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1. Introduction

In the last years there has been a considerable effort in the weakening of
the concept of balance law in Continuum Mechanics through many directions,
from the point of view of the stress fields up to the irregularity of the boundary
of the (sub)bodies. After a first important step made by Gurtin, Williams and
Ziemer [11], who introduced the class of sets with finite perimeter as somehow
“optimal” concept for the treating of balance laws (and of the related concept of
flux through a surface), the papers by Šilhavý [17, 18] introduced the notion of
almost every subbody and treated some classes of stresses more irregular than
before, such as Lp-tensor fields with divergence in Lp. Subsequently, our paper
[6] pointed out how it was possible to obtain results for L1

loc-tensor fields with
divergence measure on normalized subsets with finite perimeter by requiring
the balance property to hold true on a very simple class of subbodies (almost all
cubes), thus showing that those simple subsets are enough to qualify Cauchy’s
tensor field and the validity of the balance law. On the other hand, from
[10, 8, 9] we were becoming more and more convinced that the balance of power
could provide a more general and nice setting of the whole problem, since it
contains the possibility of treating, in a natural way, higher grade materials and
it is more intrinsic from an analytical point of view, especially when working
in a non-Euclidean framework. In papers [14, 15, 2], some of the authors
extended what was known in the case of fluxes to the more distributional setting
related to powers, and in the paper [7] we studied materials of grade 2 and the
corresponding (weak) form of the balance law. At the same time, Šilhavý [20,
21] generalized many of the properties of a flux to objects which are extendable
to the case of subbodies having boundary with infinite Hausdorff measure, as
the case of fractals, which are some flat chains in the sense of Whitney, and
Harrison [12] developed a theory of still more irregular objects, called chainlets,
to which some properties of fluxes and powers may extend. Also, in the same
years, Chen and Frid [4, 5] showed some applications of this area of interest to
conservation laws.

We start here from the belief that a body could (or should) be in general
modeled with a function, which may tend or not to the characteristic function
of a set in the simplest cases (see the notion of presence in [3]). This has,
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from one side, no logical complication like fuzzy sets, since the subbody is
simply a function, and on the other side this seems to be the most common
and natural case when several scales are taken into account. In fact, a quite
general setting of the concept of power expended on a velocity field is possible
and natural, and it also gives rise to an interesting definition of what a contact
power is. Moreover, it is also a powerful analytical tool, since it allows us to
state sufficient conditions to pass to the limit to a characteristic function, i.e.
to localized subbodies.

Once a sufficiently general representation for the power is granted, the next
step is the following: in the case of first order contact powers, the volume in-
tegrals in the representation formula can be seen as a definition of a particular
distribution of order one, but in some cases they may define a distribution of
order zero, supported by the topological boundary of the set. We investigate
here some sufficient conditions in order to ensure that this distribution is in-
deed of order zero, that is, a measure, and therefore we find natural extensions
of Gauss-Green formula on arbitrary open sets and, in particular, a generalized
notion of normal trace for measures with divergence measure. Results in the
same direction have been obtained in [4, 5, 20, 21]. Finally, we turn our at-
tention to a very special case of subbodies, namely the rectangles in the plane,
and apply our results to obtain a more explicit expression of what the trace
of a measure on a side or at a vertex may look like. This is not merely an
exercise, since there are many different ways to state a trace result, depending
on what is known on the fields (for instance, if the trace is calculated from
inside or from both sides of the rectangle). It is however clear that, with some
technicality, these results hold also for locally regular sets. The real application
we show is the famous Flamant solution for the stress in an elastic body with a
vector-valued Dirac measure exerted at the boundary (see Podio-Guidugli [16]
for an extensive treatment of the topic): again, this is not at all linear elastic-
ity, as it may appear at a first glance. Flamant’s solution is a stress solution
and therefore it is not restricted to whatever elastic material: it’s pure balance.
We then recover the trace of the stress solution in an anlytical way, using the
notion of (generalized) vector potential.
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2. Virtual powers on diffused subbodies

Let Ω ⊆ Rn be an open set and denote with M(Ω) the set of positive Borel
measures finite on compact subsets of Ω. Given an integer N > 1, we introduce
the finite dimensional linear spaces Sym0 := RN and

Symj := {f : (Rn)j → RN : f is j-linear and symmetric}

for j > 1. In particular,

∀v ∈ C∞
(
Ω; RN

)
,∀x ∈ Ω : ∇(j)v(x) ∈ Symj ,

where ∇(j)v denotes the j-th derivative of v. We denote with Sym∗
j the dual

space of Symj .
We define the collection of diffused subbodies of Ω as

Θ(Ω) = {ϑ ∈ C0(Ω) : 0 6 ϑ 6 1 on Ω} .

Definition 2.1. A power of order k ∈ N is a function P : Θ(Ω)×C∞
(
Ω; RN

)
→

R such that

1. for every v ∈ C∞
(
Ω; RN

)
, P (ϑ,v) = P (ϑ1,v) + P (ϑ2,v) whenever

ϑ, ϑ1, ϑ2 ∈ Θ(Ω) satisfy ϑ = ϑ1 + ϑ2;

2. for every ϑ ∈ Θ(Ω), P (ϑ, ·) is linear;

3. for every compact set K ⊆ Ω there exists cK > 0 such that for every
ϑ ∈ Θ(Ω) with suptϑ ⊆ K and for every v ∈ C∞

(
Ω; RN

)
,

|P (ϑ,v)| 6 cK

k∑
j=0

‖∇(j)v‖∞,supt ϑ ,

where ‖∇(j)v‖∞,S := sup{|∇(j)v(x)| : x ∈ S}.

The set C∞
(
Ω; RN

)
is the space of test velocities. In the standard frame-

work, N = n in Continuum Mechanics and n = 1 in Thermodynamics, but
indeed N can be arbitrary, for instance in the presence of hidden parameters.
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2.1. Integral representation

We will prove now an integral representation for P . For a fixed ϑ, the linear
functional P (ϑ, ·) is a distribution on Ω of order k and such a representation is
a standard result in the theory of distributions. The point here is that we find
measures which are independent of ϑ.

Theorem 2.1. For every power P of order k there exist k + 1 measures µj ∈
M(Ω) and k + 1 Borel maps Tj : Ω → Sym∗

j such that |Tj | = 1 µj-a.e. and

(2.1) ∀ϑ ∈ Θ(Ω), ∀v ∈ C∞
(
Ω; RN

)
: P (ϑ,v) =

k∑
j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dµj .

Moreover, the tensor-valued measures Tjdµj are uniquely determined.

