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Abstract. Active materials are media for which deformations can occur in
absence of loads, given an external stimulus. Two approaches to the modeling

of such materials are mainly used in literature, both based on the introduc-
tion of a new tensor: an additive stress Pact in the active stress case and a

multiplicative strain Fa in the active strain one. Aim of this paper is the

comparison between the two approaches on simple shears.
Considering an incompressible and transversely isotropic material, we de-

sign constitutive relations for Pact and Fa so that they produce the same

results for a uniaxial deformation along the symmetry axis. We then study
the two approaches in the case of a simple shear deformation. In a hyperelastic

setting, we show that the two approaches produce different stress components

along a simple shear, unless some necessary conditions on the strain energy
density are fulfilled. However, such conditions are very restrictive and rule

out the usual elastic strain energy functionals. Active stress and active strain

therefore produce different results in shear, even if they both fit uniaxial data.
Our results show that experimental data on the stress-stretch response on

uniaxial deformations are not enough to establish which activation approach
can capture better the mechanics of active materials. We conclude that other

types of deformations, beyond the uniaxial one, should be taken into consid-

eration in the modeling of such materials.

1. Introduction

The main feature of a body made of an active material is the ability of changing
its mechanical properties by an external stimulus (for example an electrical signal
in muscles). During the last decades, many efforts have been made in order to
study the properties of active materials, from smart materials, such as dielectric
elastomers to biological ones, such as muscles and cardiac tissue. Needless to say,
the technological applications of such materials are copious and a good modeling
of biological active tissues can be very helpful to biomedical sciences.

Two different mathematical approaches are largely used in the literature for
modeling activation [2]: in the most popular one, named active stress, an extra
term Pact is added to the stress accounting for the contribution given by the acti-
vation (see for example [15, 3, 11]). On the contrary, the active strain approach,
firstly proposed by Kondaurov and Nikitin [14] and then developed by Taber and
Perucchio [24] in the modeling of cardiac tissue, was inspired by classical ideas in
plasticity and previous theories of growth and morphogenesis; the key ingredient
is a multiplicative decomposition F = FeFa of the deformation gradient, where Fa
is the activation distortion and Fe accounts for the storage of elastic energy [17].
Both approaches have strong motivations: for instance, in the case of muscle tissue
the active stress approach can easily fit to experiments, while the active strain ap-
proach is much more inherent to the mechanism of contraction of sarcomeres, the
so-called sliding filament theory.
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Aim of the present paper is to show that active stress and active strain give
different stress components on a simple shear deformation, even if they make the
same predictions on uniaxial elongations. Our results show that experimental data
on the stress-stretch response on uniaxial deformations are not enough to establish
which activation approach can capture better the activation mechanics. A further
study of other deformations, such as simple shears, would be important in order to
develop a realistic model of an active material.

A comparison between the two approaches has been previously addressed from
other points of view [2, 23, 10]; here we present a broader study in the case of
a general hyperelastic material (Sect. 3) and perform a quantitative analysis in
the case of a fiber-reinforced Mooney-Rivlin material (Sect. 4) and of a material
with an exponential energy typically used in the modeling of skeletal muscle tissue
(Sect. 5). Such a comparison can be very important in the choice of which approach
one should use in the modeling of activation, especially when shear deformations
are involved. In Sect. 3.1 we analyze the special case of fiber-reinforced materials.

Considering a passive material which is hyperelastic, transversely isotropic and
incompressible, we proceed in this way: given a strain energy functional we consider
a constant active strain. We design the active stress so that the predictions coincide
for uniaxial deformations along the material symmetry axis. Then, we compare the
two activation models on a simple shear deformation. It turns out that the stresses
corresponding to the two activation approaches are considerably different, unless
the energy satisfies a very restrictive condition.

In the choice of the form of the active terms we follow the common assumptions
used in the literature about active transversely isotropic materials. Namely, in
the active stress approach we assume Pact to depend only on the stretch in the
direction of anisotropy, whereas in the active strain approach we consider Fa as an
incompressible contraction along that direction.

In Sect. 5 we analyze a more complex energy related to skeletal muscle tissue.
Here the active stress is computed from experimental data along a uniaxial defor-
mation and the active strain depends on the stretch along the muscle fibers. Again,
the two approaches give very different stress components on simple shears. This
has important consequences for the modelling of muscles when deformations other
than the uniaxial extension are involved. For instance, the deformation of a pennate
muscle, where the muscle fibers are attached obliquely to the tendon, is definitely
not a uniaxial deformation along the fibers, and also the cross-fiber simple shear
plays an important role.

Finally, we note that a few other activation approaches are proposed in the
literature, see for instance [4, 12, 20]. In Sect. 6 we discuss one of them which is
typically used for fiber-reinforced materials, where the active strain decomposition is
applied only to the anisotropic part of the elastic energy. We call such an approach
decoupled active strain. Under some mild assumptions, we show that decoupled
active strain is completely equivalent to the addition of an active stress.

