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1. Introduction

Strain gradient plasticity models have been introduced in recent years to describe size effects
in ductile metals which cannot be captured by standard plasticity theories (see [3, 4, 8, 9] and
references therein). They are named after the inclusion in the model of the gradient of plastic
strain, which is connected to the density of geometrically necessary dislocations present in the
body (see [2]).

Let Ω ⊆ RN be the reference configuration of an elasto-plastic body undergoing infinitesimal
displacements, and let us assume that the family of admissible configurations is given by the pairs
(u, p), where u : Ω → RN denotes the displacement of Ω, and p : Ω → MN

D is the associated plastic
strain. Note that p takes values in the space MN

D of symmetric matrices with zero trace since it is
usually assumed that plastic deformations take place without volume changes. The point of view
of the deformation theory in plasticity is that, given external forces f : Ω → RN and boundary
displacements ū : ∂Ω → RN , the configuration (u, p) at equilibrium minimizes a total energy of
the following type

(u, p) 7→ E(u, p)−
∫
Ω

f · u dx.

The term E(u, p) involves the gradient ∇p of the plastic strain. The precise form of E(u, p) is still
suggested by phenomenological considerations, although in agreement with the general principles
of thermodynamics (see [8, 9]). A prototype for E(u, p) is given by the expression

(1.1) E(u, p) :=
1

2

∫
Ω

C(x)(E(u)− p) : (E(u)− p) dx+

∫
Ω

V (
√
|p|2 + `2|∇p|2) dx,

where V : [0,+∞[→ [0,+∞[ is a convex function. The first term is simply the elastic energy of Ω:
e := E(u)− p is the elastic strain of the configuration (E(u) := 1

2 (∇u+∇ut) is the symmetrized
gradient of u) and C is the Hooke tensor. The second term is usually referred to as the plastic

potential which is assumed to depend on the strain gradient plastic measure
√
|p|2 + `2|∇p|2]. It

involves the term ∇p via the material length-scale `, which has the dimension of a length and
which is assumed to have the order of magnitude of the distance at which interactions between
dislocations take place.

In [5], N.A. Fleck and J.R. Willis studied the behavior of the deformation theory (1.1) when
the elastic and plastic moduli highly oscillate in space and the response in the homogenization
limit does not involve gradient terms. The deformation theory in the limit is supposed to involve
an energy (independent of ∇p) of the form

(1.2) Ehom(u, p) =

∫
Ω

Fhom(E(u)(x), p(x)) dx.

1
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Here the effective energy density Fhom(e, q) is provided by minimizing the energy E(u, p) on a rep-
resentative volume element, among displacement fields u satisfying the linear boundary condition
u = e · x and plastic strains p with mean given by q. Fleck and Willis focused on the problem of
finding suitable bounds for the effective energy (1.2). The case of a quadratic V , i.e.,

V (
√
|p|2 + `2|∇p|2) :=

1

2
b(x)[|p|2 + `2|∇p|2],

is pivotal in the derivation of Hashin-Shtrikman type bounds and self-consistent estimates (see [5,
Section 4]) which are used to infer estimates for Fhom(e, p) in some nonlinear cases (V of power
law type, see [5, Section 5]).

In [7], two of us, A. G. and A. M., provided among other things a mathematical framework for
the derivation of (1.2) when V is quadratic and the elastic and plastic moduli oscillate periodically.
We considered the energy defined on (u, p) ∈ H1(Ω;RN )×H1(Ω; MN

D) by

(1.3) Eε(u, p) =
1

2

∫
Ω

C
(x
ε

)
(E(u)− p) : (E(u)− p) dx+

1

2

∫
Ω

b
(x
ε

)
[|p|2 + ε2`2|∇p|2] dx,

where C and b are 1-periodic in each variable and satisfy suitable coercivity assumptions. Since the
plastic and elastic moduli oscillate on a scale ε, the dissipative length-scale is accordingly given by
ε`. The periodicity assumption was essential in order to use the method of two-scale convergence
[13, 1], thanks to which we showed that the effective behaviour in the limit is given by an energy
Ehom : H1(Ω;RN )×L2(Ω; MN

D)→ R of the form (1.2) whose energy density is provided, for every
e ∈ MN

sym and q ∈ MN
D , by the formula

(1.4) F hom(e, q) := min

{
1

2

∫
Y

C(y)[e+ Ey(W )− q] : [e+ Ey(W )− q] dy

+
1

2

∫
Y

b(y)[|Q|2 + `2|∇yQ|2] dy : (W,Q) ∈ H1
per(Y ;RN )×H1

per(Y ; MN
D),∫

Y

W (y) dy = 0,

∫
Y

Q(y) dy = q

}
.

Here Y is the unit cell in RN , and the subscript per stands for “Y -periodic”.
The aim of this paper is to deal with the homogenization of the deformation theory associated

to (1.1) with V quadratic but without any periodicity assumption, as in the original problem of
Fleck and Willis. This can be considered as the preliminary step if hoping to derive bounds for the
effective energy. That, as was mentioned above, is the main concern in [5]. Moreover, as explained
in Section 2, it can also be viewed as a first step in the study of the non-periodic homogenization
of a quasi-static evolution under the effect of a vanishing strain gradient.

We first focus for simplicity on a “scalar” analogue of the problem. Specifically, we consider
the asymptotic behavior of minimizers (uε, ϑε) ∈ H1

0 (Ω)×H1(Ω) of the energy

Fε(u, ϑ) :=
1

2

∫
Ω

(
Aε(∇u− ϑαε) · (∇u− ϑαε) + ε2Bε∇ϑ · ∇ϑ+ dεϑ2

)
dx− 〈f, u〉,

where Aε, Bε ∈ L∞(Ω; MN
sym), αε ∈ L∞(Ω;RN ), dε ∈ L∞(Ω), f ∈ H−1(Ω) and {ε} := {εj}j is

an infinitesimal sequence.
The scalar valued function ϑ plays the role of the plastic strain, so that the introduction of the

vector αε is needed to construct the “elastic” strain ∇u− ϑαε. The matrix Aε is the analogue of
the elastic moduli C, while dε and Bε play the role of the plastic moduli. Finally, f ∈ H−1(Ω) is
again connected to the external loads, and the boundary condition for the displacement u is taken
homogeneous.
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Rather than study the functionals Fε, we concentrate on the associated Euler-Lagrange equa-
tions satisfied by (uε, ϑε)

(1.5)


−div[Aε(∇uε − ϑεαε)] = f in Ω

uε = 0 on ∂Ω

−ε2div(Bε∇ϑε) + dεϑε −Aεαε · (∇uε − ϑεαε) = 0 in Ω

Bε∇ϑε · n = 0 on ∂Ω,

where n denotes the exterior normal vector to Ω at a point of ∂Ω. The third equation degenerates
in ∇ϑε as ε→ 0.