Proof – Let us first treat the case N = 1.
In the first step, we extend the definition of P to every ϑ ∈ C0(Ω), obtaining

a bi-linear functional. Let ϑ ∈ C0(Ω), ϑ > 0. Given h ∈ N such that 2−hϑ(x) 6

1 for all x ∈ Ω, we set
P̂ (ϑ, v) := 2hP (2−hϑ, v).

This definition is easily seen to be independent of h. In this way P̂ (·, v) is an
additive function defined on every ϑ > 0. Moreover, for every compact set
K ⊆ Ω and every ϑ ∈ Θ(Ω) \ {0} with suptϑ ⊆ K, we can take h ∈ Z such
that 2h−1 < ‖ϑ‖∞ 6 2h, obtaining

(2.2)

∀v ∈ C∞(Ω) : |P̂ (ϑ, v)| = 2h|P (2−hϑ, v)|

6 2hcK

k∑
j=0

‖∇(j)v‖∞,supt ϑ

6 2cK‖ϑ‖∞
k∑

j=0

‖∇(j)v‖∞,supt ϑ .

Now we define P̃ : C0(Ω)× C∞(Ω) → R by setting

P̃ (ϑ, v) := P̂ (ϑ+, v)− P̂ (ϑ−, v) .
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In view of (2.2), P̃ satisfies

(2.3) |P̂ (ϑ, v)| 6 4cK‖ϑ‖∞
k∑

j=0

‖∇(j)v‖∞,supt ϑ ,

for every ϑ ∈ C0(Ω) with suptϑ ⊆ K and for every v ∈ C∞(Ω).
Let us denote again with P such an extension and write cK instead of 4cK .

We claim that P is linear in ϑ. Indeed, to prove additivity notice that

(ϑ1 + ϑ2)+ + (ϑ−1 + ϑ−2 ) = (ϑ1 + ϑ2)− + (ϑ+
1 + ϑ+

2 )

and that all terms in parentheses are positive. By adding and subtracting the
term P (ϑ−1 + ϑ−2 , v), from the above identity it follows

(2.4)

P (ϑ1 + ϑ2, v) = P ((ϑ1 + ϑ2)+, v)− P ((ϑ1 + ϑ2)−, v)

= P (ϑ+
1 + ϑ+

2 , v)− P (ϑ−1 + ϑ−2 , v)

= P (ϑ+
1 , v) + P (ϑ+

2 , v)− P (ϑ−1 , v)− P (ϑ−2 , v)

= P (ϑ1, v) + P (ϑ2, v).

It remains to prove that P is homogeneous of degree 1 in ϑ. By additivity, it
is easily seen that P (qϑ, v) = qP (ϑ, v) for every q ∈ Q. For λ ∈ R, let (qh) be
a sequence of rational numbers such that qh → λ. Then

|P (λϑ, v)− λP (ϑ, v)| 6 |P ((λ− qh)ϑ, v)|+ |λ− qh|P (ϑ, v).

In view of (2.3), the right-hand side vanishes for h → ∞, hence P is bi-linear
on C0(Ω)× C∞(Ω).

In the second step, define mk = card{α ∈ Nn : |α| ≤ k} =
(
n+k

k

)
and

ηα(x) =
xα

α!
.

It is clear that

Dβηα =


xα−β

(α− β)!
if β 6 α

0 if βi > αi for some 1 6 i 6 n .
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In particular, Dαηα = 1 and the mk×mk matrix [Dβηα] is non singular (indeed
det[Dβηα] = 1). This uniquely defines mk linear maps Λα : C0(Ω; Rmk) →
C0(Ω) such that for every w ∈ C0(Ω; Rmk) one has supt Λα(w) ⊆ suptw and

wβ =
∑
|α|≤k

Λα(w)Dβηα ,

where wβ denotes the β-th component of w. Then we can define the linear
functional

ϕ : C0(Ω; Rmk) → R , ϕ(w) :=
∑
|α|≤k

P (Λα(w), ηα).

Let cα > 0 such that ‖Λα(w)‖∞ 6 cα‖w‖∞. Taking a compact set K ⊆ Ω and
suptw ⊆ K, by the properties of P we find

|ϕ(w)| 6 cK
∑
|α|≤k

‖Λα(w)‖∞
k∑

j=0

‖∇(j)ηα‖∞,K

= ‖w‖∞

cK ∑
|α|≤k

k∑
j=0

cα‖∇(j)ηα‖∞,K


which shows that ϕ is a distribution of order zero. In particular, there exist
mk measures να ∈ M(Ω) and mk bounded Borel functions pα : Ω → R such
that

(2.5) ∀w ∈ C0(Ω; Rmk) : ϕ(w) =
∑
|α|6k

∫
Ω

wαpα dνα.

Now fix γ ∈ Nn with |γ| 6 k and ϑ ∈ C0(Ω), and take the special case
ŵβ = ϑDβηγ . Since ∑

|α|≤k

Λα(ŵ)Dβηα = ŵβ = ϑDβηγ ,

it follows that
Λγ(ŵ) = ϑ , Λα(w) = 0 for α 6= γ,

so that (2.5) yields

P (ϑ, ηγ) =
∑
|α|≤k

∫
Ω

ϑDαηγpα dνα ,



Virtual Powers on Diffused Subbodies and Normal Traces of Tensor-Valued Measures 29

which is the claim in the special case v = ηγ = xγ

γ! . By linearity, the represen-
tation formula holds for all polynomials with degree at most k and, switching
to the tensorial notation,

(2.6) P (ϑ, v) =
k∑

j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dµj

for every polynomial v with degree at most k .
Now we want to prove that the formula (2.6) extends to all of C∞(Ω). Let

us fix v ∈ C∞(Ω). By (2.3), P (·, v) is a distribution of order 0 on Ω, hence
there exist µv ∈ M(Ω) and a Borel function pv : Ω → R such that |pv| = 1
µv-a.e. and

∀ϑ ∈ C0(Ω) : P (ϑ, v) =
∫

Ω

ϑpv dµv .