2. Hyperelastic activation

The goal of this section is to introduce the active strain and active stress methods
used to model the activation of a material. Before illustrating these approaches, we
stipulate the following general assumptions.

We consider a passive material which is hyperelastic and incompressible with
a strain energy density Wpas(F), where F is the deformation gradient. The first
Piola-Kirchhoff stress tensor writes

(1) Ppas(F) =
∂Wpas

∂F
(F)− pF−T,
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Figure 1. A pictorial representation of the Kröner-Lee decomposition.

where p is a Lagrange multiplier enforcing the incompressibility constraint

J := detF = 1.

Moreover we assume that the material is frame-indifferent and transversely isotropic
with structural tensor m⊗m, where m is the direction of anisotropy in the reference
configuration (for instance, the direction of the fibers in the case of skeletal muscles).
Then, it is well-known that the elastic energy may be formulated as a function of
the following five invariants of the right Cauchy-Green deformation tensor C = FTF:

I1 = trC, I2 =
1

2

(
I21 − trC2

)
, I3 = detC, I4 = m · Cm, I5 = m · C2m.

Concerning activation, we briefly recall the two main approaches.

Active strain: using the so called Kröner-Lee decomposition in the theory of
elastoplasticity (see Fig. 1), we factorize the deformation gradient as

F = FeFa,

where Fa has to be constitutively provided. The tensors Fa and Fe = FF−1a are
named active strain and elastic strain, respectively. Notice that Fa and Fe may
not be the gradients of some deformation. The active strain Fa represents a virtual
distortion of the relaxed configuration due to activation and only the tensor Fe is
responsible for the storing of elastic energy. Then the strain energy density of the
active material is given by

(2) Wstrain(F;Fa) = (detFa)Wpas(FF
−1
a ),

see for instance [14, 24, 17], and the stress tensor writes

(3) Pstrain(F;Fa) = (detFa)Ppas(FF
−1
a )F−Ta ,

where Ppas is given by (1).
In the active strain approach the energy density Wstrain inherits the same math-

ematical properties of Wpas; for instance, the polyconvexity of the latter ensures
the same regularity of the former [18].

In the following sections, we consider an isochoric active strain tensor of the form

(4) Fa = (1− a)m⊗m +
1√

1− a (I−m⊗m), 0 ≤ a < 1.

Such a choice, which is customary in the literature (see for instance [24, 22, 7]),
allows us to obtain the whole tensor Fa by means of a single scalar parameter a,
accounting for the contraction of the material along the symmetry direction m.
In the literature, also the case of a non-isochoric Fa has been considered [1, 17,
6], however such a constitutive choice is less popular and will not be taken into
consideration in this paper.
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Active stress: we additively decompose the total stress as

(5) Pstress(F) = Ppas(F) + Pact(F)

where Pact, to be constitutively provided, is the stress due to the activation (see
for instance [19, 21, 9]).

The formulation given in (5) is quite general. In principle, if we set

Pact(F) = (detFa)Ppas(FF
−1
a )F−Ta − Ppas(F),

then by a suitable choice of the active stress one can recover the active strain ap-
proach. However, in the literature the active stress Pact has to fulfill some modeling
prescriptions, which are often incompatible with such a choice.

In the case of transversely isotropic materials with direction of anisotropy m, it
is usually assumed that Pact depends on F only through the pseudo-invariant

I4 = Fm · Fm

in the following way:

(6) Pact(F) = 2S(
√
I4)Fm⊗m,

where S is a scalar function. One may notice that, according to (6), the non-null
components of Pact are all along Fm ⊗m while in the active strain approach all
the components are involved.

Denoting by Wact a primitive function of S, one has that

(7) Pstress =
∂Wpas

∂F
(F) +

W ′act(
√
I4)√

I4
Fm⊗m− pstressF−T.

Remark 1. It is important to note that Wact should not be physically interpreted
as a strain energy density, but only as a primitive function of the active stress. In
any case, from a mathematical viewpoint one can define

(8) Wstress(F) = Wpas(F) +Wact(
√
I4).

The function Wact can affect the mathematical properties of the total energy, as
discussed for instance in [21]. The polyconvexity or the rank-one convexity of the
total energy are no more ensured, even if Wpas is convex.

In the next sections we compare the two activation approaches, namely active
strain and active stress. We focus on two families of homogeneous deformations:
the uniaxial deformation along the direction of anisotropy m and the simple shear
orthogonal to m. Such a shear modifies the elongation of the body in the direction
of anisotropy, so that it allows us to point at differences between the two approaches.