We study equations (1.5) with the tool of H-convergence [12]. Under suitable coercivity and
growth estimates for Aε, αε, Bε, dε, we show that, up to the extraction of a subsequence of ε,

uε ⇀ u weakly in H1
0 (Ω) and ϑε ⇀ ϑ weakly in L2(Ω),

where (u, ϑ) satisfy 
−div[Ahom(∇u− ϑαhom)] = f in Ω

u = 0 on ∂Ω

dhomϑ−Ahomαhom · (∇u− ϑαhom) = 0 in Ω.

Here the homogenized coefficients Ahom, αhom, dhom depend only on Aε, αε, Bε, dε and not on f .
From a variational point of view, the pair (u, ϑ) ∈ H1

0 (Ω)× L2(Ω) minimizes the functional

Fhom(u, ϑ) :=
1

2

∫
Ω

(
Ahom(∇u− ϑαhom) · (∇u− ϑαhom) + dhomϑ2

)
dx− 〈f, u〉.

The construction of the homogenized coefficients is carried out along the classical lines of H-
convergence upon accounting for the degeneracy of the equation for ϑε. This is performed following
a technique similar to that used in [6], where a homogenization problem in elasticity with singular
perturbations is studied.

We then revisit the actual setting of [5] and reformulate the result accordingly. Finally, we
recover the results of [7] in the periodic case.

The structure of the paper is as follows. Section 2 is devoted to the description of the problem
of the periodic homogenization of a quasi-static evolution with vanishing strain gradient effects as
carried out in [7], and to its connection with the homogenization of the deformation theory (1.1).
In Section 3 we formulate the precise assumptions on the coefficients Aε, αε, Bε, dε (see (3.2), (3.3),
(3.4)) which are needed to perform the homogenization procedure for (1.5). These assumptions
are tailored to the natural coercivity properties of the functional Fε, and, as a consequence, they
are easily shown to be “stable” under homogenization. Section 4 is devoted to the construction
of the homogenized coefficients Ahom, αhom and dhom(see Definition 4.4) and to the study of their
main properties. This is done, following the approach of H-convergence, by constructing suitable
auxiliary functions (see Proposition 4.1). In Section 5 we state and prove our main homogenization
result (see Theorem 5.1). Finally, Section 6 revisits the actual setting of [5] and gives the desired
homogenization result in that case (see Theorem 6.1). In the periodic case, the results in [7] are
re-derived.

As far as notation is concerned, we denote by · the Euclidean scalar product, and by | · | the
associated norm. MN stands for the space of N ×N matrices, while MN

sym denotes the subspace

of symmetric matrices. L(MN
sym) denotes the space of linear maps from MN

sym into itself, and

Ls(MN
sym) the subspace of all symmetric maps in L(MN

sym). For A ∈ MN , |A| stands for its natural

matrix norm, the Frobenius norm induced by the Euclidean structure of RN ; the same notation
also applies to elements of L(MN

sym). Moreover, if A,B ∈ MN , A ≥ B iff the matrix A − B

is non-negative, i.e., (A − B)λ · λ ≥ 0, λ ∈ RN ; the same notation also applies to elements of
L(MN

sym). For v, w ∈ RN , v ⊗ w is the matrix whose components are given by (v ⊗ w)ij = viwj .

We denote by Id the identity matrix in MN
sym and by Id the identity element in Ls(MN

sym).

Also, if X,Y are two Banach spaces, we take as norm on X × Y , ‖(f, g)‖ :=
√
‖f‖2X + ‖g‖2Y

and if L is a continuous bounded operator from X into Y , we denote its norm by |||L|||. Finally,
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if X ′ is the topological dual of X, we denote by 〈f, g〉 the duality product between f ∈ X ′ and
g ∈ X.

2. Homogenization of a quasi-static evolution with vanishing strain gradient
effects

In paper [7], two of us considered the problem of describing the effective behaviour under
homogenization of quasi-static evolutions for a gradient plasticity model with vanishing gradient
effects. The model is a variant of that of Gurtin and Anand [9]; it takes hardening into account.
The link between oscillations of the plastic and elastic moduli and the gradient effects comes from
the homogenization procedure of Fleck and Willis [5].

Employing the energetic approach to evolutions for rate independent systems (see [10]), the
problem can be formalized in the following manner. A configuration of the elasto-plastic body Ω
is given by a triplet (u, p, z) with

u ∈ H1(Ω;RN ), p ∈ H1(Ω; MN
D), z ∈ L2(Ω),

where u denotes the displacement, p is the associated plastic strain, and z is a hardening internal
variable.

The free energy of a configuration is given by

(2.1) Q(u, p, z) :=
1

2

∫
Ω

[
C(x)(Eu(x)− p(x)) : (Eu(x)− p(x)) + z2(x)

]
dx,

where the elasticity tensor C ∈ L∞(Ω;Ls(MN
sym)) is such that for a.e. x ∈ Ω and for every

M ∈ MN
sym

(2.2) α|M |2 ≤ C(x)M ·M ≤ β|M |2

with α, β > 0.
The dissipation during an evolution t 7→ (u(t), p(t), z(t)) defined on [0, T ] relative to a subin-

terval [a, b] is given by

(2.3) D(p, z; a, b) := sup


k∑
j=1

H (p(tj)− p(tj−1), z(tj)− z(tj−1)) : a = t0 < · · · < tk = b

 .

Here the function H is related to the plastic stresses; indeed, the higher order stresses associated
to (p,∇p) (see [9] for their definition) belong to an admissible region which becomes larger and
larger during the evolution, due to the hardening process. Hence, as is usual in plasticity, H is
the convex conjugate of the support function of that region, that is

(2.4) H(p, z) := IC(p, z) +

∫
Ω

b(x)z(x) dx,

where IC denotes the indicator function of the cone

(2.5) C :=
{

(p, z) ∈ H1(Ω; MN
D)× L2(Ω) :

√
|p(x)|2 + `2|∇p(x)|2 ≤ z(x) for a.e. x ∈ Ω

}
.