Now fix also ϑ ∈ C0(Ω). For h ∈ N consider a finite collection {Ih,m}m

of disjoint open n-intervals in Ω such that for every h ∈ N, {Ih+1,m}m is a
refinement of {Ih,m}m,

suptϑ ⊆
⋃
m

Ih,m ⊆ Ω , max
m

{diam (Ih,m)} < 2−h

and every boundary ∂Ih,m is negligible for the measures µ1, . . . , µk, µv . Then
for every h,m ∈ N consider two functions ϕh,m, ψh,m ∈ C∞0 (Ih,m) such that
0 6 ϕh,m, ψh,m 6 1,

(µ1 + · · ·+ µk + µv)
({
x ∈ Ω :

∑
m

ϕh,m < 1
})

< 2−h,

and ψh,m = 1 in a neighborhood of suptϕh,m. Finally, denote with Th,m the
Taylor approximation of v of order k around the center of Ih,m and recall that

(2.7)
k∑

j=0

(
max

m
‖∇(j)(v − Th,m)‖∞,Ih,m

)
→ 0 as h→∞ .
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Then one has

(2.8)

P
(
ϑ
∑
m

ϕh,m, v
)

=
∑
m

P
(
ϑϕh,m, Th,m

)
+
∑
m

P
(
ϑϕh,m, (v − Th,m)ψh,m

)
=
∑
m

P (ϑϕh,m, Th,m)

+P
(
ϑ
∑
m

ϕh,m,
∑
m

(v − Th,m)ψh,m

)
.

Now set Kh = supt (ϑ
∑

m ϕh,m) and K = suptϑ. By applying (2.3) on the
last term of the right-hand side of (2.8) one gets∣∣∣∣∣P(ϑ∑

m

ϕh,m,
∑
m

(v − Th,m)ψh,m

)∣∣∣∣∣
6 cK

∥∥∥ϑ∑
m

ϕh,m

∥∥∥
∞

k∑
j=1

∥∥∥∥∥∇(j)
[∑

m

(v − Th,m)ψh,m

]∥∥∥∥∥
∞,Kh

6 cK‖ϑ‖∞
k∑

j=1

(
max

m
‖∇(j)(v − Th,m)‖∞,Ih,m

)
.

Taking into account (2.8), (2.7) and the representation (2.6), it follows

P (ϑ, v) = lim
h→∞

P
(
ϑ
∑
m

ϕh,m, v
)

= lim
h→∞

∑
m

P (ϑϕh,m, Th,m)

=
k∑

j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dµj ,

which ends up the proof in the case N = 1.
In the general case, for every i = 1, . . . , N , we can define a power Pi :

Θ(Ω) × C∞(Ω) → R of order k by Pi(ϑ, v) = P (ϑ, vei), where e1, . . . ,eN is
the canonical basis in RN . Since

P (ϑ,v) =
N∑

i=1

Pi(ϑ, vi) , v = (v1, . . . , vN ) ,

the assertion follows from the previous case.
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Remark 2.1 - One can ask if a similar representation holds if assumption 1 is
weakened as

4. for every v ∈ C∞
(
Ω; RN

)
and every ϑ1, ϑ2 ∈ Θ(Ω) with suptϑ1 ∩

suptϑ2 = ∅,
P (ϑ1 + ϑ2,v) = P (ϑ1,v) + P (ϑ2,v)

namely, if the additivity holds only for “well-separated” bodies. However, such
an assumption is too weak, since for instance the functional

P (ϑ,v) :=
k∑

j=0

∫
Ω

ϑ2∇(j)v dL n

satisfies 4, 2, 3 but cannot be represented by (2.1).

Remark 2.2 - If a power of order k satisfies the property

5. there exist λ0, . . . , λk ∈ M(Ω) such that

|P (ϑ,v)| 6
k∑

j=0

∫
Ω

ϑ|∇(j)v| dλj

which is stronger than 3 of Definition 2.1, then it can be proved that each µj of
Theorem 2.1 is indeed absolutely continuous with respect to λj . Hence there
exist k+1 bounded Borel functions Tj : Ω → Sym∗

j uniquely determined λj-a.e.
such that

P (ϑ,v) =
k∑

j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dλj .

2.2. Weak balance and contact powers

Definition 2.2. A power P is said to be weakly balanced if for every compact
set K ⊆ Ω there exists cK > 0 such that for every ϑ ∈ Θ(Ω) with suptϑ ⊆ K

and for every v ∈ C∞
(
Ω; RN

)
with (1− ϑ)v = 0 on Ω, one has

|P (ϑ,v)| 6 cK‖v‖∞,K .
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In particular, P is said to be a contact power if

P (ϑ,v) = 0 whenever (1− ϑ)v = 0 on Ω.

A power is said to be a distance power if it has order zero.

Of course, contact and distance powers are automatically weakly balanced.
On the other hand, a decomposition theorem holds.

Theorem 2.2 ((Distance-contact decomposition). A weakly balanced
power P of order k can be decomposed in a unique way as a sum of a dis-
tance power P (d) and a contact power P (c).

Proof – By Theorem 2.1 one has

P (ϑ,v) =
k∑

j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dµj

for every ϑ ∈ Θ(Ω) and v ∈ C∞
(
Ω; RN

)
.

Given a compact set K in Ω, let ϑ ∈ Θ(Ω) with ϑ = 1 on K. If v ∈
C∞0

(
Ω; RN

)
has support in K, the weak balance yields

|P (ϑ,v)| =

∣∣∣∣∣∣
k∑

j=0

∫
Ω

〈Tj ,∇(j)v〉 dµj

∣∣∣∣∣∣ 6 ĉK‖v‖∞,Ω ,

hence the left-hand side is a distribution of order 0,

(2.9) ∀v ∈ C∞0
(
Ω; RN

)
:

k∑
j=0

∫
Ω

〈Tj ,∇(j)v〉 dµj =
∫

Ω

〈B,v〉 dν ,

where ν ∈ M(Ω) and B : Ω → (RN )∗ is a bounded Borel function. We set by
definition

P (d)(ϑ,v) =
∫

Ω

ϑ〈B,v〉 dν , P (c)(ϑ,v) = P (ϑ,v)− P (d)(ϑ,v) .

The first is clearly a distance power. Moreover, if we take ϑ and v such that
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(1− ϑ)v = 0, then

P (c)(ϑ,v) =
k∑

j=0

∫
Ω

ϑ〈Tj ,∇(j)v〉 dµj −
∫

Ω

ϑ〈B,v〉 dν

=
k∑

j=0

∫
Ω

〈Tj ,∇(j)v〉 dµj −
∫

Ω

〈B,v〉 dν = 0 .

Suppose now that

P = P (d) + P (c) = P̂ (d) + P̂ (c).

For every v ∈ C∞0
(
Ω; RN

)
, taking ϑ ∈ Θ(Ω) such that ϑ = 1 on suptv, one

has in particular that (1− ϑ)v = 0, hence, with obvious notation,∫
Ω

〈B,v〉 dν = P (d)(ϑ,v) = P̂ (d)(ϑ,v) =
∫

Ω

〈B̂,v〉 dν̂ .

Therefore B dν and B̂ dν̂ denote the same vector measure and P (d) = P̂ (d). By
difference, the identity of P (c) and P̂ (c) is also proved.

