS)c−sequence (um)
for f̃ with c ≥M is bounded in H1

0 (Ω,RN ).

Proof. Let M > 0 and (um) be a (CPS)c-sequence for f̃ with c ≥ M in
H1

0 (Ω,RN ) such that, eventually as m → +∞, M ≤ f̃(um) ≤ K for some
K > 0. Taking into account [21, Lemma 3], we have limm f̃

′(um)(um) = 0.
Therefore, for large m ∈ N and any % > 0, it follows that

%‖um‖1,2 +K ≥ f̃(um)− %f̃ ′(um)(um)

=
(

1
2 − %(1 + T1(um))

) ∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx

− %

2
(1 + T1(um))

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · umDiu
m
h Dju

m
h dx

+ %(1 + T2(um))
∫

Ω
g(x, um) · um dx

−
∫

Ω
G(x, um) dx+ [%(ψ(um) + T1(um))− ψ(um)]

∫
Ω
ϕ · um dx

≥
(

1
2−%(1 + T1(um))− %γ

2
(1 + T1(um))

)∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx

+ %(1 + T2(um))
∫

Ω
g(x, um) · um dx
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−
∫

Ω
G(x, um) dx+ [%(ψ(um) + T1(um))− ψ(um)]

∫
Ω
ϕ · um dx

≥ ν

2
(1− % (2 + γ) (1 + T1(um))) ‖um‖21,2

+ (q%(1 + T2(um))− 1)
∫

Ω
G(x, um) dx− [%(1 + T1(um)) + 1]‖ϕ‖2‖um‖2.

If we choose M sufficiently large, we find ε > 0, η > 0 and % ∈ (1+η
q , 1−ε

γ+2)
such that uniformly in m ∈ N

(1− % (2 + γ) (1 + T1(um))) > ε, (q%(1 + T2(um))− 1) > η.

Hence we obtain

%‖um‖1,2 +K ≥ νε

2
‖um‖21,2 + bη‖um‖qq − c‖um‖1,2,

which implies that the sequence (um) is bounded in H1
0 (Ω,RN ). ¤

Lemma 3.3. Let c ∈ R. Then there exists M > 0 such that for each bounded
(CPS)c sequence (um) for f̃ with c ≥ M, the sequence (g̃(x, um)) admits a
convergent subsequence in H−1(Ω,RN ).

Proof. Let (um) be a bounded (CPS)c-sequence for f̃ with c ≥M. We may
assume that (um) ⊆ supt(ψ); otherwise ψ(um) = 0 and ψ′(um) = 0. Recall
that

g̃(x, um) = g(x, um) + ψ(um)ϕ+ ψ′(um)
∫

Ω
ϕ · um dx.

Since by [9, Theorem 2.2.7] the maps from H1
0 (Ω,RN ) to H−1(Ω,RN ), u 7−→

g(x, u) and u 7−→ ψ(u)ϕ, are completely continuous, the sequences (g(x, um))
and (ψ(um)ϕ) admit a convergent subsequence in H−1(Ω,RN ). Now, we have

ψ′(um) =
[
χ′(ϑ(um))φ(um)−1

]
g(x, um)

−
[
4σ2χ′(ϑ(um))φ(um)−2ϑ(um)f(um)

]
f ′(um).

On the other hand we have

f ′(um) = f̃ ′(um) +
[ ∫

Ω
ϕ · um dx

]
ψ′(um) + [ψ(um)− 1]ϕ.

Therefore, we deduce that[
1 +

[
4σ2χ′(ϑ(um))φ(um)−2ϑ(um)f(um)

∫
Ω
ϕ · um dx

]]
ψ′(um)

=
[
χ′(ϑ(um))φ(um)−1

]
g(x, um) (3.1)

−
[
4σ2χ′(ϑ(um))φ(um)−2ϑ(um)f(um)

]
f̃ ′(um)
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−
[
4σ2χ′(ϑ(um))φ(um)−2ϑ(um)f(um)(ψ(um)− 1)

]
ϕ.

By assumption we have f̃ ′(um) → 0 in H−1(Ω,RN ). Taking into account
the definition of χ, φ and ϑ, all of the square brackets in equation (3.1) are
bounded in R for some M > 0, and we conclude that also (ψ′(um)) admits
a convergent subsequence in H−1(Ω,RN ). The assertion is now proven. ¤

4. Compactness of concrete Palais–Smale sequences

The next result is the crucial property for the Palais–Smale condition to
hold.

Lemma 4.1. Let (um) be a bounded sequence in H1
0 (Ω,RN ), and set

〈wm, v〉 =
∫

Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Djvh dx

+
1
2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · vDiu
m
h Dju

m
h dx

for all v ∈ C∞c (Ω,RN ). Then, if (wm) is strongly convergent to some w in
H−1(Ω,RN ), (um) admits a strongly convergent subsequence in H1

0 (Ω,RN ).

