
Chapter 1
A continuum model of skeletal muscle tissue
with loss of activation

Giulia Giantesio and Alessandro Musesti

Abstract We present a continuum model for the mechanical behavior of the skele-
tal muscle tissue when its functionality is reduced due to aging. The loss of ability
of activating is typical of the geriatric syndrome called sarcopenia. The material is
described by a hyperelastic, polyconvex, transverse isotropic strain energy function.
The three material parameters appearing in the energy are fitted by least square op-
timization on experimental data, while incompressibility is assumed through a La-
grange multiplier representing the hydrostatic pressure. The activation of the mus-
cle fibers, which is related to the contraction of the sarcomere, is modeled by the
so called active strain approach. The loss of performance of an elder muscle is then
obtained by lowering of some percentage the active part of the stress. The model
is implemented numerically and the obtained results are discussed and graphically
represented.

1.1 Introduction

Skeletal muscle tissue is one of the main components of the human body, being
about 40% of its total mass. Its principal role is the production of force, which
supports the body and becomes movement by acting on bones. The mechanism by
which a muscle produces force is called activation.

Skeletal muscle tissue is a highly ordered hierarchical structure. The cells of the
tissue are the muscular fibers, having a length up to several centimeters; they are or-
ganized in fascicles, where every fiber is multiply connected to nerve axons, which
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drive the activation of the tissue. Connective tissue, which is essentially isotropic,
fills the spaces among the fibers. Every fiber contains a concatenation of millions of
sarcomeres, which are the fundamental unit of the muscle. With a length of some mi-
crometers, a sarcomere is composed by chains of proteins, mainly actin and myosin,
which can slide on each other. This sliding movement produces the contraction of
the sarcomere and, ultimately, the contraction of the whole muscle and the produc-
tion of force and movement.

The aim of this Chapter is to propose a mathematical model of skeletal muscle
tissue with a reduced activation, which is typical of a geriatric syndrome named
sarcopenia [16]. About thirty years ago, the term sarcopenia (from Greek sarx or
flesh and penia or loss) has been introduced in order to describe the age-related
decrease of muscle mass and performance. Sarcopenia has since then been defined
as the loss of skeletal muscle mass and strength that occurs with advancing age,
which in turn affects balance, gait and overall ability to perform even the simple
tasks of daily living such as rising from a chair or climbing steps. According to [6],
sarcopenia affects more than 50 millions people today and it will affect more than
200 millions in the next 40 years. There is still no generally accepted test for its
diagnosis and many efforts are made nowadays by the medical community to better
understand this syndrome. Therefore it is desirable to build a mathematical model of
muscle tissue affected by sarcopenia. However, to the best of our knowledge, in the
biomathematical literature the topic of loss of activation has never been addressed.

In order to use the valuable tools of Continuum Mechanics, during the last
decades the skeletal muscle tissue has been often modeled as a continuum material
[7, 11, 4, 5], which is usually assumed to be transversely isotropic and incompress-
ible. The former assumption is motivated by the alignment of the muscular fibers,
while the latter is ensured by the high water content of the tissue (about 75% of the
total volume). Moreover, in view of some experimental tests, the material is assumed
to be nonlinear and viscoelastic. Focusing our attention only on the steady proper-
ties of the tissue, here we neglect the viscous effects and we set in the framework of
hyperelasticity.

In the model that we propose, there are three constitutive prescriptions: one for
the hyperelastic energy when the tissue is not active (passive energy), one for the ac-
tivation and one for the loss of performance. As far as the passive part is concerned,
we assume an exponential stress response of the material, which is customary in bi-
ological tissues. The particular form that we choose, being a slight simplification of
the one proposed in [7], has the advantage of being polyconvex and coercive, giving
mathematical soundness to the model and stability to the numerical simulations.