Here the plastic modulus b ∈ L∞(Ω) is such that

(2.6) α ≤ b(x) ≤ β for a.e. x in Ω,

while ` > 0 is a dissipative length scale. Note that for ` = 0, the cone reduces to the usual cone
of the Von Mises theory.

Assuming homogeneous boundary displacements on ∂Ω, the family of admissible configurations
of Ω is given by

A := {(u, p, z) ∈ H1
0 (Ω;RN )×H1(Ω; MN

D)× L2(Ω) : (p, z) ∈ C}.

If external body forces acting on Ω are represented by the absolutely continuous function

f : [0, T ]→ H−1(Ω;RN ),
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we define a quasistatic evolution as a map

[0, T ] → H1
0 (Ω;RN )×H1(Ω; MN

D)× L2(Ω)

t 7→ (u(t), p(t), z(t))

satisfying the following conditions for every t ∈ [0, T ]:

(a) admissibility: (u(t), p(t), z(t)) ∈ A;
(b) global stability: for every (v, q, ξ) ∈ A

Q(u(t), p(t), z(t))− 〈f(t), u(t)〉 ≤ Q(v, q, ξ)− 〈f(t), v〉+H(q − p(t), ξ − z(t));
(c) energy balance: t 7→ (p(t), z(t)) has bounded variation from [0, T ] to H1(Ω; MN

D)× L2(Ω)
and

E(t) +D(p, z; 0, t) = E(0)−
∫ t

0

〈ḟ(τ), u(τ)〉 dτ,

where
E(t) := Q(u(t), p(t), z(t))− 〈f(t), u(t)〉.

Existence of quasi-static evolutions can be established employing the standard variational ap-
proach to rate independent evolutions formalized by Mielke and his co-authors [10].

Let ε = {εi} be an infinitesimal sequence, Cε ∈ L∞(Ω;Ls(MN
sym)) and bε ∈ L∞(Ω) satisfy (2.2)

and (2.6), and let

(2.7) t 7→ (uε(t), pε(t), zε(t)), t ∈ [0, T ]

be the quasi-static evolution for the previous model with elastic and plastic moduli given by Cε
and bε, and with dissipative length scale ε`. The homogenization problem with a vanishing strain
gradient consists in describing what kind of equations are satisfied by the limit evolution (under
weak convergence)

(2.8) t 7→ (u(t), p(t), z(t)), t ∈ [0, T ],

where p(t) is now simply an element of L2(Ω; MN
D) since the control on its gradient degenerates

as ε→ 0.
In the footstep of [11] where the problem of the homogenization for a quasi-static evolution in

standard plasticity with hardening is treated, it is shown in [7] that the study can be accomplished
in the periodic case, that is for

Cε(x) := C
(x
ε

)
and bε(x) := b

(x
ε

)
,

where C ∈ L∞(RN ;Ls(MN
sym)) and b ∈ L∞(RN ) are 1-periodic in each variable and satisfy (2.2)

and (2.6). The key mathematical tool is that of two-scale convergence [13, 1]. Recall that vε
bounded in L2(Ω) two-scale weakly converges to V ∈ L2(Ω × Y ) as ε→ 0 if

lim
ε→0

∫
Ω

vε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω×Y

V (x, y)ψ(x, y) dxdy

for every smooth function ψ(x, y) periodic in y, where Y denotes the unit cell in RN . The weak
two-scale limit V thus depends on a further microstructural variable y which keeps track of the
oscillations occurring along the sequence (vε). Notice that the mean of V with respect to y ∈ Y
provides the usual weak-L2 limit of (vε).

It was shown in [7, Section 5] that, as ε→ 0, the evolution (2.7) gives rise to an evolution

(2.9) t 7→ (u(t), U(t), P (t), Z(t)), t ∈ [0, T ],

where

U(t) ∈ L2(Ω;H1
per,0(Y ;RN )), P (t) ∈ L2(Ω;H1

per(Y ; MN
D)), Z(t) ∈ L2(Ω × Y ),

the function U(t) being the two-scale weak limit of Euε(t). Here the subscript per stands for “Y -
periodic”, while per, 0 stands for “Y -periodic with zero mean”. This evolution can be described in
terms of admissibility, global stability and energy balance conditions involving suitable extensions
to Ω × Y of the free energy (2.1) and of the dissipation potential (2.4). In conclusion, the limit
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results in a quasi-static evolution for a model of strain gradient type with respect to the new
microstructural variable y ∈ Y .

In view of the relation between two-scale weak convergence and weak-L2 convergence, the
connection between the two-scale evolution (2.9) and the homogenized (single scale) evolution
(2.8) is given by

p(t, x) =

∫
Y

P (t, x, y) dy, z(t, x) =

∫
Y

Z(t, x, y) dy.

A description of t 7→ (u(t), p(t), z(t)) in terms of a standard plasticity model seems hopeless. From
a mathematical point of view, this is due to the fact that the two-scale version of the admissibility,
global stability and energy balance conditions are nonlinear in y. We can thus conclude that
the introduction of the microstructural variable y, i.e., the use of two-scale convergence, provides
information about the oscillations occurring during the homogenization procedure which in turn
permits a description of the limit evolution in terms of a generalized plasticity model.

In the non-periodic case, the situation is completely different and the tool of two-scale conver-
gence is no longer at our disposal. A convenient first simplifying step consists in passing from
flow theory to deformation theory. This amounts to a characterization of the behavior of the body
under the action of a time-monotone external load solely in terms of a single variational prob-
lem, that associated with the final value of the load. Deformation theory is generally assumed to
provide useful information for deformation paths which are monotone in the components of the
associated strains and stresses. Here, this should result in minimizing an energy of the Fleck and
Willis type, i.e.,

(2.10) (u, p) 7→ 1

2

∫
Ω

Cε(E(u)− p) : (E(u)− p) dx+

∫
Ω

V ε(
√
|p|2 + ε2`2|∇p|2) dx− 〈f, u〉

for (u, p) ∈ H1
0 (Ω;RN ) ×H1(Ω; MN

D). The precise form of V ε is dictated, in the general case of
nonlinear hardening, by the way in which the set of admissible generalized stresses evolves as a
function of the plastic strain measure

√
|p|2 + ε2`2|∇p|2.

