Chapter 1 )
An Introduction to Asymptotic Shethie
Homogenization

Raimondo Penta and Alf Gerisch

1.1 Introduction

Real world physical systems are usually multiscale in nature. They are characterized
by strong heterogeneities, geometrical complexity, and different constituents which
can interplay among several hierarchical levels of organization. Typical examples
include, but are not limited to, fluid flow through geometrically complex and porous
structure (encountered, for instance, when dealing with oil and gas recovery prob-
lems or physiological fluid flow through biological tissues and organs), as well as
mechanical and chemical interactions among the various constituents of composite
materials (such as, for example, soil or biological hard tissue, e.g. bone and tendons).
From a modeling viewpoint, it is necessary to have a comprehensive understanding
of the real world phenomena formulating qualitative and quantitative predictions
(via analytical and numerical tools) to pursue validation against appropriate exper-
imental data. As a matter of fact, this is basically a two-fold issue as (a) it is in
general nontrivial and, especially for three-dimensional real problems, practically
impossible to fully resolve microscale material and geometrical complexity and (b)
experimental measurements usually provide average information on a macroscale,
i.e. where the difference between different constituents cannot be easily detected.
These arguments motivated the development of specific mathematical techniques
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designed to provide computationally feasible macroscopic mathematical models
which, however, encode the crucial role of the microstructure (in terms of material
heterogeneities, geometry, fine scale physical coupling, etc.). Although there exist
various averaging techniques to obtain a macroscopic description of multiphase
physical systems, such as the mixture theory (see, e.g., [4] and [5] for porous media),
most of them lead to macroscale description of the system where information on the
role of the microstructure is partially or entirely lost.

The asymptotic homogenization technique exploits the sharp length scale sep-
aration that exists in multiscale systems and a power series representation of the
fields to provide macroscale systems of partial differential equations (PDEs) that
satisfy both (a) and (b), as the derived models encode the role of the microstructure
in their coefficients (hydraulic conductivities, diffusivities, elastic stiffness, etc.).
As a drawback, the actual computation of the coefficients for multidimensional
problems is only possible assuming appropriate regularity assumptions for the fields
involved in the mathematical description (such as local periodicity). Furthermore,
the microscopic description should be based on linearized balance equations
(although nonlinear contributions can arise on a macroscale level) in order to
decouple microscale and macroscale spatial variations of the fields.

Here, we introduce the technique via a very simple set of basic examples.
We follow a direct approach widely explored in the literature (see, e.g. [2, 3,
13, 14, 16, 22]) which is well suited to introduce asymptotic homogenization to
undergraduate/graduate students or scientists coming across this topic for the first
time. Issues related to the theoretical foundation of the technique in terms of
existence and uniqueness of the homogenized problems are not discussed here and
we therefore refer the reader to the pioneering works [15]! and [1] concerning H-
convergence and two-scale convergence, respectively.

This book chapter is organized as follows:

e In Sect. 1.2, we start from the one-dimensional diffusion problem highlighting
the concept of multiscale (spatial) variations and the basic assumptions that
are needed to provide a macroscopic description of the problem via asymp-
totic homogenization. These include spatial variations decoupling, power series
expansion, and local boundedness. We derive the diffusion-type homogenized
problem and present the analytic form of the effective diffusion coefficient, which
also holds for non-periodic microscale variations.

¢ In Sect. 1.3, we extend the one-dimensional formulation to the multi-dimensional
diffusion problem and introduce the assumption of local periodicity, which is in
this case necessary to compute the coefficients of the homogenized model. We
show that the microscale information is encoded in the homogenized diffusion
tensor, which can be computed solving a diffusion-type problem on a single
periodic cell.

! An English translation can be found in [8], chapter 3.
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e In Sect. 1.4, we present the asymptotic homogenization of the Stokes’ problem,
which leads to Darcy’s law for porous media. In this case, the length scale separa-
tion is purely geometrical and is captured via an explicit non-dimensionalization
process. The effective hydraulic conductivity is to be computed solving a
Stokes’-type periodic cell problem.

e In Sect. 1.5, we present concluding remarks.

1.2 One Dimensional Diffusion Problem

We consider the one-dimensional diffusion-type boundary value problem (BVP)

d‘; (D(;)dzg)) —fG:; 0<i<l, (1.1)

u@©0)=a; u(l)=0>b; a,belR, (1.2)

where (1.2) represent non-homogeneous Dirichlet boundary conditions. Here, f(X)
represents a known, spatially varying volume source, D(X) is the smooth, strictly
positive, spatially varying diffusion coefficient, and u(x) the unknown scalar field.
We assume that f(X) is regular enough such that a unique solution of (1.1-1.2) exists.
BVPs of the type (1.1-1.2) are often encountered in the literature to model various
physical phenomena, for example, the linear elastic displacement of an elastic rope,
the temperature distribution for heat conduction, diffusion of pollutants, etc. Next
we introduce the idea of multiscale spatial variations and formalize it via a basic set
of assumptions.

1.2.1 Basic Set of Assumptions

We are interested in investigating the behavior of the problem solution u(x) when the
diffusion coefficient D(X) exhibits multiscale spatial variations, i.e., when it displays
a different behavior depending on the spatial resolution that we take into account.
This is clearly highlighted in Fig. 1.1, where a representative solution of the problem
(1.1-1.2) is plotted in the full domain (i.e. the unit length segment), and against a
very small portion of it (zoomed in), where spatial variations on such a small scale
can be clearly seen.