A recent and very promising way to describe the activation is the active strain
approach, where the extra energy produced by the activation mechanism is encoded
in a multiplicative decomposition of the deformation gradient in an elastic and an
active part (see Section 1.2.2). Unlike the classical active stress approach, in which
the active part of the stress is modeled in a pure phenomenological way and a new
term has to be added to the passive energy, the active strain method does not change
the form of the elastic energy, keeping in particular all its mathematical proper-
ties. Moreover, at least in the case of skeletal muscles, the active strain approach
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seems to be more adherent to the physiology of the tissue, in the sense that at the
molecular level the production of force is actually given by a deformation of the
material, thanks to the contraction of the sarcomeres. The active part of the defor-
mation gradient is a mathematical representation of such a contraction. The multi-
plicative decomposition of the deformation gradient has been applied to an active
striated muscle in [18, 12]. However, this decomposition involves only a part of the
whole elastic energy, which is written as the sum of two terms for the case of a
fiber-reinforced material. As far as we know, the active strain approach has never
been previously applied to the whole elastic energy of a skeletal muscle tissue. As a
drawback, the active strain approach can be a source of some technical difficulties;
for instance, in our case fitting the model on the experimental data is not so simple,
see eq. (1.13).

Furthermore, we consider the loss of performance, which is one of the novelties
of our model. Unfortunately, there are no experimental data on the elastic properties
of a sarcopenic muscle tissue, at least to our knowledge; hence we adopt the naive
strategy of reducing the active part of the stress (which is the difference between
the stress of the material with and without activation) by a given percentage, repre-
sented by the damage parameter d (see Section 1.3.2). In this way, there is a single
parameter in the model which concisely accounts for any effect of the disease.

The proposed model can be numerically implemented using finite element meth-
ods. In Section 1.4 we present some results obtained using FEniCS, an open source
collection of Python libraries. Actually, we consider a cylindrical geometry with
radial symmetry, so that the numerical domain is two-dimensional and the com-
putational cost is reduced. As far as the boundary conditions are concerned, we
prescribe the displacement on the bases of the cylinder and let the lateral surface
traction-free. Such simulations show that the experimental results of [10] on the
passive and active stress-strain healthy curves, obtained in vivo from a tetanized tib-
ialis anterior of a rat, can be well reproduced by our model. Further, the behavior of
the tissue when d increases is analyzed. An ongoing task is to perform a finite ele-
ment implementation of the model when generic loads are applied, and to consider a
realistic three-dimensional muscle mesh. We are now developing a truly hyperelas-
tic model, where the expression of the stress takes into account also the dependence
of the activation on the deformation gradient. Actually, in this chapter the stress is
computed as the derivative of the hyperelastic energy keeping the active part of the
deformation gradient fixed.

In the future, it will be very interesting to find some connections between the
damage percentage (the parameter d) and other physiological quantities, such as the
mass of the muscular tissue or the neuronal activity. Another important topic will be
the application of some homogenization techniques in order to deduce an improved
constitutive equation for the skeletal muscle starting from its microstructure.
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1.2 Constitutive model

Skeletal muscle tissue is characterized by densely packed muscle fibers, which are
arranged in fascicles. Filling the spaces between the fibers and fascicles, connective
tissue surrounds the muscle and it is responsible of the elastic recoil of the muscle
to elongation. Besides a large amount of water, the fibers themselves contain titin,
actin and myosin filaments. The latter two sliding elements form the actual contrac-
tile component of the muscle, which is called sarcomere. Since the fibers locally
follow a predominant unidirectional alignment, transverse isotropy with respect to
that main direction can be assumed. We hence begin by modelling the skeletal mus-
cle tissue as a transversely isotropic nonlinear hyperelastic material with principal
direction m, which follows the alignment of the muscle fibers.

1.2.1 Passive model

Let F denote the deformation gradient tensor, C = FTF the right Cauchy-Green
tensor and M = m⊗m the so called structural tensor. If Ω denotes the reference
configuration occupied by the muscle, we describe its passive behavior by choosing
a hyperelastic strain energy function∫

Ω

W (C)dV,

where the strain energy density is of the form

W (C) =
µ

4

{
1
α

[
eα(Ip−1)−1

]
+Kp−1

}
, (1.1)

with

Ip =
w0

3
tr(C)+(1−w0) tr(CM), Kp =

w0

3
tr(C−1)+(1−w0) tr(C−1M).