As mentioned in the introduction, the case of a quadratic V ε is important for deriving bounds
on the homogenized energy. The focus of the present paper is on the characterization as ε→ 0 of
the minimizers of (2.10) when V ε is quadratic using the tool of H-convergence. As a consequence,
besides being a mathematical formalization of the Fleck and Willis homogenization procedure,
our result can also be considered as a first step towards the study of the homogenization of a
quasi-static evolution with vanishing strain gradients in the non-periodic case.

3. Setting of the problem

Let Ω ⊆ RN be an open and bounded set, ε = (εj) an infinitesimal sequence and

Aε, Bε ∈ L∞(Ω; MN
sym), αε ∈ L∞(Ω;RN ), dε ∈ L∞(Ω).

In this paper we will concentrate on the study of the asymptotic behaviour as ε → 0 of the
minimizers (uε, ϑε) ∈ H1

0 (Ω)×H1(Ω) of the energy Fε : H1
0 (Ω)×H1(Ω)→ R

Fε(u, ϑ) :=
1

2

∫
Ω

(
Aε(∇u− ϑαε) · (∇u− ϑαε) + ε2Bε∇ϑ · ∇ϑ+ dεϑ2

)
dx− 〈f, u〉,

where f ∈ H−1(Ω) and 〈, 〉 denotes the duality pairing between H1
0 (Ω) and H−1(Ω). The associ-

ated Euler-Lagrange equations are given by

(3.1)


−div[Aε(∇uε − ϑεαε)] = f in Ω

uε = 0 on ∂Ω

−ε2div(Bε∇ϑε) + dεϑε −Aεαε · (∇uε − ϑεαε) = 0 in Ω

Bε∇ϑε · n = 0 on ∂Ω,

where n denotes the outer normal to Ω at a point of ∂Ω.
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In order to perform the asymptotic analysis, we will assume throughout this section that, for
all ε > 0 and a.e. in Ω, Aε is invertible, dε > 0, and that, for some 0 < β ≤ γ, the following
conditions hold for every λ ∈ RN , µ ∈ R:

(3.2) γ|λ|2 ≥ Bελ · λ ≥ β|λ|2,

(3.3) Aε(x)(λ− µαε(x)) · (λ− µαε(x)) + dε(x)µ2 ≥ β{|λ|2 + µ2},

and

(3.4) (Aε)−1(x)λ · λ+
1

dε(x)
(αε(x) · λ+ µ)2 ≥ 1

γ
{|λ|2 + µ2}.

Remark 3.1. Notice that, in view of (3.3), (3.4),

γId ≥ Aε ≥ βId and γ ≥ dε ≥ β,

a.e. in Ω. Elementary algebraic manipulations– taking λ = −Aεαε, µ = dε +Aεαε · αε in (3.4) –
would also establish that, a.e. in Ω,

γ ≥ dε +Aεαε · αε ≥ β and |Aεαε| ≤ γ. ¶

For future reference, we define the set

(3.5) M(β,γ;Ω) :={(A,α, d) : Ω → MN
sym× RN× R measurable and such that

(3.3), (3.4) are satisfied a.e. in Ω}.

In view of Remark 3.1, such a set is indeed a subset of L∞(Ω; MN
sym× RN× R).

Remark 3.2. If (A,α, d) ∈M(β,γ;Ω), then, minimizing (3.3) in µ at fixed λ immediately yields

A− Aα⊗Aα
d+Aα · α

≥ βId. ¶

The bounds (3.2)-(3.4) allow one to establish existence of solutions of (3.1), together with some
uniform estimates.

Proposition 3.3. For every f ∈ H−1(Ω), equations (3.1) admit a unique solution (uε, ϑε) ∈
H1

0 (Ω)×H1(Ω) and

(3.6) sup
ε

(
‖∇uε‖L2(Ω;RN ) + ‖ϑε‖L2(Ω) + ‖ε∇ϑε‖L2(Ω;RN )

)
< +∞.

Proof. Existence and uniqueness of the solution (uε, ϑε) follow from an application of Lax-Milgram’s
lemma to the bilinear form on H1

0 (Ω)×H1(Ω)

Bε((u, ϑ), (v, η)) :=

∫
Ω

Aε(∇u− ϑα) · ∇v + ε2Bε∇ϑ · ∇η + dεϑη −Aεαε · (∇u− ϑαε)η dx.

That bilinear form is continuous in view of Remark 3.1. Coercivity of the associated quadratic
form is is obtained upon appealing to (3.2) and (3.3),

(3.7) Bε((u, ϑ), (u, ϑ)) ≥ β
∫
Ω

(
|∇u|2 + |ϑ|2 + ε2|∇ϑ|2

)
dx,

so that coercivity follows by Poincaré’s inequality.
Estimate (3.6) follows by the equality

Bε((uε, ϑε), (uε, ϑε)) = 〈f, uε〉

and taking (3.7) into account. �
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4. Construction of the homogenized equation

The homogenized equations associated to (3.1) are constructed as is usual in the theory of
H-convergence (see e.g. [12]) by means of auxiliary functions which enjoy “good” compactness
properties. Equations (3.1) become degenerate in ϑε as ε→ 0: as a consequence, the construction
of the auxiliary functions requires some care. We will follow [6] where a similar problem has been
treated in the context of singular perturbations in elasticity.

Proposition 4.1 (Construction of the auxiliary functions). Under the assumptions (3.2)-
(3.4), there exists a subsequence of {ε} (not relabeled) such that, for every λ ∈ RN and µ ∈ R,
there exist wελ,µ ∈ H1(Ω) and qελ,µ ∈ H1(Ω) with

(4.1) wελ,µ ⇀ λ · x weakly in H1(Ω), qελ,µ ⇀ µ weakly in L2(Ω),

(4.2) −div[Aε(∇wελ,µ − qελ,µαε)] compact in H−1(Ω)

and

(4.3) −ε2div(Bε∇qελ,µ) + dεqελ,µ −Aεαε · (∇wελ,µ − qελ,µαε) compact in L2(Ω).

Moreover

(4.4) ε∇qελ,µ is bounded in L2(Ω;RN ).

Proof. Let us fix Ω′ ⊆ RN open, bounded and such that Ω ⊆ Ω′. Let us extend Aε, αε, dε, Bε to
Ω′ by setting

Aε := βId, αε := 0, dε := β, Bε := βId on Ω′ \Ω.
Notice that estimates (3.2)-(3.3) are still satisfied on Ω′.

We divide the proof into several steps.