Specifically, we consider the uniaxial incompressible deformation gradient

(9) Fλ = λm⊗m +
1√
λ

(I−m⊗m),

and, given a direction n orthogonal to m, the simple shear deformation whose
gradient is given by

(10) FK = I +Kn⊗m,

where K is the amount of shear (Fig. 2). Notice that in the first case the stretch
along the preferred direction m is given by λ, while in the simple shear it is given
by
√

1 +K2.
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Figure 2. Pictorial representation in the plane of m,n of the
simple shear (10).

3. Comparing active stress and active strain on a simple shear

In this section we consider an active strain Fa of the form (4) and an active
stress Pa of the form (6). Starting from the same passive elastic energy density
and imposing that the two activation approaches coincide on uniaxial deformations
along the direction of anisotropy, we will compare them on a simple shear.

We consider a homogeneous elastic strain energy density for a transversely isotro-
pic incompressible material of the form

W (I1, I2, I4, I5).

Then we study the response of the two activation approaches on the uniaxial de-
formation Fλ (9) and on the simple shear FK (10), while we denote:

Fλe = FλF
−1
a , FKe = FKF−1a .

Moreover, let us introduce the notation

Ce = FT
e Fe, Cλ = FT

λFλ, Cλe = FT
λeFλe,

CK = FT
KFK , CKe = FT

KeFKe.

Then, by (2) and recalling that detFa = 1, the energy density of the material
activated with the active strain approach is given by

(11) Wstrain = W
(
I1(Cλe), I2(Cλe), I4(Cλe), I5(Cλe)

)
.

On the other hand, by (8) the energy density of the material activated with the
active stress approach has the form

(12) Wstress = W
(
I1(Cλ), I2(Cλ), I4(Cλ), I5(Cλ)

)
+Wact

(√
I4(Cλ)

)
.

Now we want to find Wact such that the two energy densities (11) and (12)
coincide on the deformation Fλ for any λ and any given value of the activation
parameter a. Hence we have to choose

(13) Wact(λ; a) = W
(
I1(Cλe), I2(Cλe), I4(Cλe), I5(Cλe)

)
−W

(
I1(Cλ), I2(Cλ), I4(Cλ), I5(Cλ)

)
,

where we pointed out the dependence of Wact on the amount of stretch and on the
activation parameter.
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For a general deformation F, the elastic energy density corresponding to the ac-
tive strain model will be directly computed using W (I1(Ce), I2(Ce), I4(Ce), I5(Ce)).
On the contrary, the elastic energy density corresponding to the active stress model
will be given by

W (I1, I2, I4, I5) +Wact(
√
I4; a),

where the function Wact is given in (13).

We now consider the simple shear deformation FK given by (10). In this case

we have
√
I4(CK) =

√
1 +K2 and

I1(CKe) =
1 + K2

(1− a)2
+ 2(1− a), I2(CKe) =

2 + K2

1− a
+ (1− a)2,

I4(CKe) =
1 + K2

(1− a)2
, I5(CKe) =

(1 + K2)2

(1− a)4
+

K2

1− a
,

I1(CK) = 3 + K2, I2(CK) = 3 + K2,

I4(CK) = 1 + K2, I5(CK) = K2 + (1 + K2)2,

I1(Cλe) =
1 + K2

(1− a)2
+ 2

1− a
√

1 + K2
, I2(Cλe) =

(1− a)2

1 + K2
+ 2

√
1 + K2

1− a
,

I4(Cλe) =
1 + K2

(1− a)2
, I5(Cλe) =

(1 + K2)2

(1− a)4
,

I1(Cλ) = 1 + K2 +
2

√
1 + K2

, I2(Cλ) =
1

1 + K2
+ 2
√

1 + K2,

I4(Cλ) = 1 + K2, I5(Cλ) = (1 + K2)2.

Imposing that active strain and active stress have the same energy density (and
hence the same stress tensor field) both on every uniaxial deformation Fλ and every
simple shear FK , then

W
(
I1(CKe), I2(CKe), I4(CKe), I5(CKe)

)
= W (I1(CK), I2(CK), I4(CK), I5(CK)) +Wact(

√
1 +K2; a),

where the function Wact is given in (13).
Hence for every 0 ≤ a < 1 and K ≥ 0 one has

W

(
1 +K2

(1− a)2
+ 2(1− a),

2 +K2

1− a + (1− a)2,
1 +K2

(1− a)2
,

(1 +K2)2

(1− a)4
+

K2

1− a

)
−W

(
1 +K2

(1− a)2
+ 2

1− a√
1 +K2

,
(1− a)2

1 +K2
+ 2

√
1 +K2

1− a ,
1 +K2

(1− a)2
,

(1 +K2)2

(1− a)4

)
=W

(
3 +K2, 3 +K2, 1 +K2,K2 + (1 +K2)2

)
−W

(
1 +K2 +

2√
1 +K2

,
1

1 +K2
+ 2
√

1 +K2, 1 +K2, (1 +K2)2
)
.