Next, we highlight the rigorous steps to deduce (a) the macroscopic profile of
the solution of the one-dimensional diffusion problem and (b) how microscopic
variations of the diffusion coefficient affect the macroscale behavior of the solution.
At this stage, it is helpful to understand what spatial scale separation means in
mathematical terms. Let us first introduce an informal, yet instructive argument. The
problem (1.1-1.2) holds on the full unit segment, and our spatial coordinate x spans
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Fig. 1.1 The exact solution u(¥) = {1520/ of the BVP (1.1-1.2) fora = 0, b = 1, D(F) =

1/(1 + ccos(¥/€)), € = 2/m - 1073, ¢ = 0.9, f = 0 is plotted in black vs. the red-dashed
homogenized solution u(X) = X for X € (0, 1) (full plot) and X € (0, 4 - 1073) (inlay, zoomed in)

the full domain and represents the physical mapping for our problem. However, we
aim at separating spatial macroscopic variations (see Fig. 1.1 in the domain (0, 1)),
and microscale spatial variations that are detectable when “zooming in” (see Fig. 1.1
in (0,4- 10_3)). To do this, we introduce a characteristic macroscopic length L (that
is 1 for our specific problem), and another, much smaller characteristic microscopic
length d (that is, for example, 4 - 10~ in the particular case shown in Fig. 1.1).
We non-dimensionalize our physical spatial coordinate X with respect to both the
microscale d and the macroscale L, i.e.

%= Lxy = d. (1.3)

Here x), represents a non-dimensional coarse scale spatial mapping, as it is non-
dimensionalized with respect to the macroscale L, whereas x,, represents a fine scale
mapping, as it maps spatial variations resolved on the fine scale d. The two spatial
coordinates are related by Eq. (1.3), i.e.

X = Xp /€, (1.4)
where we define
d
= . 1.5
€=, (1.5)

The small parameter € measures the spatial scale separation between the microscale
d and the macroscale L.

Remark 1.1 'We remark that, even though a non-dimensional analysis is not always
performed in the multiscale asymptotics literature, it is important to understand
the relationship between macro and micro spatial variations of the fields. The
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macroscale and microscale variables (also referred to as slow and fast scales,
respectively) are typically denoted by x and y = x/e, respectively, and, using a
commonly adopted abuse of notation, the physical variable is usually also denoted
by x. The latter identification is rigorous when spatial scales decoupling is carried
out after a non-dimensional analysis, as the physical spatial variable is already non-
dimensionalized with respect to the macroscale L in that case. Such an analysis
is highly recommended when dealing with multiphysics problems that typically
comprise several parameters exhibiting different asymptotic behaviors with respect
to €, see, e.g. [19, 23]. However, the same, correct results are also obtained by
avoiding an explicit non-dimensional analysis (as the local scale y will consistently
stay dimensional and account for finer spatial variation the smaller € is), provided
that the correct asymptotic behavior of any variable and parameter involved in the
differential problem is consistently taken into account. Here, we deal with a very
simple problem (which is already in non-dimensional form, with macroscale length
L = 1), so we just point out the nature of different spatial variables once and
for all in this introductory section and avoid complicating the notation for the
multidimensional problems illustrated in the following sections.

We are now ready to state the first crucial assumption

Assumption I (Length Scale Separation) We assume that there exist two
distinct spatial scales, referred to as the microscale d and the macroscale L,
such that their ratio

=9« (1.6)
=, . .

Our BVP (1.1-1.2) is currently stated in terms of the physical spatial scale
X, which encodes both macroscale and microscale spatial variations. We aim to
transform a single scale problem into a multiscale problem, and this leads us to
the following assumption:

Assumption II (Spatial Variations Decoupling) We assume that the
unknown field u and the diffusion coefficient D that appear in the BVP (1.1-
1.2) are functions of two formally independent spatial variables x = X,
referred to as the macroscale and

y=, (1.7)
€

(continued)
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Assumption II (continued)
referred to as the microscale variable. In particular, we may write

u=u(xy), D=Dx,y), (1.8)
where

x € (0,1), ye (0,400). (1.9)

As a direct consequence of Assumption II, derivatives involving the physical
spatial scale are now to be understood as fotal (material), that is

(9 _ 99 dya(y _ a9 1009

. 1.10
dx dx  dx Jy dx € dy (1.10)

We are interested in determining the macroscale behavior of differential problems
of the type (1.1) in the presence of a sharp length scale separation between
the macroscale and the microscale. Hence, it is convenient to consider a regular
multiscale expansion for our unknown variable, as follows

Assumption III (Power Series Expansion) We assume that the multiscale
unknown u(x,y) can be formally represented by a regular expansion in power
series of €, i.e.

u(ry) = u(ry) = Y ul(ey)e. (L11)
=0

The reader interested in rigorous issues related to the power series representation
(1.11), which is appropriate under suitable regularity assumptions (even weaker than
those assumed here), can refer to [10].

Accounting for Assumptions II and III, it seems that we have greatly compli-
cated our problem (1.1), as we are now dealing with one more spatial variable
and with infinitely many unknowns u’. However, our aim is to determine the
macroscale behavior of the problem solution whenever the length scale separation
that characterizes the problem is sufficiently sharp, that is, for ¢ — 0. Thus, we
will exploit our assumptions and the properties of the various coefficients to derive
a macroscale differential problem for the leading order term of the multiscale power
series expansion, i.e. u©.