Proof. See, [21, Lemma 6]. ¤
The next result is one of the main tools of this paper, the (CPS)c condition

for f̃ .

Theorem 4.2. There exists M > 0 such that f̃ satisfies the (CPS)c-con-
dition for c ≥M .

Proof. Let (um) be a (CPS)c-sequence for f with c ≥ M , where M > 0
is as in Lemma 3.2. Therefore, (um) is bounded in H1

0 (Ω,RN ), and from
Lemma 3.3 we deduce that, up to subsequences, (g̃(x, um)) is strongly conver-
gent in H−1(Ω,RN ). Therefore, the assertion follows from Lemma 4.1. ¤

5. Existence of multiple solutions

Let (λh, uh) be the sequence of eigenvalues and eigenvectors for the prob-
lem {

∆u = −λu in Ω
u = 0 on ∂Ω,
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and set Vk = span{u1, . . . , uk ∈ H1
0 (Ω,RN )}. By (1.9) we deduce that for all

s ∈ RN ,

|s| ≥ R =⇒ G(x, s) ≥
G(x,R s

|s|)

Rq
|s|q ≥ b0(x)|s|q,

where b0(x) = R−q inf{G(x, s) : |s| = R} > 0. Then it follows that for each
k ∈ N there exists Rk > 0 such that for all u ∈ Vk, ‖u‖1,2 ≥ Rk implies
f̃(u) ≤ 0. We can now give the following

Definition 5.1. For each k ∈ N, set Dk = Vk ∩ B(0, Rk), Γk = {γ ∈
C(Dk, H

1
0 ) : γ odd and γ|∂B(0,Rk)

= Id} , and bk = infγ∈Γk maxu∈Dk f̃(γ(u)).

Lemma 5.2. For each k ∈ N, % ∈ (0, Rk) and γ ∈ Γk, γ(Dk) ∩ ∂B(0, %) ∩
V ⊥k−1 6= ∅.

Proof. See, [19, Lemma 1.44] . ¤

Lemma 5.3. There exist β > 0 and k0 ∈ N such that ∀k ≥ k0, bk ≥
βk

(n+2)−(n−2)σ
n(σ−1) .

Proof. Let γ ∈ Γk and % ∈ (0, Rk). By the previous lemma there exists
w ∈ γ(Dk) ∩ ∂B(0, %) ∩ V ⊥k−1, and therefore

max
u∈Dk

f̃(γ(u)) ≥ f̃(w) ≥ inf
u∈∂B(0,%)∩V ⊥k−1

f̃(u). (5.2)

Given u ∈ ∂B(0, %) ∩ V ⊥k−1, by (1.11) we find α1, α2, α3 > 0 with

f̃(u) ≥ 1
2
%2 − α1‖u‖σ+1

σ+1 − α2‖ϕ‖2‖u‖2 − α3.

Now, by the Gagliardo-Niremberg inequality, there is α4 > 0 such that

‖u‖σ+1 ≤ α4‖u‖ϑ1,2‖u‖1−ϑ2 ,

where ϑ = n(σ−1)
2(σ+1) . As is well known, ‖u‖2 ≤ 1√

λk−1
‖u‖1,2, so that we obtain

f̃(u) ≥ 1
2
%2 − α1λ

− (1−ϑ)(σ+1)
2

k %σ+1 − α2‖ϕ‖2λ
− 1

2
k %− α3.

Choosing now % = cλ
− (1−ϑ)

2
(σ+1)
(σ−1)

k yields f̃(u) ≥ 1
4%

2
k−α2‖ϕ‖2λ

− 1
2

k %k−α3. Now,
as is shown in [11], there exists α5 > 0 such that for large k, λk ≥ α5k

2
n .

Therefore, we find β > 0 with f̃(u) ≥ βk
(n+2)−(n−2)σ

n(σ−1) , and by (5.2) the lemma
is proved. ¤
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Definition 5.4. For each k ∈ N, set Uk = {ξ = tuk+1+w : t ∈ [0, Rk+1], w ∈
B(0, Rk+1)∩Vk, ‖ξ‖1,2 ≤ Rk+1} and Λk = {λ ∈ C(Uk, H1

0 ) : λ|Dk ∈ Γk+1 and

λ|∂B(0,Rk+1)∪((B(0,Rk+1)\B(0,Rk))∩Vk) = Id} and ck = infλ∈Λk maxu∈Uk f̃(λ(u)).

We now come to our main existence tool. Of course, differently from the
proof of [19, Lemma 1.57], in this nonsmooth framework, we shall apply
[9, Theorem 1.1.13] instead of the classical deformation lemma [19, Lemma
1.60].

Lemma 5.5. Assume that ck > bk ≥M, where M is as in Theorem 4.2. If
δ ∈ (0, ck − bk) and Λk(δ) = {λ ∈ Λk : f̃(λ(u)) ≤ bk + δ for u ∈ Dk}, set

ck(δ) = inf
λ∈Λk(δ)

max
u∈Uk

f̃(λ(u)) .