Here µ is an elastic parameter and α and w0 are positive dimensionless material pa-
rameters. The generalized invariants Ip and Kp are given by a weighted combination
of the isotropic and anisotropic components; in particular, w0 measures the ratio of
isotropic tissue constituents and 1−w0 that of muscle fibers. Moreover, the term
tr(CM) represents the squared stretch in the direction of the muscle fiber and is thus
associated with longitudinal fiber properties, while the term tr(C−1M) describes the
change of the squared cross-sectional area of a surface element which is normal
to the direction m in the reference configuration and thus relates to the transverse
behavior of the material [20, 9] (see Fig. 1.2).

One of the mathematical features of the energy density (1.1) is that it is poly-
convex and coercive [8, 20], hence the equilibrium problem with mixed boundary
conditions is well posed.
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We remark that C is the identity tensor I in the reference configuration, so that
Ip = Kp = 1, i.e. we have the energy- and stress-free state of the passive muscle
tissue (see [8]).

The high content of water is responsible of the nearly incompressible behavior
which is experimentally reported for muscle fibers, so that we can assume

detC = 1. (1.2)

As is customary in hyperelasticity, the first Piola-Kirchhoff stress tensor, known
as nominal stress tensor, can be directly computed by differentiating the strain en-
ergy function:

P =
∂W
∂F
− pF−T = 2F

∂W
∂C
− pF−T = (1.3)

=
µ

2
F
{

eα(Ip−1)
[w0

3
I+(1−w0)M

]
−C−1

[w0

3
I+(1−w0)M

]
C−1

}
− pF−T ,

where p is a Lagrange multiplier associated with the hydrostatic pressure which
results from the incompressibility constraint (1.2).

The material parameters of the model can be obtained from real data. More pre-
cisely, concerning the elastic parameter µ , we use the value given in [7], while the
other two parameters have been obtained by least squares optimization using the ex-
perimental data by Hawkins and Bey [10] about the stretch response of a tetanized
tibialis anterior of a rat (see Fig. 1.1). In Table 1.1 we furnish the values of the
parameters.

Table 1.1 Material parameters of the passive model.

µ [kPa] α [-] w0 [-]

0.1599 19.35 0.7335

We remark that the strain energy function (1.1) is a slight simplification of the
one proposed by Ehret, Böl and Itskov in [7]:

WEBI(C) =
µ

4

{
1
α

[
eα(Ip−1)−1

]
+

1
β

[
eβ (Kp−1)−1

]}
, (1.4)

where α = 19.69,β = 1.190,w0 = 0.7388. Actually, our simplification consists in
linearizing the term related to Kp, which describes the transverse behavior. This is
motivated by the fact that the parameter β is much smaller than α . In Fig. 1.3 we
can see the comparison between the nominal stress in the direction of the stretch of
the two models when the muscle fibers are elongated in their direction.
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Fig. 1.1 Comparison of the passive model in uniaxial tension with the experimental data of a rat
tibialis anterior muscle reported in [10].
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Fig. 1.2 Transversely isotropic behavior of the model.

1.2.2 Active model

One of the main features of the skeletal muscle tissue is its ability of being voluntar-
ily activated. Skeletal muscles are activated through electrical impulses from motor
nerves; the activation triggers a chemical reaction between the actin and myosin fil-
aments which produces a sliding of the molecular chains, causing a contraction of
the muscle fibers.

During the last decades, many authors tried to mathematically model the process
of activation, mainly with two different approaches (for a review see [2]). The most
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Fig. 1.3 Comparison between the passive stress here proposed and the one studied in [7] during
uniaxial tension along the fibers.

famous approach followed in the literature is called active stress and it consists in
adding an extra term to the stress, which accounts for the contribution given by the
activation (see for example [15, 3, 11]). However, this is an ad hoc method, usually
not related to the sliding movement of the filaments in the sarcomeres, which is the
main mechanism of contraction at the mesoscale.