In order to prevent our multiscale functions from forming singularities with
respect to the newly introduced microscale variable y, we also need a number of
regularity requirements.
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Assumption IV (Local Boundedness and Regularity) We assume that

 Every field u®, the external source f, and the coefficient D retain, with
respect to the macroscale variable x, the same smoothness that character-
izes the fields u(x), f(x), and D(x) appearing in (1.1) with respect to the
variable X.

o Any function u” (x,y) that appears in (1.11) is locally bounded, i.e.

1@|men<+m Vx € (0,1) and Vi € N. (1.12)
y—=>T00

» The multiscale diffusion coefficient D(x,y) is strictly positive, locally
bounded in the sense of (1.12), and there exist two strictly positive smooth
Sfunctions D,,(x) and Dy (x) satisfying, for every y € (0, +00) and for every
x€(0,1)

D,y (x) < D(x,y) < Dy(x). (1.13)
» The volume source f is y-constant for the sake of simplicity, i.e.

f=rx. (1.14)

We are now ready to apply the asymptotic homogenization technique to the
problem (1.1). We intend to obtain a macroscale differential problem for the leading,
zero-th order term ) that appears in the power series representation (1.11) of

u(x, y).

1.2.2 The Homogenized Problem

Let us enforce Assumptions I to IV. The multiscale problem associated to (1.1) then
reads, by means of (1.10), as follows:

, 0 ouc 0 ou¢

&y (Pon ) ey (D6 @)+

e (P00 )+ ) (D6 ) = .
y ox dy dy

where we have multiplied both the right and the left hand side by € and u¢ denotes
the power series representation (1.11). We then formally equate the same powers of
€ in ascending order, starting from €, in (1.15) until we obtain all the necessary
conditions to derived a closed macroscale differential problem for the zero-th
order component u”. The derived homogenized problem will describe the one-
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dimensional diffusion process for well separated microscale and macroscale spatial
variations, that is, for e — 0.

60

Equating the coefficients of power €’ in (1.15) yields

(0)
aa (D(x,y)a” (x,y)) =0. (1.16)
y dy

We integrate over the microscale y and divide by D(x, y) to obtain®

vl
O ZCO(X)/O Dy BT A0 (1.17)

where ¢y and c; are y-constant functions to be determined. We now enforce
Assumption IV (in particular relationship (1.13) concerning the existence of Dy (x)),
to deduce

/y ! ds>/y Vo= Y (1.18)
o D(x,s) T Jo Du() Dy (x)

Hence, 4© is not a bounded function of yunless co(x) = 0, that is
u® = ¢ (x) (1.19)
only depends on the macroscale x. From now on, we thus simplify the notation and

write @ (x).

61

We equate the coefficients of power €' in (1.15) and we account for the macroscale
character of the leading order solution #(?)(x) to obtain:

©0) M
o G ) Ea R ) B (1.20)
y ox dy dy

ZNote that the lower integration point is set to zero without loss of generality as the results are
unchanged by integrating formally from any y, to y. Indeed, the homogenized coefficient that
appears in (1.26) is invariant with respect to translations as y — yy is still approaching infinity as y
approaches infinity.



1 An Introduction to Asymptotic Homogenization 9

We integrate over the microscale y to obtain:

3u(® 3u»
D(x.y) "y () + Dlx, y) (x, ) = bo(x), (1.21)

where by is a y-constant function. Dividing by D(x, y) and further integrating over
the microscale y yields

3u(0)

uD (x,y) = bo(x) / D, s) 5 VDI, (1.22)

where b is another y-constant function. We have to ensure that (! stays locally
bounded as y — +oo (cf. Assumption IV). We first notice that, applying (1.13), the
3

1
integral function / D ds is bounded from below and above, i.e.
0

X, S)
g S/y ds< (1.23)
Dy(x) — Jo D(x,s) Dy (x)
ou®
and it becomes unbounded as y approaches +oco. However, the term y is also

X
unbounded as y — 400 and both these contributions are O(y). Therefore, we
impose that they balance each other as y approaches 400, i.e.

A | u© (x)
li b ds — =
y> o0 ( O(x)/o D(x,s) g dx y) 0

where the right hand side of (1.24) can be set to zero without loss of generality as
any y-constant contribution could be previously taken into account redefining, for
instance, the function b;. The relationship (1.24) can be rewritten as

(1.24)

1 0uOx)
= by(x), 1.25
(D). o 0(x) (1.25)
where we define
1 . 1 [ 1
(D71 _:= lim ds. (1.26)
© y=otooy Jo Dix,s)

We differentiate relationship (1.25) with respect to the macroscale x to obtain

0 ( 1 au(o)(x)) _ 0bo(x)
(D™ oo B '

0x 0x 0x (1.27)
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The differential problem (1.27) actually holds on the macroscale only and it

describes the behavior of the leading order field (*). Hence, this problem represents

precisely our mathematical goal, provided that we are able to close it via a
0b

relationship for the right hand side % in terms of known quantities. As we shall see

X
below, we can obtain such a condition exploiting the local boundedness properties
of the second order term u®®.