Step 1. The map

Dε : [H1
0 (Ω′)]2 −→ [H−1(Ω′)]2

(u, ϑ) 7→ (−div[Aε(∇u− ϑαε)],−ε2div(Bε∇ϑ) + dεϑ−Aεαε · (∇u− ϑαε))
is an isomorphism between [H1

0 (Ω′)]2 and [H−1(Ω′)]2, where, throughout the proof, u ∈ H1
0 (Ω′) is

equipped with the equivalent Dirichlet norm, i.e., the quantity ‖∇u‖L2(Ω′;RN ), thanks to Poincaré’s

inequality. Indeed, the quadratic form Φε : [H1
0 (Ω′)]2 → R given by

Φε(u, ϑ) :=
1

2

∫
Ω′

(
Aε(∇u− ϑαε) · (∇u− ϑαε) + ε2Bε∇ϑ · ∇ϑ+ dεϑ2

)
dx

satisfies

(4.5) Φε(u, ϑ) ≥ β
∫
Ω′

(
|∇u|2 + |ϑ|2 + |ε∇ϑ|2

)
dx.

Hence Dε is an isomorphism as a consequence of the Lax-Milgram Lemma. Further, a straight-
forward computation shows that, for say ε2 < 1,

|||Dε||| ≤ 5γ.

Also, given f ∈ H−1(Ω′) and g ∈ L2(Ω′) and setting (uε, ϑε) := (Dε)−1(f, g),

〈f, uε〉+

∫
Ω′
gϑε dx = Φε(uε, ϑε) ≥ β

∫
Ω′

(
|∇uε|2 + |ϑε|2 + |ε∇ϑε|2

)
dx,

so that

(4.6)

∫
Ω′

(
|∇uε|2 + |ϑε|2 + |ε∇ϑε|2

)
dx ≤ 1

β2

(
‖f‖2H−1(Ω′) + ‖g‖2L2(Ω′)

)
.

Step 2. Let us consider the natural immersion i : [H1
0 (Ω′)]2 → H1

0 (Ω′)× L2(Ω′), and

Cε : H−1(Ω′)× L2(Ω′)→ H1
0 (Ω′)× L2(Ω′)
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given by

Cε := i ◦ (Dε)−1 ◦ i∗,
where i∗ denotes the adjoint map of i.

Notice that, thanks to (4.6),

(4.7) sup
ε
|||Cε||| ≤ 1

β
.

Step 3. Since H−1(Ω′)× L2(Ω′) is separable, and in view of (4.7), there exist a subsequence of
ε (not relabeled) and a continuous linear operator

C : H−1(Ω′)× L2(Ω′)→ H1
0 (Ω′)× L2(Ω′)

such that for every (f, g) ∈ H−1(Ω′)× L2(Ω′)

Cε(f, g) ⇀ C(f, g) weakly in H1
0 (Ω′)× L2(Ω′).

Clearly

|||C||| ≤ 1

β
.

Now, C is coercive. Indeed, let (uε, ϑε) := Cε(f, g). In view of Remark 3.1, for arbitrary ϕ,ψ ∈
C∞c (Ω′), we get, for some constant c depending only on γ,

〈f, ϕ〉+

∫
Ω′
gψ dx

=

∫
Ω′
Aε(∇uε − ϑεαε)∇ϕdx+

∫
Ω′

(
−ε2div(Bε∇ϑε) + dεϑε −Aεαε · (∇uε − ϑεαε)

)
ψ dx

≤ c‖(uε, ϑε)‖H1
0 (Ω

′)×L2(Ω′)‖(ϕ,ψ)‖H1
0 (Ω

′)×L2(Ω′) + ε2γ‖∇ϑε‖H1
0 (Ω

′)‖∇ϕ‖H1
0 (Ω

′)

≤ (c+ γ)
{
‖(uε, ϑε)‖H1

0 (Ω
′)×L2(Ω′) + ε2‖∇ϑε‖H1

0 (Ω
′)

}
‖(ϕ,ψ)‖H1

0 (Ω
′)×L2(Ω′),

so that, since from (4.6) ε‖∇ϑε‖L2(Ω′) is bounded independently of ε, we obtain

(4.8) lim inf
ε
‖(uε, ϑε)‖H1

0 (Ω
′)×L2(Ω′)

≥ 1

c+ γ
sup

{
〈f, ϕ〉+

∫
Ω′
gψ dx

‖(ϕ,ψ)‖H1
0 (Ω

′)×L2(Ω′)

: (ϕ,ψ) ∈ [C∞c (Ω′)]2

}

=
1

c+ γ
‖(f, g)‖H−1(Ω′)×L2(Ω′).

Then, from (4.5), we conclude, thanks to (4.8), that

〈(f, g), C(f, g)〉 = lim
ε
〈(f, g), Cε(f, g)〉 = lim

ε
Φε(uε, ϑε) ≥ β lim inf

ε
‖(uε, ϑε)‖2H1

0 (Ω
′)×L2(Ω′)

≥ β

(c+ γ)2
‖(f, g)‖2H−1(Ω′))×L2(Ω′),

hence the coercivity.

Step 4. Because the bounded linear operator C constructed in Step 3 is coercive, it admits an
inverse C−1. Consider ϕ ∈ C∞c (Ω′) such that ϕ ≡ 1 on Ω. We set for every λ ∈ RN and µ ∈ R

(wελ,µ, q
ε
λ,µ) := CεC−1(ϕ(x)λ · x, µ).

Then,

wελ,µ ⇀ ϕ(x)λ · x weakly in H1
0 (Ω′), qελ,µ ⇀ µ weakly in L2(Ω′)



10 G.A. FRANCFORT, A. GIACOMINI, AND A. MUSESTI

and(
−div[Aε(∇wελ,µ − qελ,µαε)],−ε2div(Bε∇qελ,µ) + dεqελ,µ −Aεαε · (∇wελ,µ − qελ,µαε)

)
= C−1(ϕ(x)λ · x, µ) in H−1(Ω′)× L2(Ω′).

Moreover, in view of (4.6), ‖ε∇ϑελ,µ‖L2(Ω′;RN ) is bounded.