More recently, the active strain approach was proposed by Taber and Perucchio
[21] in order to describe the activation of the cardiac tissue, following previous the-
ories of growth and morphogenesis, as well as several models of plasticity. The
method for soft living tissues is explained in [17]. Differently from the active stress
approach, this method does not change the form of the strain energy function; rather,
it assumes that only a part of the deformation gradient, obtained by a multiplicative
decomposition, is responsible for the store of elastic energy. This method is related
to the biological meaning of activation and can be reasonably adopted also in our
case. To the best of our knowledge, the active strain approach has never been fol-
lowed for the skeletal muscle tissue in literature.

We begin by rewriting the deformation gradient as F = FeFa, where Fe is the
elastic part and Fa describes the active contribution (see Fig. 1.4). The active strain
Fa represents a change of the reference volume elements due to the contraction of
the sarcomeres, so that it does not contribute to the elastic energy. A reference vol-
ume element, distorted by Fa, needs a further deformation Fe to match the actual
volume element, which accommodates both the external forces and the active con-
traction. Notice that neither Fa nor Fe need to be the gradients of some displacement,
that is, it is not necessary that they fulfill the compatibility condition curlFa = 0 or
curlFe = 0.

The volume elements are modified by the internal active forces without changing
the elastic energy, hence the strain energy function of the activated material has to
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Fa

F

Fe = FF−1
a

Fig. 1.4 Pictorial view of the active strain approach.

be computed using Ce = FT
e Fe and taking into account Fe = FF−1

a . If Fa = gradχa
for some displacement χa, then from Fig. 1.4 by a change of variables it is easy to
see that ∫

χa(Ω)
W (Ce)dV̂ =

∫
Ω

W (F−T
a CF−1

a )(detFa)dV.

The right-hand side of the previous equation is well defined also when Fa does not
come from a global displacement, and it describes the strain energy of the active
body. We then obtain the modified hyperelastic energy density

Ŵ (C) = (detFa)W (Ce) = (detFa)W (F−T
a CF−1

a ).

We now have to model the active part Fa. Since the activation of the muscle
consists in a contraction along the fibers, we choose

Fa = I− γm⊗m, (1.5)

where 0 ≤ γ < 1 is a dimensionless parameter representing the relative contraction
of activated fibers (γ = 0 meaning no activation). Then the modified strain energy
density becomes

Ŵ (C) = (1− γ)W (Ce) = (1− γ)
µ

4

{
1
α

[
eα(Ie−1)−1

]
+Ke−1

}
, (1.6)

Ie =
w0

3
tr(Ce)+(1−w0) tr(CeM), Ke =

w0

3
tr(Ce

−1)+(1−w0) tr(Ce
−1M).

The corresponding first Piola-Kirchhoff stress tensor is given by
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P̂ = detFa
∂W
∂Fe

F−1
a − p̂F−T = (1.7)

=
µ

2
(1− γ)Fe

{
eα(Ie−1)

[w0

3
I+(1−w0)M

]
−C−1

e

[w0

3
I+(1−w0)M

]
C−1

e

}
F−1

a

−p̂F−T ,

where p̂ accounts for the incompressibility constraint detC = 1. Notice that, since
the activation (1.5) does not preserve volume and the material has to be globally
incompressible, one has that detCe 6= 1, so that the material is elastically compress-
ible. As far as the strain energy density is concerned, a factor (1−γ) appears in (1.6)
which keeps into account the compressibility of Fa. It would be interesting to study
also other kinds of passive energies, involving the quantity detC, in order to better
describe the elastic compressibility of the material.

In Fig. 1.5 we represent, for several values of the parameter γ , the stress-strain
curve for a uniaxial tension along the fibers. If the muscle is activated (γ > 0), then
(the absolute value of) the stress increases with γ and the value of the stretch such
that the stress is zero becomes less than one.
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Fig. 1.5 Stress-stretch curves in uniaxial tension for several values of γ from 0 to 0.4.