Up to here, a diffused subbody ϑ was merely a continuous function. If one
wants to say more, a possibility is to suppose ϑ more regular. Let’s therefore
suppose ϑ ∈ Θ(Ω) ∩ Ck(Ω).

Theorem 2.3. Let P be a weakly balanced power of order k. Then for every
ϑ ∈ Θ(Ω) ∩ Ck(Ω) and every v ∈ C∞

(
Ω; RN

)
one has

P (d)(ϑ,v) =
k∑

j=0

∫
Ω

〈Tj ,∇(j)(ϑv)〉 dµj ,(2.10)

P (c)(ϑ,v) =
k∑

j=1

∫
Ω

〈Tj , ϑ∇(j)v −∇(j)(ϑv)〉 dµj .(2.11)

Proof – If we replace v with ϑv in (2.9), we get∫
Ω

〈B,ϑv〉 dν =
k∑

j=0

∫
Ω

〈Tj ,∇(j)(ϑv)〉 dµj

and the proof is straightforward.
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It is worth noting that the expression ϑ∇(j)v−∇(j)(ϑv) vanishes whenever
ϑ = 0 or ϑ = 1 on an open set; it means that the contact part of a power
is supported by (the closure of) the region where 0 < ϑ < 1, which can be
interpreted as the “boundary” of the subbody.

In particular, in the case k = 1 from (2.11) and (2.9) we have

(2.12)
∀ϑ ∈ Θ(Ω) ∩ C1(Ω), ∀v ∈ C∞

(
Ω; RN

)
:

P (c)(ϑ,v) = −
∫

Ω

〈T1,v ⊗∇ϑ〉 dµ1 ,

(2.13) ∀v ∈ C∞0
(
Ω; RN

)
:
∫

Ω

〈T0,v〉 dµ0 +
∫

Ω

〈T1,∇v〉 dµ1 = 0 ,

where the tensor product is defined in the usual way

(a⊗ b)c := (b · c)a .

In the case k = 2 we find

(2.14)

P (c)(ϑ,v) =
∫

Ω

〈T1, ϑ∇v −∇(ϑv)〉 dµ1

+
∫

Ω

〈T2, ϑ∇∇v −∇∇(ϑv)〉 dµ2

= −
∫

Ω

〈T1,v ⊗∇ϑ〉 dµ1

−
∫

Ω

〈T2,v ⊗∇∇ϑ+∇v ⊗∇ϑ〉 dµ2

where for S ∈ Lin(Rn; Rn), T ∈ Lin(Rn; RN ), a ∈ RN and u ∈ Rn we set

(a⊗ S)ijk := aiSjk , (T ⊗ u)ijk := Tkiuj + Tijuk .

2.3. The case of localized subbodies

After proving the existence and uniqueness of the tensor-valued measures
Tjdµj , the standard theory of localized subbodies, i.e. subbodies which are
subsets of the body, can be recovered by setting

(2.15) P (M,v) =
k∑

j=0

∫
M

〈Tj ,∇(j)v〉 dµj
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for every Borel subsetM with compact closure in Ω and every v ∈ C∞
(
Ω; RN

)
.

Moreover, the following approximation result can be easily deduced by the
Dominated Convergence Theorem.

Theorem 2.4. Let M be a Borel subset with compact closure in Ω such that
µj(∂∗M) = 01 for j = 0, . . . , k. Let (ϑh) be a sequence in Θ(Ω) such that
ϑh → χM as h→∞ pointwise µj-a.e. for j = 0, . . . , k. Then

∀v ∈ C∞
(
Ω; RN

)
: lim

h→∞
P (ϑh,v) = P (M,v) .

Such a sequence (ϑh) can be obtained, for instance, regularizing by convo-
lution the characteristic function χM .

In particular, in [7], under suitable conditions on the setM and the measures
µj , a representation formula involving the boundary of the subbody is given
for the cases k = 1 and k = 2 .

3. Normal traces of measures with divergence measure

The representation of a contact power as a boundary integral (by means of
some generalized Gauss-Green Theorem) is one of the key links between the
theory of powers and the usual approach by forces and stresses in Continuum
Mechanics. Let us consider the classical situation of a power P of order one.
Given an open subset M with compact closure in Ω, (2.15) yields the integral
representation

P (M,v) =
∫

M

〈T0,v〉 dµ0 +
∫

M

〈T1,∇v〉 dµ1

for any v ∈ C∞
(
Ω; RN

)
. If P is a contact power, it follows from (2.13) that

T1µ1 has divergence measure, indeed

div(T1µ1) = T0µ0 in the sense of distributions.

For simplicity, we drop the subscript from T1 and µ1, meaning that T is a Borel
(N ×n)-tensor field with |T | 6 1 and µ ∈ M(Ω). Moreover, sometimes we will

1The symbol ∂∗Ω denotes the measure-theoretic boundary of Ω, see for instance [6].



36 M. Degiovanni, A. Marzocchi and A. Musesti

denote with T the resulting tensor-valued measure Tµ. Hence we can write

(3.1) P (M,v) =
∫

M

v · div(Tµ) +
∫

M

T · ∇v dµ =
∫

M

v · div T +
∫

M

∇v · dT .

In this section we focus on a fixed open set M with compact closure in
Ω. For this reason, we denote M by Ω and investigate some conditions under
which a general tensor-valued measure with divergence measure T on Ω admits
a trace of its normal component on the boundary.

More precisely, we assume that Ω is a bounded open set in Rn and T = Tµ

is a tensor-valued measure on Ω whose distributional divergence in Ω is still a
measure. Moreover, both T and div T are assumed to have bounded variation
in Ω, i.e.

|T|(Ω) =
∫

Ω

|T | dµ < +∞ , |div T|(Ω) < +∞ ,

but we do not require any smoothness on ∂Ω.
In the following, we will denote with Lip(Ω; RN ) the space of all Lipschitz

functions on the closure of Ω.
We can now introduce Tn|∂Ω , the distributional normal trace of T to ∂Ω.

Definition 3.1. We denote with the symbol Tn|∂Ω the (vector-valued) distri-
bution on Rn defined as

∀v ∈ C∞0
(
Rn; RN

)
: 〈Tn|∂Ω ,v〉 =

∫
Ω

T · ∇v dµ+
∫

Ω

v · div(Tµ) .

It is clear that Tn|∂Ω is a distribution of order at most one with support
in ∂Ω. We denote with the same symbol also the natural extension to any
v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ).

Definition 3.2. We say that a function ϑ ∈ Lip(Ω)∩C1(Ω) is relative to the
open set Ω, if 0 < ϑ(x) 6 1 for x ∈ Ω ,

ϑ(x) = 0 for x ∈ ∂Ω .