Consider the restriction of (wελ,µ, q
ε
λ,µ) to Ω. Then (4.1), (4.2), (4.3) and (4.4) are satisfied. �

Let us still denote by ε the subsequence given by Proposition 4.1, and let (wελ,µ, q
ε
λ,µ) be the

associated functions. The dependence of (wελ,µ, q
ε
λ,µ) upon (λ, µ) is clearly linear. It is therefore

no restriction, up to the possible expense of extracting a further subsequence, to assume that

(4.9)



(dε +Aεαε · αε)qελ,µ ⇀ d0µ+ e0 · λ weakly in L2(Ω)

Aεαε · ∇wελ,µ ⇀ l0µ+ f0 · λ weakly in L2(Ω)

qελ,µA
εαε ⇀ µp0 +H0λ weakly in L2(Ω;RN )

Aε∇wελ,µ ⇀ µn0 +A0λ weakly in L2(Ω;RN )

for suitable

(4.10) d0, l0 ∈ L2(Ω), e0, f0, p0, n0 ∈ L2(Ω;RN ), A0, H0 ∈ L2(Ω; MN ).

Remark 4.2. In the following, we make repeated use of the following facts: if vε ⇀ v weakly in
H1(Ω) and gε ⇀ g weakly in L2(Ω), then for every ϕ ∈ C∞c (Ω)

(4.11) lim
ε

∫
Ω

ϕAε(∇wελ,µ − qελ,µαε) · ∇vε dx =

∫
Ω

ϕ[(A0 −H0)λ+ (n0 − p0)µ] · ∇v dx

and

(4.12) lim
ε

∫
Ω

ϕ[−ε2div(Bε∇qελ,µ) + dεqελ,µ −Aεαε · (∇wελ,µ − qελ,µαε)]gε dx

=

∫
Ω

ϕ[(e0 − f0) · λ+ (d0 − l0)µ]g dx.

Equation (4.11) is a consequence of (4.2) and of the classical div-curl lemma (see [12]). Equation
(4.12) is a consequence of (4.3) and of the fact that

−ε2div(Bε∇qελ,µ)+dεqελ,µ−Aεαε·(∇wελ,µ−qελ,µαε)→ (e0−f0)·λ+(d0−l0)µ strongly in L2(Ω).

The term −ε2div(Bε∇qελ,µ) is essential for erasing possible oscillations, but it does not play any

role in the identification of the limit since ε∇qελ,µ is bounded in L2(Ω;RN ) (see (4.4)). ¶

The following proposition contains some important properties of the functions defined in (4.10).

Proposition 4.3. The following items hold true:

(a) n0 − p0 = e0 − f0, a.e. in Ω;
(b) A0 −H0 ∈ MN

sym (and is positive definite), a.e. in Ω;

(c) A.e. in Ω, and for any λ ∈ RN and µ ∈ R,

(4.13) (A0 −H0)λ · λ+ 2(n0 − p0) · λµ+ (d0 − l0)µ2 ≥ β{|λ|2 + µ2};

(d) A.e. in Ω and for any λ ∈ RN and µ ∈ R,

(4.14) (A0 −H0)λ · λ+ 2(n0 − p0) · λµ+ (d0 − l0)µ2 ≥
1

γ

{∣∣(A0 −H0)λ+ µ(n0 − p0)
∣∣2 +

(
(d0 − l0)µ+ (n0 − p0) · λ

)2}
.
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Proof. We begin with item (a). Write, for every λ ∈ RN and µ ∈ R,

Aε(∇wελ,0 − qελ,0αε) · ∇wε0,µ −Aε(∇wε0,µ − qε0,µαε) · ∇wελ,0
− (−ε2div(Bε∇qε0,µ) + dεqε0,µ −Aεαε · (∇wε0,µ − qε0,µαε))qελ,0
+ (−ε2div(Bε∇qελ,0) + dεqελ,0 −Aεαε · (∇wελ,0 − qελ,0αε))qε0,µ

= ε2div(Bε∇qε0,µ)qελ,0 − ε2div(Bε∇qελ,0)qε0,µ.

Multiplying by ϕ ∈ C∞c (Ω) and integrating over Ω, we obtain that the right-hand side can be
written as

−ε2
∫
Ω

(
Bε∇qε0,µ∇(ϕqελ,0)−Bε∇qελ,0∇(ϕqε0,µ)

)
dx = −ε2

∫
Ω

[qελ,0B
ε∇qε0,µ − qε0,µBε∇qελ,0] · ∇ϕdx.

Thanks to (4.4), the right-hand side vanishes as ε→ 0. Concerning the left-hand side, by Remark
4.2 we obtain ∫

Ω

ϕ[(−n0 + p0) · λµ+ (e0 − f0) · λµ] dx = 0

from which, in view of the arbitrariness of ϕ, λ, µ we deduce that n0 − p0 = e0 − f0.

Let us now prove the first part of item (b). For every λ, λ′ ∈ RN ,

Aε(∇wελ,0 − qελ,0αε) · ∇wελ′,0 −Aε(∇wελ′,0 − qελ′,0αε) · ∇wελ,0
− (−ε2div(Bε∇qελ′,0) + dεqελ′,0 −Aεαε · (∇wελ′,0 − qελ′,0αε))qελ,0
+ (−ε2div(Bε∇qελ,0) + dεqελ,0 −Aεαε · (∇wελ,0 − qελ,0αε))qελ′,0

= ε2div(Bε∇qελ′,0)qελ,0 − ε2div(Bε∇qελ,0)qελ′,0.

Multiplying by ϕ ∈ C∞c (Ω), integrating over Ω, and sending ε→ 0, we obtain, arguing as above,∫
Ω

ϕ[(A0 −H0)λ · λ′ − (A0 −H0)λ′ · λ] dx = 0

from which we deduce that A0(x)−H0(x) is symmetric for a.e. x ∈ Ω.

We now come to item (c) and to the second part of item (b). For every ϕ ∈ C∞c (Ω), ϕ ≥ 0, we
can write, in view of (3.2), (3.3),∫

Ω

ϕ
{
Aε(∇wελ,µ− qελ,µαε) · (∇wελ,µ − qελ,µαε) + ε2Bε∇qελ,µ · ∇qελ,µ + dε(qελ,µ)2

}
dx

≥ β
∫
Ω

ϕ
{
|∇wελ,µ|2 + (qελ,µ)2

}
dx.

In view of (4.4), the left hand-side also reads as∫
Ω

ϕ
{
Aε(∇wελ,µ−qελ,µαε)·∇wελ,µ+(−ε2div(Bε∇qελ,µ)+dεqελ,µ−Aεαε·(∇wελ,µ−qελ,µαε))qελ,µ

}
dx+O(ε),

where O(ε) → 0 as ε → 0. By Remark 4.2, and taking into account that n0 − p0 = e0 − f0 we
obtain that, with ε→ 0,∫

Ω

ϕ
{

(A0 −H0)λ · λ+ 2(n0 − p0) · λµ+ (d0 − l0)µ2
}
dx ≥ β{|λ|2 + µ2}

∫
Ω

ϕdx

from which we infer that (4.13) holds true, a.e. in Ω.
We immediately deduce from that relation that A0−H0 is positive definite, so that the second

part of item (b) holds true.