1.3 Modelling the activation on experimental data

The activation parameter γ , which was assumed constant in the previous section,
in fact usually depends on the deformation gradient. In typical experiments on a
tetanized skeletal muscle it is apparent that the contraction of the fibers due to ac-
tivation varies with their stretch, reaching a maximum value and then decreasing.
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Fig. 1.6 shows the qualitative relation between the elongation and the developed
stress. This section will be devoted to taking into account this phenomenon. Specifi-
cally, the expression of γ will be determined matching an experiment-based relation
between stress and strain with our model (1.7).

In order to find the relation between stress and strain, the experiments in vivo
are usually performed in two steps. First, the stress-strain curve is obtained without
any activation (passive curve). Second, by an electrical stimulus the muscle is iso-
metrically kept in a tetanized state and the total stress-strain curve is plotted. The
last curve, which is qualitatively represented in Fig. 1.6, depends on the recipro-
cal position of actin and myosin chains. By taking the difference of the two curves
one can obtain the active curve, describing the amount of stress due to activation.
It is useful to find a mathematical expression of such a curve, in order to take into
account the experimental behavior of the active contraction. This issue has already
been addressed in several papers, see e.g. [7, 11, 22, 23, 13, 3, 4].

total force
active force
passive force
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sarcomere length (L)L0 LoptLmin

Fig. 1.6 Length-tension relationship of a sarcomere. Here we denote by Lopt the length at which
the sarcomere produces the maximum force in isometric experiments, by L0 the rest length and by
Lmin the minimal length of the sarcomere (fully activated).

Denoting with λ the ratio between the current length of the muscle and its origi-
nal length, we assume the active curve to be of the form

Pact(λ ) =


Popt exp

[
−k

(λ 2−λ 2
opt)

2

λ −λmin

]
if λ > λmin,

0 otherwise,

(1.8)

where λmin is the minimum stretch value after which the activation starts (i.e. the
lower bound for the stretch at which the myofilaments begin to overlap) and k is
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merely a fitting parameter. The coordinates (λopt ,Popt) identify the position of the
maximum of the curve. As it is explained in [7], the value of Popt takes into ac-
count some information at the mesoscale level, such as the number of activated
motor units and the interstimulus interval; according to the literature [7, 11], it is set
at Popt = 73.52 kPa. The numerical values of the other three parameters, deduced
through least squares optimization on the data reported in [10], are given in Table
1.2. The expression (1.8) has the advantage of describing the asymmetry between

Table 1.2 Material parameters of the active model.

λmin [-] λopt [-] k [-] Popt [kPa]

0.6243 1.1704 0.4342 73.52

the ascending and descending branches of the active curve obtained in [10]. Indeed,
even if the asymmetry is not so evident in their curve, due to the fact that there are
only few data on the descending branch, it is a typical feature of several experimen-
tally measured sarcomere length-force relation. Moreover, as one can easily see in
Fig. 1.7, the convex behavior of the data nearby λmin is well fitted.
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Fig. 1.7 Plot of the active curve (1.8) with the parameters reported in Table 1.2 together with the
representation of the experimental data given in [10].
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1.3.1 The activation parameter γ as a function of the elongation

Now our aim is to obtain Pact(λ ) given in (1.8) from the model described in Section
1.2.2. In order to reach our purpose, we have to model the activation parameter γ as
a function of the stretch.

As in the experiments of Hawkins and Bey [10], let us consider a uniaxial sim-
ple tension along the fibers. For simplicity, we assume that the fibers follow the
direction m = e1. Since the skeletal muscle tissue is modeled as an incompressible
transversely isotropic material, the general form of the deformation gradient F is
given by

F =

λ 0 0
0 1√

λ
0

0 0 1√
λ

 .

Then using the notation introduced in Section 1.2.2, one has

Ce =

 λ 2

(1−γ)2 0 0
0 1

λ
0

0 0 1
λ

 ,

Ie =
w0

3

[
λ 2

(1− γ)2 +
2
λ

]
+(1−w0)

λ 2

(1− γ)2 ,

Ke =
w0

3

[
(1− γ)2

λ 2 +2λ

]
+(1−w0)

(1− γ)2

λ 2 .