Then ck(δ) is a critical value for f̃ .

Proof. Let ε = 1
2(ck − bk − δ) > 0, and assume for the sake of contradiction

that ck(δ) is not a critical value for f̃ . Therefore, taking into account Lemma
4.2, by [9, Theorem 1.1.13], there exists ε > 0 and a continuous map η :
H1

0 (Ω,RN ) × [0, 1] → H1
0 (Ω,RN ) such that for each u ∈ H1

0 (Ω,RN ) and
t ∈ [0, 1]

f̃(u) 6∈ (ck(δ)− ε, ck(δ) + ε) =⇒ η(u, t) = u, (5.3)
and

η(f̃ ck(δ)+ε, 1) ⊆ f̃ ck(δ)−ε. (5.4)

Choose λ ∈ Λk(δ) so that

max
u∈Uk

f̃(λ(u)) ≤ ck(δ) + ε, (5.5)

and consider η(λ(·), 1) : Uk → H1
0 (Ω,RN ). Observe that if u ∈ ∂B(0, Rk+1)

or u ∈ (B(0, Rk+1)\B(0, Rk)) ∩ Vk, by definition f̃(λ(u)) = f̃(u). Hence, by
(5.3), we have η(λ(u), 1) = u. We conclude that η(λ(·), 1) ∈ Λk. Moreover,
by our choice of ε > 0 and δ > 0 we obtain ∀u ∈ Dk, f̃(λ(u)) ≤ bk + δ ≤
ck − ε ≤ ck(δ) − ε. Therefore, (5.3) implies that η(λ(·), 1) ∈ Λk(δ). On the
other hand, again by (5.4) and (5.5)

max
u∈Uk

f̃(η(λ(u), 1)) ≤ ck(δ)− ε, (5.6)

which is not possible, by definition of ck(δ). ¤
It only remains to prove that we cannot have ck = bk for k sufficiently

large.
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Lemma 5.6. Assume that ck = bk for all k ≥ k1. Then, there exist γ > 0
and k̃ ≥ k1 with bk̃ ≤ γk̃

q
q−1 .

Proof. Choose k ≥ k1, ε > 0 and a λ ∈ Λk such that maxu∈Uk f̃(λ(u)) ≤
bk + ε. Define now λ̃ : Dk+1 → H1

0 such that

λ̃(u) =

{
λ(u) if u ∈ Uk

−λ(−u) if u ∈ −Uk.

Since λ̃|B(0,Rk+1)∩Vk
is continuous and odd, it follows that λ̃ ∈ Γk+1. Then

bk+1 ≤ maxu∈Dk+1
f̃(λ̃(u)). By Lemma 2.2, we have maxu∈−Uk f̃(λ̃(u)) ≤

bk + ε+ β(|bk + ε|
1
q + 1), and since Dk+1 = Uk ∪ (−Uk), we get ∀ε > 0,

bk+1 ≤ bk + ε+ β(|bk + ε|
1
q + 1),

which yields ∀k ≥ k1, bk+1 ≤ bk + β(|bk|
1
q + 1). The assertion now follows

recursively as in [20, Proposition 10.46]. ¤
We finally come to the proof of the main result, which extends the theo-

rems of [3, 14, 19, 23] to the quasilinear case, both scalar and vectorial.
Proof of Theorem 1.1. Observe that the inequality

1 < σ <
qn+ (q − 1)(n+ 2)
qn+ (q − 1)(n− 2)

implies
q

q − 1
<

(n+ 2)− σ(n− 2)
n(σ − 1)

.

Therefore, combining Lemma 5.3 and Lemma 5.6 we deduce ck > bk so that
we may apply Lemma 5.5 and obtain that (ck(δ)) is a sequence of critical
values for f̃ . By Theorem 2.3 we finally conclude that f has a diverging
sequence of critical values. ¤
Remark 5.7. In 1988 and 1992, A. Bahri and P. L. Lions showed via a
perturbation technique based on Morse theory that, at least in some partic-
ular cases, the growth restriction on σ is not essential. More precisely, they
proved that the problem

−∆u = |u|σ−1u− ϕ in Ω

has a sequence (uh) of solutions in H1
0 (Ω) for each σ ∈ (1, n+2

n−2) (see [4, 5]).
One knows from Pohozaev’s identity that even when ϕ ≡ 0 this result is

false in general if σ > n+2
n−2 so that this theorem seems to be optimal. The

problem of whether or not this existence result holds also in the quasilinear
case is open.
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Remark 5.8. In this paper we treat only existence of weak solutions. For
regularity results in the scalar case, we refer the reader to [9]. For regularity
results in the vectorial quasilinear case, we refer to [16, 21] and the references
therein.
Acknowledgments. The authors wish to thank Marco Degiovanni for pro-
viding helpful discussions.
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