For every open set Ω, without further assumptions, such a function does
exist. Indeed, it is a classical result of differential topology that there exists
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ϑ ∈ C∞(Rn) which is strictly positive in Ω and vanishes in Rn \ Ω (see for
instance [13, Exercise 2.2.1]).

In the next result we show that the distributional normal trace Tn|∂Ω

can be characterized also by a limiting procedure. The assertion should be
compared with [19, Theorem 8.1(i) and Proposition 7.4], where the question
is treated in the setting of flat measures, which allows to drop the assumption
that v ∈ C1(Ω; RN ).

Theorem 3.1. Let Ω be a bounded open set and let ϑ be relative to Ω. Then
for every v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ) one has

〈Tn|∂Ω ,v〉 = − lim
r→0+

1
r

∫
Ω∩{0<ϑ<r}

v · (T∇ϑ) dµ .

Moreover, for every v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ) it also holds

v = 0 on ∂Ω =⇒
∫

Ω

T · ∇v dµ+
∫

Ω

v · div(Tµ) = 0 .

Proof – For every r > 0, let δr ∈]0, 1[ be such that

µ
({
x ∈ Ω : 0 <

ϑ(x)
r

< δr

})
< r2 ,

µ
({
x ∈ Ω : 1− δr <

ϑ(x)
r

< 1
})

< r2 .

Then consider a function gr ∈ C∞(R) such that 0 6 g 6 1, g(x) = 1 for every
x ∈ [δr, 1 − δr] and g(x) = 0 for every x 6 δr/2 and x > 1. Let Gr be the
primitive of gr satisfying Gr(0) = 0, and define

ϑr(x) = Gr

(ϑ(x)
r

)
.

In particular,

∇ϑr(x) =
1
r
gr

(ϑ(x)
r

)
∇ϑ(x)

and ϑr ∈ C1
0 (Ω; R) with suptϑr ⊆ {ϑ > δr/2}.

Now, since ϑrv is a C1-function, from the definition of distributional diver-
gence one gets∫

Ω

ϑr∇v · T dµ+
∫

Ω

ϑrv · div(Tµ) = −
∫

Ω

(T∇ϑr) · v dµ .
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1

δr/2 δr 1 − δr 1

Figure 1 – The function gr .

By the Dominated Convergence Theorem, as r → 0+ the left-hand side tends
to ∫

Ω

∇v · T dµ+
∫

Ω

v · div(Tµ) ,

which is the definition of 〈Tn|∂Ω ,v〉. The right-hand side writes

−
∫

Ω

(T∇ϑr) · v dµ = −1
r

∫
Ω∩{0<ϑ<r}

(T∇ϑ) · v dµ

+
1
r

∫
Ω∩({0< ϑ

r <δr}∪{1−δr< ϑ
r <1})

(
1− gr

(ϑ(x)
r

))
(T∇ϑ) · v dµ .

By the choice of δr, the last integral vanishes as r → 0+, and the first formula
is proved.

Assume now that v = 0 on ∂Ω. Arguing by components, we may assume
without loss of generality that N = 1.

Let us first treat the case in which

(3.2) {x ∈ Ω : v(x) = 0} is µ-negligible.

Let ϕ : R −→ [0, 1] be a C∞-function such that ϕ = 0 on [−1, 1] and ϕ = 1
outside ]− 2, 2[. For every k > 1, let ψk : R −→ R be the smooth function such
that ψk(0) = 0 and ψ′k(s) = ϕ(ks). Since ψk(v) ∈ C1

0 (Ω), we have∫
Ω

ψ′k(v)T · ∇v dµ+
∫

Ω

ψk(v) div(Tµ) = 0 .
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On the other hand, (ψk(v)) is convergent to v uniformly on Ω and (ψ′k(v)) is
convergent to 1 pointwise µ-a.e. in Ω by (3.2). Passing to the limit as k →∞,
we get ∫

Ω

T · ∇v dµ+
∫

Ω

v div(Tµ) = 0 .

In the general case, let w ∈ C∞(Rn) be such that w > 0 in Ω and w = 0 in
Rn \Ω. Since the sets

{x ∈ Ω : v(x) + εw(x) = 0} , ε > 0

are pairwise disjoint, there exists ε > 0 such that {x ∈ Ω : v(x) + εw(x) = 0}
is µ-negligible. From the previous step, we infer that∫

Ω

T · ∇(v + εw) dµ+
∫

Ω

(v + εw) div(Tµ) = 0 .

Again from the previous step we also deduce that∫
Ω

T · ∇(εw) dµ+
∫

Ω

(εw) div(Tµ) = 0 ,

as the set {x ∈ Ω : εw(x) = 0} is empty. By subtracting the two equations,
the assertion follows.

Remark 3.1 - By the previous result, the distribution Tn|∂Ω can be extended
to {

u ∈ C(∂Ω; RN ) : u = v
∣∣
∂Ω

for some v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN )
}

by setting

〈Tn|∂Ω ,u〉 =
∫

Ω

T · ∇v dµ+
∫

Ω

v · div(Tµ) .

The previous theorem ensures that the definition is independent of the choice
of v.

It is of great interest the case in which the distribution Tn|∂Ω is a measure,
i.e. it is of order zero as a distribution in Rn. In the following theorem we give
a sufficient condition, already considered in [19, Theorem 8.1(ii)].
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Theorem 3.2. Let Ω be a bounded open set and let ϑ be relative to Ω. If

(3.3) lim sup
r→0+

1
r

∫
Ω∩{0<ϑ<r}

|T∇ϑ| dµ < +∞ ,

then Tn|∂Ω is a distribution of order zero in Rn with support in ∂Ω, so that
the pairing 〈Tn|∂Ω ,v〉 has a natural meaning for any v ∈ C(∂Ω; RN ).

Moreover, for every v ∈ C(Ω; RN ) one has

〈Tn|∂Ω ,v〉 = − lim
r→0+

1
r

∫
Ω∩{0<ϑ<r}

(T∇ϑ) · v dµ .

Proof – The proof relies on some standard facts of Measure Theory. Let
(γr) be the family of measures on Ω defined by

〈γr,v〉 := −1
r

∫
Ω∩{0<ϑ<r}

(T∇ϑ) · v dµ .

By Theorem 3.1 we know that

∀v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ) : lim
r→0+

〈γr,v〉 = 〈Tn|∂Ω ,v〉 .

Moreover, by (3.3) the measures γr have uniformly bounded total variation,
hence there exists a measure γ such that γr

∗
⇀ γ up to a subsequence. Since

Lip(Ω; RN ) ∩ C1(Ω; RN ) is dense in C(Ω; RN ), it follows that γ = Tn|∂Ω ,
hence the normal trace is a measure, and the full sequence converges. Then
the proof is complete.