€2

We now equate the coefficients of power € in (1.15) to obtain:

0 ou® (x) uV(x,y)

N (D(xy) )+a (D( " )+

9 u® (x, 9 @ (x,

N (D(w) S ) o (D(x,w“ ;;‘ ”) — (. (1.28)

Since from (1.21) we have

AuV (x,y) _ bo(x) B ou®

= 1.29
dy " Dy b (129
then

0 du ad
R E (YO RVt

We substitute (1.30) in (1.28) to obtain, rearranging terms:

2) 1)
? (™) =i 92 (i) 1
y y y x

0)
ou (x)) . (1.30)
x

We integrate over the microscale y, divide by D(x, y) and further integrate over y to
finally obtain the following expression for u® (x, y):

Bbo(x) Y 9uV (x, y)
(2) _
() = (f) )/ Dy B /0 0 g

+ do(x)/o D(x.s) ds + d;(x), (1.32)

where dy(x), d; (x) are y-constant functions. We now notice that, by Assumption IV,
D(x,y) and u'V(x,y) are bounded functions of y. Hence, the first term of the right
hand side of (1.32) is O(y?), while the second and third terms are O(y) in the limit
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y — +oo0. In particular, it is necessary to require that the O(y?) (which cannot be
balanced by other terms for y — +o00) identically vanishes, which implies®

(1.33)

We exploit relationship (1.33) to close the differential problem (1.27), such that,
accounting also for the appropriate boundary conditions dictated by our original
problem (1.1-1.2), the homogenized BVP for the leading order coefficient u(® (x)
reads:

)
d (D(x)d“ (x)) —f():; O<x<l, (1.34)
dx dx
u@0)=a; u90)=b; abeR, (1.35)

where D(x) is the homogenized diffusion coefficient defined by

_ _ 1 1 -1
D(x) =(D—1)001 (x) = (y _1}210” /0 Dex.s) ds) ) (1.36)

The BVP (1.34-1.35) formally resembles the original one (1.1-1.2). However,
microscale variations are now smoothed out and the homogenized coefficient D(x),
as defined by (1.36), is the harmonic mean of the original D(x, y) and not the simple
arithmetic average defined by Dayg(x) = lim,_ 4oo ; J3 D(x,s)ds. In fact, the
harmonic average is more representative of the trend of the coefficient throughout
the whole domain, i.e. high amplitude oscillations that are present in a subset
which is much smaller than the whole domain do not greatly contribute to the
final result. The convergence, for decreasing value of €, of the exact solution of
(1.1-1.2) to the homogenized one (obtained by solving the homogenized problem
(1.34) using the appropriate coefficient D) versus the “averaged solution” (obtained
by solving the problem (1.34) using the arithmetic average Dayg) is shown for a
particular choice of boundary conditions in Fig. 1.2.

We would like to conclude this section remarking that the technique is applicable
to nonperiodic local variations of the fields, as shown in Fig. 1.3. The reader can
replicate the examples shown in Figs. 1.2 and 1.3 computing the homogenized
solution analytically and compare it to the actual solution of the BVP (1.1-1.2). The
latter is to be computed numerically for the nonperiodic example shown in Fig. 1.3.

3In order for u® (x, y) to be a bounded function of y, it is also necessary to require that the O(y)
terms compensate each other. However, as long as we focus on the leading order approximation
u®, it is sufficient to exploit local boundedness with respect to the O(y?) term only, as the latter
involves the macroscale function by(x) (see Eq. (1.27)) that can eventually close the macroscale
problem for u(© .



12 R. Penta and A. Gerisch

0.2+ —Homogenized solution o B
*~. |-~ Averaged solution g

03, 0.2 0.4 0.6 0.8 1

xT

Fig. 1.2 The exact solution of the BVP (1.1-1.2) fora = 0, b = 0,f = 1, D(x) = 1/(1 +
ccos(x/€)), c = 0.9, and 0.01 < € < 1, is shown in grey scale and it gets darker and darker the
smaller € becomes. The solution of the real problem is converging to the homogenized solution
(shown in blue) and not to the averaged one, represented by the dash-dot line in red

0

-0.05 | - -"Homogenized solution i

& 015} .
S

-0.25 ]
-0.31 b

Fig. 1.3 The exact solution of the BVP (1.1-1.2) fora = 0,b = 0,f = 1, D = (arctan(x/¢) +
1)~!, and 0.02 < € < 1, is shown in grey scale and it gets darker and darker the smaller e
becomes. The solution of the real problem is converging to the homogenized solution represented
by the dash-dot line in blue

1.3 Multidimensional Diffusion Problem

We aim to generalize the diffusion problem introduced in the previous section to
dimension n € 1,2, 3. We then consider the following classical diffusion problem
for a scalar field u in an open connected set £2 C R" with smooth boundary 052, i.e.

V- (Dx)Vu(x)) = f(x),x € 2 (1.37)
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equipped, for example, with non-homogeneous Dirichlet boundary conditions
u(x) = g(x), x € 952. (1.38)

Here, D(x) is the strictly positive and smooth spatially varying diffusion coefficient,
f(x) a known volume source and g(x) a known function dictating the behavior of
the solution at the boundary. The functions f and g are assumed sufficiently regular
such that a solution of the classical diffusion problem (1.37-1.38) exists. At this
stage, we assume length scale separation, spatial variable decoupling (that implies
transformation of differential operators) and power series representation, so that
we can readily generalize assumptions (I-III), together with relationship (1.10).
The multiscale, multidimensional problem associated to the n-dimensional diffusion
problem (1.37) then formally reads