Setting for convenience 1 +K2 = `2 and 1
1−a = x, the equation becomes

(14)

W

(
`2x2 +

2

x
, (1 + `2)x+

1

x2
, `2x2, `4x4 + (`2 − 1)x

)
−W

(
`2x2 +

2

`x
,

1

`2x2
+ 2`x, `2x2, `4x4

)
=W

(
2 + `2, 2 + `2, `2, `4 + `2 − 1

)
−W

(
`2 +

2

`
,

1

`2
+ 2`, `2, `4

)
.
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Differentiating w.r.t. ` and letting `→ 1 one gets

∂W

∂I1

(
x2 +

2

x
,

1

x2
+ 2x, x2, x4

)
+

1

x

∂W

∂I2

(
x2 +

2

x
,

1

x2
+ 2x, x2, x4

)
+x2

∂W

∂I5

(
x2 +

2

x
,

1

x2
+ 2x, x2, x4

)
= x

(
∂W

∂I1
(3, 3, 1, 1) +

∂W

∂I2
(3, 3, 1, 1) +

∂W

∂I5
(3, 3, 1, 1)

)
.

On the other hand, differentiating w.r.t. x and letting x→ 1 one gets

2(`2 − 1)`2
∂W

∂I1

(
2 + `2, 2 + `2, `2, `4 + `2 − 1

)
+(`2 − 1)`2

∂W

∂I2

(
2 + `2, 2 + `2, `2, `4 + `2 − 1

)
+2`4

∂W

∂I4

(
2 + `2, 2 + `2, `2, `4 + `2 − 1

)
+`2(4`4 + `2 − 1)

∂W

∂I5

(
2 + `2, 2 + `2, `2, `4 + `2 − 1

)
= 2`(`3 − 1)

∂W

∂I1

(
`2 +

2

`
,

1

`2
+ 2`, `2, `4

)
+2(`3 − 1)

∂W

∂I2

(
`2 +

2

`
,

1

`2
+ 2`, `2, `4

)
+2`4

∂W

∂I4

(
`2 +

2

`
,

1

`2
+ 2`, `2, `4

)
+4`6

∂W

∂I5

(
`2 +

2

`
,

1

`2
+ 2`, `2, `4

)
.

By taking the mixed second derivative of (14) and letting both x→ 1 and `→ 1,
one gets

∂W

∂I1
(3, 3, 1, 1) + 2

∂W

∂I2
(3, 3, 1, 1)− ∂W

∂I5
(3, 3, 1, 1)

= 2
∂2W

∂I1I4
(3, 3, 1, 1) + 4

∂2W

∂I1I5
(3, 3, 1, 1) + 2

∂2W

∂I2I4
(3, 3, 1, 1)

+ 4
∂2W

∂I2I5
(3, 3, 1, 1) + 2

∂2W

∂I4I5
(3, 3, 1, 1) + 4

∂2W

∂I25
(3, 3, 1, 1)

which gives a very particular relation for the elastic moduli in the identity. For
instance, imposing the previous condition on the energy density (27) considered in
Sect. 5, which depends also on I5, we get the necessary condition

2(α+ 2β)w2
0 − (2α+ 10β + 3)w0 + 6(β + 1) = 0

which holds only for very special values of the constitutive parameters.
Even if we drop out the dependence of the energy on I5, as we will do in the

sequel, from (14) we have

(15) W

(
`2x2 +

2

x
, (1 + `2)x+

1

x2
, `2x2

)
−W

(
`2x2 +

2

`x
,

1

`2x2
+ 2`x, `2x2

)
= W

(
2 + `2, 2 + `2, `2

)
−W

(
`2 +

2

`
,

1

`2
+ 2`, `2

)
,
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for every x ≥ 1 and ` ≥ 1.
Condition (15) results to be very restrictive and rules out any typical energy

density used for elastic materials. Indeed, the only elastic energy density that we
have found to satisfy the equivalence between active stress and active strain both
on Fλ and on FK is

W (I1, I4) = cI1
√
I4 + f(I4).

In such a case, eq. (15) is satisfied for any x, ` ≥ 1. However, that energy has a very
particular form and we are not aware of any model of nonlinear elasticity where it
is used.

3.1. The fiber-reinforced case. Among the transversely isotropic media, an im-
portant role is played by the so-called fiber-reinforced materials, for which the strain
energy density splits as a sum of isotropic and anisotropic contributions. For the
sake of simplicity, we will assume that the anisotropic term does not depend on I5,
so that

W = Wiso(I1, I2) +Waniso(I4).