4. The rectangle

In Theorem 3.2 we gave a sufficient condition and a limit formula in order
to find the measure normal trace on an open subbody. In the present section
we want to study the very particular case of n = 2 and Ω =]a, b[×]c, d[, i.e. a
two-dimensional rectangle. We will find the expression of the normal trace of
a tensor-valued measure T by means of the so-called Disintegration Theorem.
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Theorem 4.1 ((Disintegration). Let µ ∈ M(Ω). Then there exist λ1 ∈ M(R)
and, for every x ∈ R, γx ∈ M(R) such that γx(R) = 1 and{

x 7→
∫

R
f(x, y) dγx(y)

}
is λ1-measurable,

∫
Ω

f(x, y) dµ(x, y) =
∫

R

(∫
R
f(x, y) dγx(y)

)
dλ1(x) ,

for every Borel function f : R2 → [0,+∞].
A similar assertion holds swapping x and y, yielding measures λ2 and γy.

Proof – See [1].

Remark 4.1 - Consider the one-dimensional Lebesgue measure L 1 and the
Lebesgue decomposition

λ1 =
dλ1

dL 1
L 1 + λ

(s)
1 ,

λ2 =
dλ2

dL 1
L 1 + λ

(s)
2 ,

where dλ/dL 1 denotes the Radon-Nikodym derivative of the measure λ with
respect to L 1 and λ(s) the singular part of λ with respect to L 1. Then one
can also write∫

Ω

f(x, y) dµ(x, y) =
∫ b

a

(
dλ1

dL 1
(x)

∫
]c,d[

f(x, y) dγx(y)

)
dL 1(x)

+
∫

]a,b[

(∫
]c,d[

f(x, y) dγx(y)

)
dλ

(s)
1 (x)

=
∫ d

c

(
dλ2

dL 1
(y)

∫
]a,b[

f(x, y) dγy(x)

)
dL 1(y)

+
∫

]c,d[

(∫
]a,b[

f(x, y) dγy(x)

)
dλ

(s)
2 (y) .

We recall here the definition of Lebesgue point for a function.
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Definition 4.1. Let f : R → RN a Borel function. Then we say that x ∈ R is
a right Lebesgue point for f , if there exists ` ∈ R such that

lim
r→0+

1
r

∫
]x,x+r[

|f(ξ)− `| dL 1(ξ) = 0 .

We say that ` is the right Lebesgue value of f , and analogously for the left
Lebesgue point and the left Lebesgue value.

Given such a Borel function f , it is well-known that L 1-a.e. x ∈ R is a
right (left) Lebesgue point for f with ` = f(x).

Theorem 4.2. Assume that

i. lim sup
r→0+

1
r

∫
]a,a+r[×]c,d[

|T (x, y)e1| dµ(x, y) < +∞ ,

ii. lim
r→0+

1
r
λ

(s)
1 (]a, a+ r[) = 0 ,

iii. for every v ∈ C([c, d]; RN ), x = a is a right Lebesgue point for

(4.1) x 7→ dλ1

dL 1
(x)
∫

]c,d[

v(y) · T (x, y)e1 dγx(y) .

Let ϕv denote the right Lebesgue value of the function (4.1), i.e.

ϕv = lim
r→0+

1
r

∫ a+r

a

[
dλ1

dL 1
(x)
∫

]c,d[

v(y) · T (x, y)e1 dγx(y)

]
dL 1(x) .

Then there exists a finite vector-valued measure νa on [c, d] such that

(4.2)
∫

[c,d]

v · νa = − lim
r→0+

1
r

∫
]a,a+r[×]c,d[

v(y) · T (x, y)e1 dµ(x, y) = −ϕv

for every v ∈ C([c, d]; RN ).

In particular, the normal trace νa is given by the right Lebesgue value
of (4.1), which is strictly related to the measures γx and λ1 that come from
the Disintegration Theorem.

With a similar construction we can define νb, νc and νd, paying attention
to taking the right Lebesgue value for a, c and the left Lebesgue value for b, d.
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Proof – Let v ∈ C([c, d]; RN ) and let ϕv as in the theorem. Then by
Remark 4.1 one has∫

]a,a+r[×]c,d[

v(y) · T (x, y)e1 dµ(x, y)

=
∫ a+r

a

[
dλ1

dL 1
(x)
∫

]c,d[

v(y) · T (x, y)e1 dγx(y)

]
dL 1(x)

+
∫

]a,a+r[

(∫
]c,d[

v(y) · T (x, y)e1 dγx(y)

)
dλ

(s)
1 (x) .

Now divide by r and let r → 0+. The last integral vanishes in view of ii and the
boundedness of the integrand and the measure γx. Hence one gets the second
identity in (4.2). The fact that ϕv is indeed a distribution of order zero follows
easily by i.

Remark 4.2 - It can be proved, by an approximation procedure, that condition
iii can be required only for any v ∈ C∞0

(
R; RN

)
.

Indeed, suppose that iii holds for every v ∈ C∞0
(
R; RN

)
and consider w ∈

C([c, d]; RN ). Hence

1
r

∫ a+r

a

∣∣∣∣∣ dλ1

dL 1
(x)
∫

]c,d[

w(y) · T (x, y)e1 dγx(y)− ϕw

∣∣∣∣∣ dL 1(x)

6
1
r

∫ a+r

a

∣∣∣∣∣ dλ1

dL 1
(x)
∫

]c,d[

v(y) · T (x, y)e1 dγx(y)− ϕv

∣∣∣∣∣ dL 1(x)

+‖w − v‖∞
1
r

∫
]a,a+r[×]c,d[

|T (x, y)e1| dµ(x, y) + |ϕw − ϕv| .

Since the property holds for v and it can be chosen arbitrarily close to w in
the uniform norm, keeping into account i the right-hand side can be made
arbitrarily small.

The following theorem assures that a normal trace can be found for almost
every rectangle (in the sense of one-dimensional Lebesgue measure).
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Theorem 4.3. For L 1-a.e. a, b, c, d ∈ R the conditions i, ii, iii of Theorem 4.2
are satisfied and

νa = − dλ1

dL 1
(a)T (a, ·)e1 γa

νb =
dλ1

dL 1
(b)T (b, ·)e1 γb

νc = − dλ2

dL 1
(c)T (·, c)e2 γc

νd =
dλ2

dL 1
(d)T (·, d)e2 γd .

Proof – We prove the theorem for a, the other cases following in the same
way.