€ Vy - (D(x,y) Vatt (X, Y)) + €V - (D(X, y) Vyut (X, y)) +
€Vy - (D(X,y) Vxu (x.y)) + Vy - (D(x.y) Vyu (x,¥)) = €f(x,y), (1.39)

where we have included microscale variation of the volume source for the sake of
generality. Here, V and V, represent the gradient with respect to the macroscale and
microscale variables x and y, respectively. We are using the same symbol x for the
macroscale and the physical spatial variables for the sake of simplicity of notation.
Since we introduced the additional microscale spatial variable y, we then need to
state appropriate regularity assumptions for every multiscale quantity that appears
in (1.39). We could indeed generalize Assumption IV and apply the asymptotic
homogenization technique to obtain a well-posed macroscale problem. However,
whenever n > 1, we cannot in general obtain single closed form expressions
for the homogenized coefficients (see, e.g., [13]). In general, the latter are to be
computed solving microscale differential problems that in principle hold on the
whole microscale domain (that extends up to infinity in the limit € — 0). One
of the most important goals for this asymptotic homogenization technique is to
determine an effective differential problem that describes the macroscale behavior
without resolving the full details of the microscale, thus enhancing computational
feasibility. At the same time, the macroscale problem should retain information
on the microscale encoded in the homogenized coefficient that should be readily
accessible, as is the case for the integral (1.36) which defines the one-dimensional
homogenized diffusion coefficient. As is widely enforced in the asymptotic homog-
enization literature, we can focus on a smaller portion of the microscale by assuming
y-periodicity of the fields involved in (1.39). We state the periodicity assumption in
three dimensions, as it can be readily restricted forn = 1, 2.
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Assumption V (Local Periodicity) There exists a family of vectors
R(n, k, v):=nl) + kI + vz, n, kK, v EZ (1.40)

with fixed vectors 1, I, I3 € R3 that constitute a basis ofR3, such that, for
every field that appears in (1.39), collectively denoted by v, we have

v(x,y) = v(x,y + R(n, «, v)), Vi, k, v € Z. (1.41)

Note that Assumption V is stated for arbitrarily shaped periodic cells and
that rectangular (cuboid in three dimensions) periodic cells are simply obtained
assuming I, o e, for every n. We therefore account for Assumption V (instead
of generalizing local boundedness stated in (1.12)), appropriately extended to the
external source f(x,y), while we retain the remaining points of Assumption IV
concerning the regularity of the diffusion coefficient and all the fields with respect
to the macroscale variable x. Thus, microscopic variations of multiscale fields can
now be studied on a single periodic cell defined by the vectors I, ..,I,. A simple
cartoon representing a two-dimensional rectangular cell is shown in Fig. 1.4.

We now proceed by equating the same powers of € in ascending order, starting
from €°, as we have done in the one dimensional case. It is important to bear in mind
that we are assuming local periodicity and that the arising differential conditions,
though retaining a parametric dependence in terms of the macroscale x, hold on the
periodic cell (which we also refer to as §2 to avoid complicating the notation)
spanned by the microscale variable y.

Equating the same powers of €” in (1.39) yields

Vy - (D(x, y)Vyu®(x,y)) = 0 in L. (1.42)
Fig. 1.4 A representation of (Y, Y+ Yy,) c (Yq+Yy,, Y+ Yps)
a two-dimensional . =~ -
rectangular cell defined by
the vectors I} = y,;e; and
I, = y,»e;, where

7 < R+ D B
Yp1s Yp2
(¥,%) A (LY. n)
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Relationship (1.42), equipped with periodicity conditions on 042, constitutes a
standard diffusion-type cell problem that admits a unique solution up to a y-constant
function. In particular, any constant is also periodic and solves (1.42), thus we
deduce that u(? is independent of y, i.e.

u® = 4O (x). (1.43)

We equate the same powers of €' in (1.39) and account for (1.43) to obtain
Vy - (D(x.y) Vyu(x,y)) = —=Vy - (D(x,y) Vxu'” (x)) in £2, (1.44)

The above problem reads as a periodic cell problem for the first order coefficient
uM(x,y) and it is once again a classical diffusion-type problem, equipped with
a volume load on the right-hand side and periodic boundary conditions on 0£2.
It admits a unique solution up to an arbitrary y-constant function c(x). Since the
problem is linear and the vector function Viu(?) is y-constant, we state the following
solution ansatz

uV(x,y) = ax,y) - Vaur'® + c(x). (1.45)

Relationship (1.45) is indeed the solution of the problem (1.44) provided that the
vector a solves the following cell problem

Vy - (D(x, y)Vya) = —-Vy,D(x,y) in £2, (1.46)

where a is y-periodic and a further condition is needed to achieve uniqueness, for
example by fixing the integral average of a over the periodic cell §2. As for the one-
dimensional case, we need one last step to obtain a closed macroscale problem for
the leading order coefficient u(©.

We are now ready to conclude the multiscale procedure by equating the same powers
of €2 in (1.39), that yields

Vy - (DV5®) + Vy - (DVyu V) +

Vy - (DVxuV) + Vy - (DVyu?) = f (1.47)
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We now average relationship (1.47) over the periodic cell, i.e. we apply the
following cell average operator:

1
(o= g [, (9. (1.48)

where |§2] is the volume (or area, in two dimensions) of the periodic cell.
Application of (1.48) to (1.47) yields

Vi - (D) Vat'”) + Vy - (DVyu'V)  +

1 1
12| /39 DV,uV . ndS + 2| /m DVyu(Z)-ndS =(flg. (1.49)

where the surface integrals arise after applying the divergence theorem with respect
to y. Both the surface contributions actually read as integrals of the scalar product
between a periodic function and the unit vector n normal to d§2 over their
corresponding periodic cell. Accounting for periodicity, these terms identically
reduce to zero, as every contribution on a single face of the periodic cell (edge
in two-dimensions), is exactly canceled by the contribution on its corresponding
parallel face considering the change in sign of the unit outward normal vector n (for
example, in Fig. 1.4, the contribution over side A exactly cancels the one over side
C, and the same holds for sides B and D).