Finally the proof of item (d) relies on (3.4). Indeed, test that inequality with λ = Aε(∇wελ,µ−
qελ,µα

ε), and µ =
(
dεqελ,µ −Aεαe · (∇wελ,µ− qελ,µαε)

)
. For every ϕ ∈ C∞c (Ω), ϕ ≥ 0, we get, using
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(3.2) once again,∫
Ω

ϕ
{
Aε(∇wελ,µ− qελ,µαε) · (∇wελ,µ − qελ,µαε) + ε2Bε∇qελ,µ · ∇qελ,µ + dε(qελ,µ)2

}
dx

≥ 1

γ

∫
Ω

ϕ
{
|Aε(∇wελ,µ − qελ,µαε)|2 +

(
(dε +Aεαε · αε)qελ,µ −Aεαe · ∇wελ,µ

)2}
dx.

As before, we pass to the limit as ε→ 0. We obtain the result upon appealing to (4.9) and after
localizing in x. �

We are now in a position to define the homogenized coefficients for problem (3.1).

Definition 4.4 (Homogenized coefficients). Let A0, H0, d0, l0, n0, p0 be defined in (4.9) and
(4.10). We set

Ahom := A0 −H0, αhom = −[Ahom]−1(n0 − p0), dhom := d0 − l0 −Ahomαhom · αhom.

Note that the definition makes sense in view of item (b) in Proposition 4.3. We also have the
following

Proposition 4.5. (Ahom, αhom, dhom) ∈M(β,γ;Ω) defined in (3.5).

Proof. In view of (4.13), we immediately obtain that, a.e. in Ω, and for any λ ∈ RN and µ ∈ R

(4.15) Ahom(λ− µαhom) · (λ− µαhom) + dhomµ2 ≥ β{|λ|2 + µ2}.
We now rewrite (4.14) similarly. We obtain, a.e. in Ω, and for any λ ∈ RN and µ ∈ R

(4.16) Ahom(λ− µαhom) · (λ− µαhom) + dhomµ2 ≥

1

γ
{|Ahom(λ− µαhom)|2 +

(
dhomµ−Ahomαhom · (λ− µαhom)

)2}.
For any (λ̄, µ̄) ∈ RN × R and a.e. x ∈ Ω, we solve{

Ahom(λ− µαhom) = λ̄

dhomµ−Ahomαhom · (λ− µαhom) = µ̄,

getting the possibly x-dependent solution

λ = (Ahom)−1λ̄+
αhom

dhom
(µ̄+ αhom · λ̄) and µ =

1

dhom
(µ̄+ αhom · λ̄).

Replacing in (4.16), we finally get, a.e. in Ω and for any λ̄ ∈ RN and µ̄ ∈ R

(4.17) (Ahom)−1λ̄ · λ̄+
1

dhom
(µ̄+ αhom · λ̄)2 ≥ 1

γ
{|λ̄|2 + µ̄2}.

In view of (4.15), (4.17), the result follows. �

5. The homogenization result

The following theorem is the main result of the paper.

Theorem 5.1. Assume (3.2) and that (Aε, αε, dε) ∈ M(β,γ;Ω) defined in (3.5). Let {ε} denote
the subsequence given by Proposition 4.1, and let (Ahom, αhom, dhom) ∈M(β,γ;Ω) be the associated
homogenized coefficients given in Definition 4.4 (and Proposition 4.5).

For every f ∈ H−1(Ω), let (uε, ϑε) ∈ H1
0 (Ω)×H1(Ω) be the solution of

(5.1)


−div[Aε(∇uε − ϑεαε)] = f in Ω

uε = 0 on ∂Ω

−ε2div(Bε∇ϑε) + dεϑε −Aεαε · (∇uε − ϑεαε) = 0 in Ω

Bε∇ϑε · n = 0 on ∂Ω
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(see Proposition 3.3). Then, as ε→ 0,

uε ⇀ u weakly in H1
0 (Ω) and ϑε ⇀ ϑ weakly in L2(Ω),

where (u, ϑ) ∈ H1
0 (Ω)× L2(Ω) is such that

(5.2)


−div[Ahom(∇u− ϑαhom)] = f in Ω

u = 0 on ∂Ω

dhomϑ − Ahomαhom · (∇u− ϑαhom) = 0 in Ω.

In particular, u ∈ H1
0 (Ω) solves

(5.3)

−div
[(
Ahom − Ahomαhom ⊗Ahomαhom

dhom +Ahomαhom · αhom

)
∇u
]

= f in Ω

u = 0 on ∂Ω.

Proof. Let us fix a subsequence of ε (not relabeled) such that

uε ⇀ u weakly in H1
0 (Ω) and ϑε ⇀ ϑ weakly in L2(Ω),

for some (u, ϑ) ∈ H1
0 (Ω) × L2(Ω). This is possible in view of estimate (3.6) and Poincaré’s

inequality. For every λ ∈ RN and µ ∈ R we consider the auxiliary functions (wελ,µ, q
ε
λ,µ) given by

Proposition 4.1.
For every ϕ ∈ C∞c (Ω),

(5.4) 0 =

∫
Ω

ϕ
(
−ε2div(Bε∇ϑε) + dεϑε −Aεαε · (∇uε − ϑεαε)

)
qελ,µ dx

= ε2
∫
Ω

qελ,µB
ε∇ϑε · ∇ϕdx− ε2

∫
Ω

ϑεBε∇ϕ · ∇qελ,µ dx

+

∫
Ω

ϕ
(
−ε2div(Bε∇qελ,µ) + dεqελ,µ −Aεαε · (∇wελ,µ − qελ,µαε)

)
ϑε dx

−
∫
Ω

ϕAε(∇uε − ϑεαε) · ∇wελ,µ dx+

∫
Ω

ϕAε(∇wελ,µ − qελ,µαε) · ∇uε dx

where the first equality holds in view of the third equation in (3.1). The first two terms on the
right-hand side of the second equality vanish as ε→ 0 since, thanks to (3.2), (3.6), (4.1) and (4.4),

sup
ε

(
‖Bε‖L∞(Ω;MN

sym) + ‖ϑε‖L2(Ω) + ‖ε∇ϑε‖L2(Ω;RN ) + ‖qελ,µ‖L2(Ω) + ‖ε∇qελ,µ‖L2(Ω;RN )

)
<∞.