Since λ(s)
1 is singular with respect to the Lebesgue measure, it is clear that

ii holds for a.e. a ∈ R.
Let us now study iii. Since C0(R; RN ) is separable, it admits a countable

and dense subset Y . Let a ∈ R be a right Lebesgue point for the function (4.1)
and such that the right Lebesgue value is

ϕv =
dλ1

dL 1
(a)
∫

]c,d[

v(y) · T (a, y)e1 dγa(y)

for every v ∈ Y and c, d ∈ Q. It is well-known that this is true for L 1-a.e.
a ∈ R.

Take w ∈ C0(R; RN ) and let ε > 0. Then there is v ∈ Y such that
‖w − v‖∞ < ε and

1
r

∫ a+r

a

∣∣∣∣∣∣∣
dλ1

dL 1
(x)

∫
]c,d[

(v −w)(y) · T (x, y)e1 dγx(y)

∣∣∣∣∣∣∣ dL 1(x)

6 ‖v −w‖∞
1
r

∫ a+r

a

dλ1

dL 1
(x) dL 1(x)

which vanishes as r → 0+, so that we can replace Y with C0(R; RN ).
Moreover, let c ∈ R be a Lebesgue point for dλ2/dL 1 and such that ii

holds. For r > 0, consider 0 6 δr 6 r2 be such that c+ δr ∈ Q. Then for every
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w ∈ C0(R; RN ) one has

1
r

∫ a+r

a

∣∣∣∣∣ dλ1

dL 1
(x)
∫

]c,c+δr[

v(y) · T (x, y)e1 dγx(y)

∣∣∣∣∣ dL 1(x)

6
1
r
‖w‖∞µ(]a, a+ r[×]c, c+ δr[)

6
1
r
‖w‖∞λ2(]c, c+ δr[) 6

1
r
‖w‖∞λ2(]c, c+ r2[)

and the right-hand side vanishes for r → 0+. Hence we can replace c ∈ Q with
a.e. c ∈ R, and of course the same holds for d ∈ R.

The proof for property i is similar.

Now we compare the trace introduced in Theorem 4.2 for a rectangle with
respect to the general theory of Section 3. In particular, we will prove that,
if a, b, c, d satisfy the assumptions i – iii, then the trace Tn|∂M is given by the
measures νa,νb,νc,νd and, in particular, the Gauss-Green Theorem holds for
such a rectangle.

Hereafter we will assume that Ω =]a, b×]c, d[ with a, b, c, d satisfying the
conditions i, ii, iii of Theorem 4.2.

Theorem 4.4. The distribution Tn|∂Ω has order zero.

Proof – Let Q = [0, 1]× [0, 1] and consider the function f : Q→ R defined
by

f(x, y) :=
sin(πx) sin(πy)√

sin2(πx) + sin2(πy)
.

Then f ∈ Lip(Q) ∩ C1(intQ) with Lipschitz constant L = π; moreover, there
exist k1, k2 > 0 such that

{(x, y) ∈ Q : f(x, y) = r} ⊆ {(x, y) ∈ Q : k1r < d((x, y), ∂Q) < k2r}

(indeed, it is enough to choose k1 < 1/π and k2 >
√

2/π).
Define now

ϑ(x, y) = f

(
x− a

b− a
,
y − c

d− c

)
.

Then ϑ is relative to the set Ω =]a, b×]c, d[ and, for suitable constants L, k > 0,
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Figure 2 – The function f .

lim sup
r→0+

1
r

∫
Ω∩{0<ϑ<r}

|T∇ϑ| dµ

6 lim sup
r→0+

L

r

∫
(]a,a+kr[×]c,d[∪ ]b−kr,b[×]c,d[)

|Te1| dµ

+ lim sup
r→0+

L

r

∫
(]a,b[×]c,c+kr[∪ ]a,b[×]d−kr,d[)

|Te2| dµ < +∞ .

Hence (3.3) holds and we can apply Theorem 3.2.

Lemma 4.1. Let v ∈ Lip(Ω; RN )∩C1(Ω; RN ) be such that v(a, y) = v(b, y) =
0 for every y ∈ [c, d]. Then

〈Tn|∂Ω ,v〉 =
∫

]a,b[

v(·, c) · νc +
∫

]a,b[

v(·, d) · νd .

Proof – For every r > 0, let δr ∈]0, r[ be such that

µ
({

(x, y) ∈ Ω : c+ r − δr < y < c+ r
})

< r2 ,

µ
({
x ∈ Ω : d− r < y < d− r + δr

})
< r2 .

Let fr ∈ Lip([c, d]) ∩ C1(]c, d[) be such that fr(c) = fr(d) = 0, fr(x) = 1 for
c + r 6 x 6 d − r and fr is linear in [c, c + r − δr] and [d − r + δr, d] (see
Figure 4). Let v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ). Then the function fr(y)v(x, y)
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c + r − δr d − r + δr

c c + r d − r d

1

Figure 3 – The function fr .

vanishes on ∂Ω and, by Theorem 3.1, one has∫
Ω

frv · div(Tµ) +
∫

Ω

fr∇v · T dµ+
∫

Ω

(v ⊗∇fr) · T dµ = 0 .

Now, the first two integrals converge to 〈Tn|∂Ω ,v〉 as r → 0+ and last integral
writes∫

Ω

(v⊗∇fr)·T dµ = −1
r

∫
]a,b[×]c,c+r[

(v⊗e2)·T dµ+
1
r

∫
]a,b[×]d−r,d[

(v⊗e2)·T dµ+o(r)

as r → 0+. The proof ends up by applying (4.2).

Theorem 4.5 (Gauss-Green). Let v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ). Then

〈Tn|∂Ω ,v〉 =
∫

]a,b[

v(·, c) · νc +
∫

]a,b[

v(·, d) · νd +
∫

[c,d]

v(a, ·) · νa +
∫

[c,d]

v(b, ·) · νb

=
∫

[a,b]

v(·, c) · νc +
∫

[a,b]

v(·, d) · νd +
∫

]c,d[

v(a, ·) · νa +
∫

]c,d[

v(b, ·) · νb .

In particular, νc({a}) = νa({c}) and the same holds for the other vertices.

Proof – Let v ∈ Lip(Ω; RN ) ∩ C1(Ω; RN ) and consider a function fr ∈
C([a, b]) ∩ C1(]a, b[) as in the proof of the above lemma. Then the function
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wr(x, y) = fr(x)v(x, y) is such that wr(a, y) = wr(b, y) = 0 for every y ∈ [c, d].
By Lemma 4.1, one has

(4.3)
∫

Ω

T ·∇wr dµ+
∫

Ω

wr ·div(Tµ) =
∫

]a,b[×{c}
wr ·νc +

∫
]a,b[×{d}

wr ·νd .