Then (15) becomes

(16) Wiso

(
`2x2 +

2

x
, (1 + `2)x+

1

x2

)
−Wiso

(
`2x2 +

2

`x
,

1

`2x2
+ 2`x

)
= Wiso

(
2 + `2, 2 + `2

)
−Wiso

(
`2 +

2

`
,

1

`2
+ 2`

)
,

for every x ≥ 1 and ` ≥ 1.
Differentiating w.r.t. ` and letting ` = 1 one gets

(17)
∂Wiso

∂I1

(
x2 +

2

x
,

1

x2
+ 2x

)
+

1

x

∂Wiso

∂I2

(
x2 +

2

x
,

1

x2
+ 2x

)
= x

(
∂Wiso

∂I1
(3, 3) +

∂Wiso

∂I2
(3, 3)

)
.

On the other hand, differentiating w.r.t. x and letting x = 1 one gets

(18) 2(`2 − 1)`2
∂Wiso

∂I1

(
2 + `2, 2 + `2

)
+ (`2 − 1)`2

∂Wiso

∂I2

(
2 + `2, 2 + `2

)
= 2`(`3 − 1)

∂Wiso

∂I1

(
`2 +

2

`
,

1

`2
+ 2`

)
+ 2(`3 − 1)

∂Wiso

∂I2

(
`2 +

2

`
,

1

`2
+ 2`

)
.

By taking the mixed (second) derivative of (15) and letting both x = 1 and ` = 1,
one gets

(19)
∂Wiso

∂I1
(3, 3) + 2

∂Wiso

∂I2
(3, 3) = 0.

Eqs. (17)–(19) represent some necessary conditions for the passive energy density
W in order to produce the same results with the two activation approaches on
uniaxial deformations and on simple shears. Eq. (17) is notably severe: a particular
combination of the two partial derivatives of the energy has to be constant for any
x. For instance, in the case of fiber-reinforced Mooney-Rivlin materials, where

W (I1, I2, I4) = c1(I1 − 3) + c2(I2 − 3) + f(I4),

it follows immediately from (17) that

c1 +
c2
x

= x(c1 + c2) ⇒ c2
c1 + c2

= −x for any x ≥ 1,

which is impossible. Hence, in the case of a fiber-reinforced Mooney-Rivlin material
active stress and active strain are never equivalent.



COMPARISON BETWEEN ACTIVE STRAIN AND ACTIVE STRESS 9

Also the important case where Wiso depends only on I1 is always ruled out, since
condition (19) becomes W ′iso(3) = 0 and by (17) we get

W ′iso(I1) = 0 for any I1 ≥ 3,

whence Wiso is a constant.
Coming back to the general fiber-reinforced case, we can also take the third

derivative of (16), twice w.r.t. ` and once w.r.t. x. Letting x = ` = 1 we get the
relation

(20) 2
∂Wiso

∂I1
(3, 3) + 7

∂Wiso

∂I2
(3, 3) + 8

∂2Wiso

∂I21
(3, 3)

+ 12
∂2Wiso

∂I1∂I2
(3, 3) + 4

∂2Wiso

∂I22
(3, 3) = 0.

On the other hand, taking the third derivative twice w.r.t. x and once w.r.t. ` and
letting x = ` = 1 we get

(21)
∂Wiso

∂I1
(3, 3) + 3

∂Wiso

∂I2
(3, 3) + 3

∂2Wiso

∂I21
(3, 3)

+ 6
∂2Wiso

∂I1∂I2
(3, 3) + 3

∂2Wiso

∂I22
(3, 3) = 0.

By combining (19), (20) and (21) we get the following necessary condition in-
volving the second derivatives of the isotropic part of the energy density in the
identity deformation:

(22)
∂2Wiso

∂I21
(3, 3) + 6

∂2Wiso

∂I1∂I2
(3, 3) + 5

∂2Wiso

∂I22
(3, 3) = 0.

For instance, isotropic energy densities of the kind

Wiso(I1, I2) = c1(I1 − 3)2 + c12(I1 − 3)(I2 − 3) + c2(I2 − 3)2

satisfy the last condition only for a very particular choice of the elastic moduli.

4. A quantitative example

In this section we highlight that the differences between the two activation ap-
proaches can be considerable, even if the passive energy is quite simple, as in the
case of a Mooney-Rivlin material with a transversely isotropic reinforcing term:

(23) Wpas(F) = c1(I1 − 3) + c2(I2 − 3) + c3(
√
I4 − 1)2.

Sect. 5 will be devoted to a more refined energy which is commonly used for mod-
eling skeletal muscle tissue.