In this case, it is convenient to look at the strain energy as a function of the stretch
λ and the activation parameter γ:

Ŵ (λ ,γ) = (1− γ)W (λ ,γ) = (1− γ)
µ

4

{
1
α

[
eα(Ie−1)−1

]
+Ke−1

}
. (1.9)

Then the nominal stress along the fiber direction is given by

Ptot(λ ,γ) :=
∂Ŵ
∂λ

= (1− γ)
µ

4

[
I′eeα(Ie−1)+K′e

]
, (1.10)

where

I′e =
∂ Ie

∂λ
= 2

w0

3

[
λ

(1− γ)2 −
1

λ 2

]
+2(1−w0)

λ

(1− γ)2 ,

K′e =
∂Ke

∂λ
= 2

w0

3

[
− (1− γ)2

λ 3 +1
]
−2(1−w0)

(1− γ)2

λ 3 .

We can get the passive stress by setting γ = 0:
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Ppas(λ ) := Ptot(λ ,0) =
µ

2

{[(
1− 2

3
w0

)
λ − w0

3
1

λ 2

]
eα[(1− 2

3 w0)λ 2+
w0
3

2
λ
−1]

−
(

1− 2
3

w0

)
1

λ 3 +
w0

3

}
. (1.11)

We remark that the values of Ptot and Ppas can also be obtained by computing the
first component of the stress given by (1.7) and (1.3) after finding the hydrostatic
pressure from the conditions P̂22 = P̂33 =P22 =P33 = 0 (traction-free lateral surface).

Our aim is to find the value of γ such that

Ptot(λ ,γ) = Pact(λ )+Ppas(λ ), (1.12)

where Pact(λ ) is given by (1.8). Unfortunately, this leads to an equation for γ which
cannot be explicitly solved:

(1− γ)

{[(
1− 2

3
w0

)
λ

(1− γ)2 −
w0

3
1

λ 2

]
e

α

[
(1− 2

3 w0) λ2

(1−γ)2
+

w0
3

2
λ
−1
]

+
w0

3
−
(

1− 2
3

w0

)
(1− γ)2

λ 3

}
=

2
µ
[Pact(λ )+Ppas(λ )] . (1.13)

However one can employ standard numerical methods and plot the solution. Fig. 1.81,
which is obtain by a bisection method, shows γ as a function of λ . We remark that
γ vanishes before λmin, indeed in this region there is no difference between total
and passive stress. The corresponding behavior of the stresses is plotted in Fig. 1.82,
which is very similar to the representative plot of Fig. 1.6.

We emphasize that the previous model is not strictly hyperelastic, since in the
expression of the stress (1.7) the derivative of γ with respect to F has been neglected.
We are now working on a truly hyperelastic model, which can be useful for some
numerical implementations.

1.3.2 Loss of activation

We now want to describe from a mathematical point of view the loss of performance
of a skeletal muscle tissue. As we have already explained in the Introduction, this is
one of the main effects of sarcopenia, which is a typical syndrome of advanced age.

In [14, 24] it is remarked that aging is associated with changes in muscle mass,
composition, activation and material properties. In sarcopenic muscle, there is a loss
of motor units via denervation and a net conversion in slow fibers, with a resulting
loss in muscle power. Hence, the loss of performance of a sarcopenic muscle can be
described as a weakening of the activation of the fibers.

Unfortunately, as far as we know, there are no experimental data describing a
uniaxial simple tension along the fibers of a sarcopenic muscle. For this reason, we
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Fig. 1.8 The first figure shows the behavior of γ when λ varies: the corresponding plots of Ptot and
Pact are given in the second figure, together with Ppas.

try to describe the loss of activation by a parameter d which lowers the curve Pact(λ )
given by (1.8). The parameter d describes the percentage of disease or damage: if
d = 0, then the muscle is healthy. In order to get our aim, we multiply the function
Pact(λ ) by the factor 1− d, as one can see in Fig. 1.9. Notice that such a choice
can be overly simple: for instance, it implies that the maximum is always attained at
λopt , even if there is no experimental evidence of that. However, the presence of d
allows to describe, at least qualitatively, the loss of performance of a muscle, which
is one of the goals of our model.
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Fig. 1.9 Plot of (1−d)Pact(λ ) vs λ when d varies from 0 to 0.5.