We can write the first integral as∫
Ω

T · ∇wr dµ =
∫

Ω

fr∇v · T dµ+
∫

Ω

(v ⊗∇fr) · T dµ

=
∫

Ω

fr∇v · T dµ+
1
r

∫
]a,a+r[×]c,d[

(v ⊗ e1) · T dµ

−1
r

∫
]b−r,b[×]c,d[

(v ⊗ e1) · T dµ+ o(r) .

Taking into account (4.2) and the Dominated Convergence Theorem, letting
r → 0+ in (4.3) one gets

〈Tn|∂Ω ,v〉 =
∫

]a,b[

v(·, c)·νc+
∫

]a,b[

v(·, d)·νd+
∫

[c,d]

v(a, ·)·νa+
∫

[c,d]

v(b, ·)·νb

which proves the first formula. The second one can be proved by the same
procedure.

5. Example: the Flamant tensor field

In this last section we apply the above theory to the so called Flamant
tensor field, which is the stress tensor field in an elastic half-plane with a
concentrated load applied perpendicularly to its boundary. Our interest in
this example started with [15] and was further motivated by [16]. Let us also
mention [19, Example 9.2], where a case with similar features was considered,
namely that of a Newtonian force.

We have n = N = 2. If the half-plane is the set H = {(x, y) ∈ R2 : x > 0}
and the load f = fe1 is applied at the origin O of the frame of reference, then
the stress distribution turns out to be the 2× 2 tensor field

T (x, y) = −2f
π

x

(x2 + y2)2

[
x2 xy

xy y2

]
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or, in polar coordinates,

T (ρ, ϑ) = −2f
π

cosϑ
ρ

eρ ⊗ eρ .

In particular, T ∈ L1
loc(H; Sym1).

It is worth noting that T admits a divergence-free extension to all of R2 by
setting

T (x, y) = −2f
π

|x|
(x2 + y2)2

[
x2 xy

xy y2

]
or

T (ρ, ϑ) = −2f
π

| cosϑ|
ρ

eρ ⊗ eρ .

Then again T ∈ L1
loc(R2; Sym1) and one can prove that indeed div T = 0 on

R2 in the sense of distributions.
We will see in a moment that, despite the integrability of T and the regu-

larity of its divergence, the normal trace of T on the boundary of a rectangle
passing through the origin is a singular measure (in the present case, a Dirac
delta).

5.1. Singularity on a side

Let now Ω =]0, b[×]c, d[ with c < 0 and d > 0. We want to prove that T
satisfies i – iii of Theorem 4.2 on Ω. In proving this, it may help to consider
that T admits a potential g (since div T = 0 in the sense of distributions),
indeed

T =


∂g1
∂y

−∂g1
∂x

∂g2
∂y

−∂g2
∂x


where

g =
f

π

[(
− arctan

y

|x|
− |x|y
x2 + y2

)
e1 +

|x|x
x2 + y2

e2

]
∈ L∞(R2; R2) .

Being T a C∞-tensor field outside the origin, it is clear that the only side which
can be tricky is the segment {0}×]c, d[. Moreover, since T is integrable, the
Disintegration Theorem is simply Fubini’s Theorem and λ1 = λ2 = L 1.
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i. One has∫ d

c

|T (x, y)e1| dy =
∫ d

c

∣∣∣∣∂g1∂y
e1 +

∂g2
∂y

e2

∣∣∣∣ dy
6 −

∫ d

c

∂g1
∂y

+
∫ 0

c

∂g2
∂y

dy −
∫ d

0

∂g2
∂y

dy

6 −
(
g1(x, d)− g1(x, c)

)
+
(
g2(x, 0)− g2(x, c)

)
−
(
g2(x, d)− g2(x, 0)

)
which is uniformly bounded in x, whence

lim sup
r→0+

1
r

∫ r

0

∫ d

c

|T (x, y)e1| dy dx < +∞ .

ii. The disintegration is simply Fubini’s Theorem, hence λ(s)
1 = 0 .

iii. For every v ∈ C([c, d]; R2), we have to check that x = 0 is a right
Lebesgue point for the function

x 7→
∫ d

c

v(y) · T (x, y)e1 dy .

Indeed, as noted in Remark 4.2, it is sufficient to consider v ∈ C∞0
(
R; R2

)
. Let

us perform an integration by parts:∫ d

c

v(y) · T (x, y)e1 dy =
∫ d

c

(
∂g1
∂y

v1 +
∂g2
∂y

v2

)
dy

= g1(x, d)v1(d)− g1(x, c)v1(c) + g2(x, d)v2(d)− g2(x, c)v2(c)

−
∫ d

c

(g1v′1 + g2v
′
2) dy .

Since
lim

x→0+
g(x, c) =

f

2
e1 , lim

x→0+
g(x, d) = −f

2
e1 ,

by the Dominated Convergence Theorem one has for the last integral

lim
x→0+

∫ d

c

(g1v′1 + g2v
′
2) dy = lim

x→0+

∫ 0

c

g1v
′
1 dy + lim

x→0+

∫ d

0

g1v
′
1 dy

=
f

2

∫ 0

c

v′1 dy −
f

2

∫ d

0

v′1 dy =
f

2

(
2v1(0)− v1(c)− v1(d)

)
.
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Therefore

lim
x→0+

∫ d

c

v(y) · T (x, y)e1 dy = −f
2

(
v1(d) + v1(c)

)
−f

2

(
2v1(0)− v1(c)− v1(d)

)
= −fv1(0)

and 0 is a right Lebesgue point with Lebesgue value ϕv = −fv1(0).
Finally, from the previous computation one finds that νa = fe1δ0, where

the right-hand side denotes the Dirac measure on [c, d] concentrated in 0.

5.2. Singularity at a vertex

Consider now a rectangle of the form Ω =]0, b[×]0, d[. With the same
computations of the previous subsection, one can prove that also in this case
T satisfies i – iii of Theorem 4.2 on Ω. Let us pay more attention to iii, which
gives us the value of the normal trace. There are now two tricky sides, indeed
{0}×]0, d[ and ]0, b[×{0}. For instance, let us study the first. As above, we
compute for v ∈ C∞0

(
R; R2

)
the limit

lim
x→0+

∫ d

0

v(y) · T (x, y)e1 dy ,

taking into account that

lim
x→0+

g(x, 0) =
f

π
e2 .

This time we find νa =
(

f
2 e1 + f

π e2

)
δ0. Again, the measure concentrates on

the vertex (0, 0), but now it has also a non trivial component along e2.
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