Let us assume an active strain of the form (4) and deduce the corresponding ac-
tive part of the energy Wact which gives the same stress on the uniaxial deformation
Fλ (9). The energy density of the active strain approach is

Wstrain(λ; a) = Wpas(FλF
−1
a )

= c1

(
λ2

(1− a)2
+

2(1− a)

λ
− 3

)
+ c2

(
(1− a)2

λ2
+

2λ

1− a − 3

)
+ c3

(
λ

1− a − 1

)2

,
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Figure 3. On the left: stress-stretch relation obtained on the
uniaxial deformation along the direction of anisotropy. On the
right: active part of the stress.

and the passive part is given by Wpas(λ) = Wstrain(λ; 0). As in the previous section,
recalling that Wstress = Wpas +Wact, the function Wact such that the two energies
coincide on the deformation Fλ is

(24) Wact(λ; a) = Wstrain(λ; a)−Wstrain(λ; 0)

= a

[
c1

(
2− a

(1− a)2
λ2 − 2

λ

)
+ c2

(
2

1− aλ−
2− a
λ2

)
+ c3

λ

1− a

(
2− a
1− aλ− 2

)]
.

Fig. 3 shows the profile of the stress and of its active part along the uniaxial
deformations for several values of the activation parameter a. From now on we fix
c1 = 4kPa, c2 = 20kPa, c3 = 40kPa. Denoting by Pmm and Pmmact the components
along m⊗m of the total and active stress, respectively, one can see that Pmm and
Pmmact increase, as the parameter a increases.

On a general deformation F, the stresses corresponding to the active strain and
the active stress models will be directly computed using (3) and (7), respectively.
Taking into account incompressibility, we have

Pstrain =

(
2c1Fe + 2c2(I1(Ce)Fe − FeF

T
eFe) + 2c3(

√
I4(Ce)− 1)

1√
I4(Ce)

Fem⊗m

)
F−T
a

− pstrainF
−T,

Pstress =2c1F + 2c2(I1F− FFTF) + 2c3(
√

I4 − 1)
1
√
I4

Fm⊗m +
W ′act(

√
I4)

√
I4

Fm⊗m

− pstressF
−T.

Let us analyze the response of the two approaches on the simple shear FK given
by (10). We will follow the classical assumption of plane stress in order to find the
unknown pressure fields pstrain and pstress, that is P ssstrain = 0 and P ssstress = 0, where
s = m× n. Another possibility, which will not be taken into consideration in this
paper, is to assume zero normal traction on the inclined faces; for a discussion, see
[13].



COMPARISON BETWEEN ACTIVE STRAIN AND ACTIVE STRESS 11

The non-vanishing components of the stresses are given by
(25)

Pmmstrain =2c1

(
1

(1− a)2
− (1− a)

)
+ 2c2

(
1−K2

1− a
− (1− a)2

)
+

2c3

1− a

(
1

1− a
−

1
√

1 + K2

)
,

Pmmstress =2c1a

(
2− a

(1− a)2
+

1

(1 + K2)3/2

)
+ 2c2

(
a(2− a)

(1 + K2)2
+

a

(1− a)
√

1 + K2
−K2

)

+
2c3

1− a

(
1

1− a
−

1
√

1 + K2

)
,

Pmnstrain =2c1K(1− a) + 2c2K

(
K2

1− a
+ (1− a)2

)
,

Pmnstress =2K
(
c1 + c2(1 + K2)

)
= Pmnpas ,

Pnmstrain =2c1
K

(1− a)2
+ 2c2

K

1− a
+ 2c3

K

(1− a)

(
1

1− a
−

1
√

1 + K2

)
,

Pnmstress =2c1K

(
1

(1− a)2
+

a

(1 + K2)3/2

)
+ 2c2K

(
1 +

a(2− a)

(1 + K2)2
+

a

(1− a)
√

1 + K2

)

+ 2c3
K

1− a

(
1

1− a
−

1
√

1 + K2

)
,

Pnnstrain =− 2c2
K2

1− a
,

Pnnstress =− 2c2K
2 = Pnnpas.

In Fig. 4 we plot such components with respect to the amount of shear K, both
in the case of active strain and of active stress. As one can see, even if the two
activation approaches produce the same stress tensor on uniaxial deformations along
the direction of anisotropy, the stresses are different on the simple shear FK . The
dependence of the differences between Pstress and Pstrain on the activation parameter
a is showed in Fig. 5: such a difference is more evident when a increases. As we
have already noticed, the active part of Pstress lies along FKm⊗m, so that Pmnstress

and Pnnstress in (25) do not depend on a. Hence the plots on the right in Fig. 5
represent the differences between Ppas and Pstrain along m⊗ n and n⊗ n.

5. A more complex energy related to skeletal muscle tissue

As an important example, we now consider the case of the activation of a skeletal
muscle tissue, for which there are several experimental data on uniaxial deforma-
tions. In this case it is easier to measure the active stress Pact than the active
strain Fa: indeed, the components of the active stress can be obtained by comput-
ing the difference between the data collected in the active and passive case, see for
instance [26, 8]. Hence, differently from the previous sections, we start from a given
active stress and find a suitable active strain that produces the same results in the
uniaxial deformations along the direction of anisotropy.