1.4 Numerical validation

Finally, we simulate numerically the contraction and the elongation of a slab of
skeletal muscle tissue represented by a cylinder. We assume radial symmetry, so
that the mesh is a rectangle. The ends of the cylinder are assumed to remain perpen-
dicular to the axial direction. The rectangle is modeled by the hyperelastic model
presented in the previous sections. The active contractile fibers are aligned along
the length of the rectangle, which coincides with e1. The passive and active material
parameters are given in Tables 1.1 and 1.2, respectively. Concerning the boundary
conditions, the cylinder is fixed at one end and elongated to a given length, in order
to recreate the situation of the experiments reported in [10]. The lateral surface is
assumed to be tension-free.

The analysis is performed by using the computing environment FEniCS. The
FEniCS Project [1] is a collection of numerical software, supported by a set of novel
algorithms and techniques, aimed at the automated solution of differential equations
using finite element methods.

As it is explained in Section 1.3.1, one of the main features of our model is the
dependence of the activation parameter γ on the stretch λ . The function γ(λ ) solves
the implicit equation (1.13), which ensures that the corresponding stress curves fit
the experimental data. However, even if this equation can be solved using numerical
methods, it is interesting to find an explicit function in order to analyze qualitatively
the active model and to run the simulations in FEniCS. Moreover, the explicit func-
tion γ(λ ) has to be very precise, since a slight error on γ deeply affects the behavior
of the total stress. Hence, it is reasonable to relate the expression of γ to the material
parameters and the quantities involved in (1.13). An idea is to isolate the exponential
in (1.13) and to express its exponent by a first step approximation of a fixed-point
method. We then obtain the following expression of γ:
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γ(λ ) =
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]}
,

where a and b are dimensionless fitting parameters: a is related to the magnitude of
γ , while b acts on the curves (1.8) and (1.11), which are the terms of the equation
not depending on γ . Performing a least square optimization on the resulting Pact ,
one gets a = 1.0133 and b = 0.2050.

Fig. 1.10 shows the plot of the function γ(λ ) given in (1.14) in comparison to the
numerical solution of equation (1.13) obtained by a bisection method. Notice that
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Fig. 1.10 Comparison between the behavior of γ(λ ) in (1.14) (solid line) and the numerical solu-
tion of equation (1.13) (dotted line).

the function defined in (1.14) is continuous; in particular we impose γ(λmin) = 0, so
that the starting value of activation does not change. Moreover, the function approx-
imates very well the numerical values of γ in the range 0.7 < λ < 1.5. However, the
fitting is not so good when λ becomes larger: for instance, the function is negative
for λ ≥ 1.6. Nevertheless, the latter behavior of γ does not influence too much the
curve Ptot , since in that region Ppas� Pact . Indeed, one can even neglect the activa-



1 A continuum model of skeletal muscle tissue with loss of activation 17

tion for large stretches. The total stress response is plotted in Fig. 1.11 in comparison
to the data given in [10].
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Fig. 1.11 Trend of Ptot when γ is given by (1.14) and λ varies.

Finally, it is interesting to run the simulations in the case of loss of activation,
i.e. when the damage parameter d varies. In order to find the suitable activation
function γ(λ ), it is sufficient to multiply the term Pact in (1.14) by (1− d). As one
would expect from Fig. 1.9, we have that when d increases the activation γ decreases
(Fig. 1.121). This means that lowering the curve of Pact results in a decrease of
γ(λ ), which leads to a lowered total stress response. As one can see in Fig. 1.122,
the damage parameter mainly affects the value of the stress in the region near λopt ,
where the active stress reaches its maximum. However, the qualitative behavior of
the stress curve does not change, at least for d ≤ 0.5. In particular, after a plateau,
the stress follows the exponential growth of the passive curve.
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