Equation (1.49) can be further rearranged accounting for ansatz (1.45) obtaining:

Yy ((D)g V) + Vi ((D(Vy0)T)_ Vi) = (£ (1.50)

Finally, (1.50) can be rewritten as a macroscale diffusion problem for u(? as follows:
Vs - (D) Vi) = f(x), (1.51)

equipped with appropriate macroscale boundary conditions, for example of the type

(1.38). The homogenized diffusion tensor D and the macroscale volume source f
are defined as

D(x) = (D)o 1 + <D(Vya)T>Q , (1.52)
or, componentwise
Dj(x) = (D) §; + <Daa’ > (1.53)
dyi 0

and

fx) = (fa, (1.54)
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where | is the identity tensor. The homogenized problem (1.51) is to be solved
on the macroscale only, and microscale information is encoded in the components of
the effective diffusivity tensor (1.52), which can be computed solving the diffusion-
type cell problems given by (1.46) and exploiting (1.52). A few remarks and
exercises now follow.

Remark 1.2 (Anisotropy) The homogenized problem reads as an anisotropic dif-
fusion problem in the limit ¢ — 0. Hence, the microscale inhomogeneities
characterizing the physical diffusion coefficient D(x,y) translate into anisotropy
on the macroscale. In particular, the degree of anisotropy is in general related to
the specific form of the coefficient D(X,y), that dictates the shape and relative
dimension of the periodic cell where the vector a, and, in turn the components of
the tensor D are to be computed.

Remark 1.3 (Computational Feasibility) Let us consider a diffusion coefficient of
the type D(y). Then, the cell problem (1.46) solely depends on the microscale
variable y and can be solved once, independently from the macroscale x. In
this case, replacing the original problem (1.37) with the homogenized problem
(1.51) greatly reduces computational complexity. Given the solution to (1.46), it
is straightforward to compute the effective diffusivity tensor (1.52) and finally solve
the classical, homogeneous diffusion problem (1.51) on a coarse grid which captures
macroscopic variations of the fields only. Whenever the coefficient D retains a
macroscopic variation, then it is in principle necessary to solve one cell problem
for every macroscale point x. However, since the macroscale domain is supposed
to be represented by a coarse grid, computing a limited number of diffusion-type
prescribed cell problems is, in most cases, still more advantageous than resolving
the full microscale variations embedded in the original inhomogeneous diffusion
problem.

Remark 1.4 (On the Role of Periodicity) We have carried out the asymptotic
homogenization steps for the n-dimensional diffusion problem assuming periodicity
of the microscale (cf. Assumption V) instead of local boundedness. As we remarked
at the beginning of this section, this choice is primarily motivated by practical
reasons, as the periodicity assumption enabled us to reconstruct microscopic infor-
mation focusing on a limited portion of the microstructure, namely, the periodic cell.
However, we would like to remark that this assumption is not necessary to derive
the homogenized problem, and the analytic form of the microstructural problem as
such, as everything could have been carried out assuming local boundedness only.
In this case, the asymptotic homogenization technique serves as a powerful tool to
derive reliable macroscale problems that can be used to model appropriate physical
scenarios of interest, without computing the coefficients themselves. In this case,
the latter are supposed to be obtained via other sources, for example experimental
measurements. The reader could, as an exercise, derive the effective governing
equations for the n-dimensional diffusion problem assuming local boundedness
only, as done for the derivation of the equation of poroelasticity in [7].
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Remark 1.5 (Macroscopic Uniformity) We implicitly assumed the so-called macro-
scopic uniformity, i.e. the periodic cell is independent of the macroscale. This
assumption, which is often assumed implicitly in the asymptotic homogenization
literature, allowed us to derive (1.49) assuming

(Vx- () = Vx-((9)q - (1.55)

Whenever 2 = §2(x), relationship (1.55) does not hold, and proper application of
the generalized Reynold’s transport theorem is to be enforced to obtain additional
macroscale volume sources that modify the homogenized diffusion problem (see,
e.g. [13, 19, 20] and alternative approaches concerning multiscale definition of the
unit normal vector for non macroscopically uniform domains, such as [6, 11, 12]).
Furthermore, whenever the periodic cell retains a parametric dependence on the
macroscale variable x, the problem requires the solution of a periodic cell problem
for each macroscale point x, as we observed for the case of macroscopically varying
diffusion coefficients D.

We conclude this section proposing the following exercises.

Exercise 1.1 Assume n = 1 and D(x,y) = D(x,y + y,). Solve the cell problem
analytically in such a particular case and prove that

_ 1 1 !
D(x) = (yp/O Dx.s) ds) , (1.56)

that is exactly the periodic counterpart of the relationship (1.36) derived in Sect. 1.2.

Exercise 1.2 Assume n = 2,y = (y1,y2) and D(x,y) = Do(X)Da(y1)Dp(y2),
with Ds(y1) = Da(y1 + a) and Dg(y2) = Dg(y2 + b). Solve the cell problem
analytically and prove the following relationships for the components of the
resulting homogenized diffusivity tensor D

Di; = Dy =0, (1.57)
D (1/ ! d)_llfbD()d (1.58)
= S S S, .
" aJo Da(s) blo P
D —(1/h ! ds)_1 I/aD (s)ds (1.59)
27\ ) Dg(s) aly . .