As far as the passive energy and the active stress are concerned, we will follow the
model given in [4], while the active strain will be modeled as in [7]. We will compare
the stress components along a cross-fiber simple shear obtained by exploiting the
two activation approaches.

The typical active stress-stretch curve reaches a maximum point at λopt and
then decreases for larger values of λ, see for instance [8] for the tetanized tibialis
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Figure 4. Comparison between the stress components of the two
activation approaches when a = 0.3.
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Figure 6. Plot of (26) together with the representation of the
experimental data given in [8].

anterior of a rat. Following [4], we assume that the active part of the stress is

(26) Pmmact (λ) =


Popt

λmin − λ
λmin − λopt

e
(2λmin−λ−λopt)(λ−λopt)

2(λmin−λopt)2 if λ > λmin,

0 otherwise,

where λmin is the minimum stretch value after which the activation starts, while
(λopt, Popt) identifies the maximum of the curve. According to [4], we set λmin =
0.682, λopt = 1.192, Popt = 73.52kPa. Fig. 6 shows that the curve fits quite well
the active data obtained in [8].

Since (26) represents the component of Pact along Fm⊗m, for the active stress
case it is enough to compute a primitive function in order to write the energy
density Wact. Denoting by

√
I4 the stretch along the direction of anisotropy m in

a general deformation, we have

Wact(
√
I4) =

Popt(λmin − λopt)

(
e

(2λmin−
√
I4−λopt)(

√
I4−λopt)

2(λmin−λopt)2 − e1/2
)

if λ > λmin,

0 otherwise.

Notice that the experimental data show that the active part of the stress is not
monotone, hence the corresponding total strain energy can lose the rank-one con-
vexity.

As far as the passive part is concerned, following again the model given in [4]
and [7], we use the exponential strain energy density function

(27) Wmuscle
pas =

µ

4

{
1

α

[
eα(Ip−1) − 1

]
+

1

β

[
eβ(Kp−1) − 1

]}
,

where

Ip =
w0

3
tr(C) + (1− w0) tr(Cm⊗m),

Kp =
w0

3
tr(C−1) + (1− w0) tr(C−1m⊗m)
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Figure 7. Plot of the function a(λ) solution of (29).

(here m is the direction of the muscular fibers). Notice that in the incompressible
case Ip and Kp can be expressed in terms of the usual invariants as

Ip =
w0

3
I1 + (1− w0)I4, Kp =

w0

3
I2 + (1− w0)(I5 − I1I4 + I2).

The material parameters α = 19.69, β = 1.190, w0 = 0.7388 and µ = 0.1599kPa
given in [4] are obtained from the passive data about the tibialis anterior of a rat
[8]; in particular, w0 measures the amount of anisotropy of the material.

Now that the active stress and the passive energy have been chosen, we want to
find a suitable active strain which gives the same results on uniaxial deformations.
The issue is subtle because we cannot assume that Fa is constant. Indeed one can
see that a constant active strain cannot fit at all the experimental data. To address
this problem we will assume that Fa depends on the deformation gradient F, see
also [4, 6, 7, 5, 25]. Such an approach, which is a generalization of the active strain,
is crucial in the applications to skeletal muscle: it allows to capture the physics
of a muscle, in which the stress produced when the tissue is activated depends on
strain. In this case the mathematical properties of Wstrain can change considerably
and Fa does not represent anymore the local distortion of the material that maps
the reference configuration to the relaxed one. Moreover, the expression of the
stress tensor is much more involved, see [7]:
(28)

Phkstrain(F) =
∂Wstrain

∂Fhk
(F;Fa(F)) +

∂Wstrain

∂F ija
(F;Fa(F))

∂F ija
∂Fhk

(F)− pstrain(F−T)hk,

with h, k = 1, 2, 3.
Given an active strain Fa as in (4), we assume that the activation parameter a

depends on the stretch of the fibers. Along the uniaxial deformation Fλ (9) we have
that a is a function of λ. Imposing that the energies of the active stress and of the
active strain formulation coincide on Fλ, we look for a(λ) such that

(29) Wstrain(λ; a(λ)) = Wmuscle
pas (λ) +Wact(λ).

Since the parameter a accounts for a contraction, we recall that 0 ≤ a(λ) < 1.
Eq. (29) admits the solution a(λ) = 0 whenever Wact(λ) = 0, but in general it is
too complicated to solve analytically. In Fig. 7 we plot a numerical approximation
of the solution a(λ): the function is discontinuous at λmin and vanishes as λ→ +∞.
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Figure 8. Comparison between the stress components of the two
activation approaches in the case of energy (27), Sect. 5. Here we
considered only values of K up to 0.6, which is the physiological
range for a skeletal muscle tissue.