The reader is invited to explore several possible variations of the diffusion coef-
ficient D(x,y) and investigate how these affects the resulting components of the
homogenized tensor D.
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1.4 Porous Media Flow: Homogenization of the Stokes’
Problem

The last introductory example we present concerns fluid flow in porous media.
These materials are typically involved when dealing with several physical scenarios
of practical interest, such as fluid flow through sand and rocks, and interstitial flow
through biological tissues, for example bone, cell aggregates, organs and tumors.
Here we analyze a simple, yet paradigmatic case, that is, the interaction between a
solid rigid phase and an incompressible Newtonian fluid slowly flowing through
the pores. We identify the whole physical domain with the open set 2 C R?,
Q= [?f U £2,, where §2; and §2; are the fluid and solid regions, respectively. The
fluid flow through the pores is then governed by the Stokes’ problem, i.e.

wVEv = Vp, x € £ (1.60)
Vy-v=0, x€ £ (1.61)
v=0, on I, (1.62)

where v is the fluid velocity, p the fluid pressure, and I = 92 N 952, represents
the interface between the two phases. Equations (1.60-1.62) represent the fluid
stress balance, the incompressibility constraint and the no slip conditions for a
low Reynolds number Newtonian incompressible fluid, respectively. We aim, once
again, at obtaining a macroscale representation for such a problem, which is in this
case particularly well suited, as the three dimensional porous structure could be, in
general, extremely complex and the problem (1.60-1.62) practically impossible to
solve also with numerical techniques. In particular, the sharp length scale separation
in such a system relies on its geometry, rather than the analytic form of rapidly
varying coefficients. In fact we can identify our microscale d with the pore radius (or
an equivalent, average linear measure for non-cylindrical pores), and our macroscale
with the average (linear) size of the whole domain, or, equivalently, with the average
length of the pores. A sketch of the porous microstructure is provided in Fig. 1.5.

Fig. 1.5 The pore MICROSCALE MACROSCALE
microstructure (shown on the
left) against the

macrostructure, where the R a )
geometrical variations are “ -

»p W -

smoothed out (shown on the
right)
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In this case, the multiscale nature of the problem is clearly dictated by the
geometry itself, and it is necessary to perform an explicit non-dimensionalization
process to fully account for the scale separation that characterizes the system.

1.4.1 Non-Dimensionalisation

We rescale our relevant fields as follows

Cd>
x=Ix, v= i v, p=CLp (1.63)

where C denotes the magnitude of a characteristic pressure gradient. Here, we
scale the spatial coordinate by the characteristic size of the domain (pore length)
L, whereas the characteristic velocity V is suggested by the parabolic profile of a
viscous fluid flowing in a straight cylindrical channel of radius d, i.e.

V , (1.64)

see classic fluid-dynamics textbooks, such as [9]. Since differential operators
transform as

1
2 _
Vi 2 Vy (1.65)
and
Vi = 1V (1.66)
X — L X' .

the non-dimensional Stokes’ problem reads, in terms of the non-dimensional
quantities (1.63) and neglecting the primes for the sake of simplicity of notation:

e*Viv=Vp, x e 2 (1.67)
Vi-v=0,xe€ 8 (1.68)
v=0, on T, (1.69)

where we recall that € = d/L.
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1.4.2 The Homogenized Problem

We are dealing with a porous medium, and therefore assume that the average pore
radius d is much smaller than the average size of the domain L, such that e < 1. We
then apply the asymptotic homogenization Assumptions I to III, together with the
local periodicity and regularity Assumptions IV and V (exploited in the same way
as we have done for the n-dimensional diffusion problem) to the non-dimensional
Stokes’ problem. We further multiply both the right and the left hand sides of (1.67—
1.69) by suitable powers of € to obtain

EVIVE + 2Vy - (Vyve) + €2Vy - (Vi) + eVy2 € = Vyp© + eVyp~, (1.70)

Vyve + eVyve =0 1.71)
in 2 and
vi=0 (1.72)
on /.
We now equate the same powers of € in ascending order from €’ in each of

the Stokes’ problem equations (1.70—1.72). Since we are in a periodic setting, we
identify £2 and §2, with the corresponding fluid and solid phase within the periodic
cell, which we call 2.

€

Equating the same powers of € in the stress balance equation (1.70) yields
Vyp?(x.y) = 0= p¥ = pOx), (1.73)
that is, the leading order pressure depends only on the macroscale x. The ¢’
conditions arising from the incompressibility constraint (1.71) and the no slip
condition (1.72) read
Vy v =0, in (1.74)
and

v9 =0, onr (1.75)

respectively.
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Equating the same powers of € in (1.70-1.72) leads to the following conditions

Vv = Vyp® 4+ Vp® in 2, (1.76)
Vy v 4+ Ve -v® =0 in 2, (1.77)

and
v =0, onr (1.78)

We now exploit the conditions obtained by equating the same powers of € to close
the macroscale problem for the leading order fields v’ and p©.

We collect conditions (1.76), (1.74) and (1.75) together to obtain the following
auxiliary Stokes’ problem for the fields (v(¥), p(V)

Vv = Vyp® + Vp® in 2, (1.79)
Vy- v =0, in £ (1.80)
v9 =0, onrl (1.81)

supplemented by y-periodicity on the external boundary of the cell 0£2/\ I". We now
exploit linearity of the system (1.79-1.81) and the fact that, according to (1.73),
the leading order pressure p(®’ depends on the macroscale only, to formulate the
following ansatz for the solution

vO = —wWv,p©, (1.82)
p = —P-Vyp + p(x). (1.83)

The above expressions represent the unique (up to a y-constant arbitrary function
p(x)) solution of the auxiliary Stokes’ problem (1.79-1.81), provided that the
auxiliary second rank tensor W and vector P solve the following Stokes’-type
periodic cell problem

VW' = V,P—1 in £, (1.84)
Vy-W =0 in £, (1.85)
W=0, onTl, (1.86)

The differential problem (1.84—1.86) is closed by y-periodic conditions on 92y \ I"
and a further condition on the auxiliary vector P to ensure the solution uniqueness,
for example

(P)g, =0. (1.87)
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The problem (1.84—1.86) explicitly reads, by components

oW oP; .

= — 8,’,’ m .Qf, (188)

dykdyr — dy; ‘

oW )
=0 in £, (1.89)
ay; ‘

W; =0, onl, (1.90)
where i,j,k = 1,2,3 and sum over repeated indices is understood. Thus, the

auxiliary Stokes-type problem (1.84-1.86) requires the solution of three standard
Stokes’ problem for every fixed i = 1, 2, 3. The three Stokes’ periodic cell problems
differ in the volume load, that is e, e, e3, for i = 1,2, 3, respectively. Integral
average of the solution ansatz (1.82) over the fluid domain leads to the macroscale
governing equation relating the leading order velocity and pressure, namely

(vO), =—(w) 2 Vi ?, (1.91)

i.e., the fluid flow is described by the Darcy’s law on the macroscale domain.
Hence, since the average leading order velocity can be computed via (1.91), we just
need one more scalar equation for the leading pressure. We consider the integral
average of relationship (1.77) and apply the divergence theorem with respect to the
microscale variable y to obtain:

1 / () 1 / a 0
v . ng dS + v npdS + V- (v0) =0, (1.92)
152¢| Jagy/r ! |82/ Jr { >9f

where n; and ny o are the unit outward vectors normal to I" and 082 \ I,
respectively. Since the contributions over the external boundary of £2y cancel out
because of y-periodicity and Eq. (1.78) holds on I, no surface contribution remains.
The partial differential equation for the leading order pressure p® then reads as an
effective divergence-free constraint for the average fluid velocity, that is:

Ve (00)g, = =Vx- (W)g, V@) =0. (1.93)

Therefore, asymptotic homogenization of the Stokes’ problem for porous media
flow leads to the incompressible Darcy’s law for the average fluid velocity. The
effective, non-dimensional hydraulic conductivity is given by the tensor (W) 2
which can be computed by solving the Stokes’-type periodic cell problem (1.84—
1.86) on the periodic cell §2. In this case, as long as macroscopic uniformity is
assumed (i.e. £2 = £2(y)), the effective hydraulic conductivity is homogeneous and
solely depends on the geometry of the cell, which is in turn representative of the
porous medium structure.
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Remark 1.6 1t is well-known that a Darcy’s law of the type (1.91) can be exper-
imentally verified also for heterogeneous, nonperiodic, porous microstructure. In
fact, the Darcy’s law for porous media flow can be derived by mixture theory (see,
e.g., [21]), where no periodicity is assumed, and also in the context of asymptotic
homogenization, assuming local boundedness only. However, local periodicity
enables us to derive computationally feasible microscale problems that can be
solved in practice on a small portion of the microstructure, as done for example
in [17] in the context of tumor blood transport. This way, Darcy’s law does not play
merely the role of the effective set of governing equations for the fluid flow, but also
encodes precise information concerning the geometry of the porous structure.

Remark 1.7 (Geometric Homogenization) Note that this example shows that the
asymptotic homogenization technique can be carried out also for physical systems
that are not characterized by fine scale variations of the coefficients. We have started
from the Stokes’ problem at constant viscosity and have finally obtained Darcy’s law
exploiting the sharp length scale separation that exists in the geometry itself, which
is captured via an explicit non-dimensionalization analysis. In the most general
case, physical systems can exhibit both fine scale variations of the coefficients
and geometric heterogeneities. For example, when dealing with elastic composite
materials (see, e.g. [14, 22] and recently developed computational analysis such as
[18]), both oscillations of the elastic coefficients within a single elastic phase and
the difference between different phases may be observed on the fine scale, and
the two contributions lead in general to distinct contributions that appear in the
corresponding cell problems that are to be computed to determine the effective
elasticity tensor.

1.5 Concluding Remarks

We have presented a brief introduction to the asymptotic homogenization technique.
The material is intended to serve as a first step to foster the curiosity of students and
scientists approaching the topic for the first time. We have applied the technique
to simple examples, such as the diffusion problem and the Stokes’ problem for
porous media flow. These are only partially representative of the whole realm
of multiscale, multiphysics problems and have been chosen to drive the reader’s
attention towards the fundamental significance of spatial scale decoupling and non-
dimensionalization, and the importance of appropriate regularity assumption (local
boundedness, local periodicity) in deriving appropriate homogenized PDEs. We
have deliberately ignored advanced, cutting edge applications, as this book chapter
solely serves as a simple, basic introduction to the topic. However, we believe that
this introductory work may help the interested readers to understand fundamental
issues concerning the technique and to raise their awareness when facing complex
multiscale problems involving the interplay among several physical phenomena.
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