Now that the two approaches give the same stress along the uniaxial deformations
Fλ, let us consider the simple shear FK (10). Assuming as in the previous section
that P ssstrain = 0 and P ssstress = 0, where s = m × n, we can find the Lagrange
multipliers related to the incompressibility constraint. Also in this case we have
that active stress and active strain do not produce the same stress on a simple
shear. The non-vanishing components of the stresses along the simple shear (10)
are showed in Fig. 8. We notice that the exponential form of the energy amplifies
the differences between the two activation approaches, as already remarked in [23].

6. Decoupled active strain approach

Active stress and active strain are by far the two most used methods in the
continuum modeling of activation, at least for biological tissues; however, other
approaches can be found in the literature. In this brief section we study one of
them, which is a sort of active strain applied only to a part of the energy [12, 20].
We will see that such an approach is equivalent to an active strain.

Let us consider a passive energy of the form

Wpas = W (F) +Waniso(I4)

(for instance, if W is assumed to be isotropic, we get the fiber-reinforced materials
introduced in Sect. 3.1). Now apply the Kröner-Lee decomposition only to Waniso,
so that the energy of the active material is given by

Wdecoup = W (F) + (detFa)Waniso(I4(Ce)).



16 GIULIA GIANTESIO, ALESSANDRO MUSESTI AND DAVIDE RICCOBELLI

We name decoupled active strain such an approach. Notice that in the full active
strain method one should compute also W on the elastic part Fe = FF−1a , as in (2).

Let us assume that Fa can depend on the deformation gradient F only through
the invariant I4 and that m is an eigenvector of Fa (for instance, if a is a function
only of I4, the active strain (4) satisfies the two assumptions). Then we claim that

the decoupled active strain is completely equivalent to an active stress approach.

Indeed, we prove that there exists a suitable energy density Wact(
√
I4) such that

Wstress = Wpas +Wact = Wdecoup

on every deformation. Hence, the two methods produce the same stress even in the
case of simple shear.

Indeed, the two energies coincide if

(30) Wact(
√
I4) = Waniso(I4(Ce))−Waniso(I4),

but in general the quantity I4(Ce) depends on the whole F and not only on I4.
However, in the case when m is an eigenvector of Fa, it is easy to verify that

I4(Ce) =
I4

I4(Ca)
,

where Ca = FT
aFa. Moreover, we assumed that Fa is a function only of I4, hence (30)

is a good definition for Wact(
√
I4). Then, active stress and decoupled active strain

give the same stress on every deformation.

7. Conclusions

The present paper shows that the two main approaches to activation in Contin-
uum Mechanics, namely active strain and active stress, give different results on a
simple shear deformation even if they exploit the same passive energy and coincide
in the active case on uniaxial deformations along the anisotropy direction.

We have assumed that the passive material is transversely isotropic and incom-
pressible. Following the most widespread constitutive prescriptions in the literature,
we have constitutively prescribed either the active strain tensor Fa or the active
stress tensor Pact. In the first case, we have assumed that the active strain is iso-
choric. We have found a difference between the two activation models also in the
case of a compressible active strain, namely when detFa 6= 1, even if the results are
not reported here.

In Sect. 3 we have considered a hyperelastic material which is transversely
isotropic and incompressible, with a strain energy density of the formW (I1, I2, I4, I5).
Given an active strain model with a constant incompressible activation, the active
stress approach has been set up to show the same behaviour on uniaxial deforma-
tions. We have then tested the response of the active material on a shear defor-
mation. The two activation approaches coincide if and only if the very restrictive
condition (15) holds; moreover, we have showed that the typical energy densities
used in nonlinear elasticity, such as the fiber-reinforced Mooney-Rivlin energy, do
not satisfy the condition.

A quantitative comparison of the two activation approaches on the simple shear
has been carried out in Sect. 4 and Sect. 5. In the former we have considered a
fiber-reinforced Mooney-Rivlin material with an isochoric active strain, while the
latter dealt with an energy which is typically used for the skeletal muscle tissue
and where the active stress on the uniaxial deformation comes from experimental
data. Here an active strain which depends on the deformation had to be taken into
account. In all the cases, it is found that the two activation models do not coincide
on a simple shear deformation.
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In Sect. 6 we have discussed a slightly different approach to active strain, some-
times used in the biomechanical literature related to muscles, which we have named
decoupled active strain. It turns out that it is completely equivalent to the active
stress, at least if the anisotropic part of the energy depends only on I4.

Our results may be useful in developing new models of anisotropic active materi-
als: indeed, from Figs. 4, 5, 8, it is clear that experimental data on the stress-stretch
response on uniaxial deformations are not enough to characterize the behavior of
the active material. In order to construct a more realistic model, reliable on other
classes of deformation, it is necessary to perform further experiments, for example
on simple shears. Notice that there are a few experimental works considering defor-
mation modes other than the uniaxial traction but, as far as we know, they study
only the passive case (see for instance [16]).
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