Setting

σε := Aε(∇uε − ϑεαε),
we can assume that there exists σ ∈ L2(Ω;RN ) such that up to a subsequence

σε ⇀ σ weakly in L2(Ω;RN ).

Clearly, in view of the first equation in (5.1),

(5.5) −div σ = f in Ω.

Thanks to Remark 4.2, we can pass to the limit in the right hand-side of the second equality in
(5.4) obtaining, since e0 − f0 = n0 − p0 in view of Proposition 4.3, and ϕ is arbitrary,σ = (A0 −H0)∇u+ (n0 − p0)ϑ

ϑ = −n
0 − p0

d0 − l0
· ∇u,

a.e. in Ω. In particular,

σ =

(
A0 −H0 − (n0 − p0)⊗ (n0 − p0)

d0 − l0

)
∇u.

In view of the very definition of Ahom, αhom, dhom, and of equation (5.5), we get that (u, ϑ) is
a solution of (5.2). In particular u is a solution of the elliptic problem (5.3). Since, according
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to Remark 3.2, the matrix in (5.3) is coercive, u, hence ϑ, are uniquely determined. As a conse-
quence, there is no need to pass to further subsequences in the previous argument and the proof
is concluded. �

Remark 5.2. The tool of H-convergence can be employed also in the case of a non symmetric
matrix Aε. Namely, one can study the asymptotic behaviour of solutions of the more general
problem

(5.6)


−div[Aε(∇uε − ϑεαε)] = f in Ω

uε = 0 on ∂Ω

−ε2div(Bε∇ϑε) + dεϑε − (Aε)Tαε · (∇uε − ϑεαε) = 0 in Ω

Bε∇ϑε · n = 0 on ∂Ω,

where the matrix Aε is not required to be symmetric. This can be done at the expense of consider-
ing additional auxiliary functions (w̃λ,µ, q̃λ,µ) associated to the transposed system and computing
the relative homogenized coefficients, as in Section 4. Note that problem (5.6) reduces to (5.1) in
case Aε symmetric. ¶

6. The Fleck & Willis setting

As alluded to in the introduction, in the presence of body loads f ∈ H−1(Ω;RN ) and in the
absence of surface loads or boundary displacements, the strain gradient plasticity model considered
in [5] amounts to considering the minimum configurations (uε, pε) in H1

0 (Ω;RN )×H1(Ω; MN
D) for

an energy of the form

(u, p) 7→ Eε(u, p)−
∫
Ω

f · u dx.

The internal energy Eε(u, p) in the quadratic case is given by the expression

(6.1) Eε(u, p) :=
1

2

∫
Ω

Cε(x)(E(u)− p) : (E(u)− p) dx+
1

2

∫
Ω

bε(x)[|p|2 + ε2`2|∇p|2] dx.

The associated Euler-Lagrange equations are

(6.2)


−div[Cε(E(uε)− pε)] = f in Ω

u = 0 on ∂Ω

−ε2`2div(bε∇pε) + bεpε − Cε(E(uε)− pε) = 0 in Ω
∂pε

∂n
= 0 on ∂Ω,

where n denotes the exterior normal vector to Ω at a point of ∂Ω.
The natural assumptions in strain gradient plasticity are as follows: Cε and bε are measurable,

Cε ∈ Ls(MN
sym) a.e. in Ω, and, for some 0 < β < γ,

(6.3) β ≤ bε ≤ γ and βId ≤ Cε ≤ γId,

Id denoting the identity in Ls(MN
sym). Under assumption (6.3), the existence of γ̂ > β̂ > 0 such

that, for a.e. x ∈ Ω and for every (e, p) ∈ MN
sym ×MN

D ,
Cε(x)(e− p) · (e− p) + bε(x)|p|2 ≥ β̂(|e|2 + |p|2)

(Cε)−1(x)e · e +
1

bε(x)
|e+ p|2 ≥ 1

γ̂
{|e|2 + |p|2}

is immediate. Then, the proof of Theorem 5.1 can be reproduced word for word in this new
setting at the expense of the use of Korn’s inequality (which, in H1

0 (Ω;RN ), does not require any
smoothness assumptions on the domain Ω).
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Upon defining, for every e ∈ MN
sym and q ∈ MN

D , W ε
e,q ∈ H1(Ω;RN ) and Qεe,q ∈ H1(Ω; MN

D)
such that

(6.4)



W ε
e,q ⇀ ex weakly in H1(Ω;RN ), Qεe,q ⇀ q weakly in L2(Ω; MN

D)

−div[Cε(E(W ε
e,q)−Qεe,q)] compact in H−1(Ω;RN )

−ε2`2div(bε∇Qεe,q) + bεQεe,q − Cε(E(W ε
e,q)−Qεe,q) compact in L2(Ω; MN

D)

ε‖∇Qεe,q‖L2(Ω;(MN
D)N ) is bounded,

we set, up to the possible expense of extracting a further subsequence,

(6.5)



(bεId+ Cε)Qεe,q ⇀ D0q + E0e weakly in L2(Ω; MN
sym)

CεQεe,q ⇀ P0q + H0e weakly in L2(Ω; MN
sym)

CεE(W ε
e,q) ⇀ N0q + A0e weakly in L2(Ω; MN

sym)

for suitable

D0,E0,P0,N0,A0,H0 ∈ L2(Ω;L(MN
sym)).

It is then easily checked that the analogue of Proposition 4.3 holds true. In particular,

(6.6)


N0 − P0 = (E0 − A0)T ∈ L∞(Ω;L(MN

sym))

A0 −H0 ∈ L∞(Ω;Ls(MN
sym)) and A0 −H0 ≥ β̂Id

D0 − N0 ∈ L∞(Ω;Ls(MN
sym)) and D0 − N0 ≥ β̂Id.

In view of (6.6), the following definitions are meaningful:

(6.7) Chom := A0 −H0, Ahom := −(Chom)−1(N0 − P0), Dhom := D0 −N0 − (Ahom)TChomAhom,

and

Chom − ChomAhom
(
Dhom + (Ahom)TChomAhom

)−1
(Ahom)TChom ≥ β̂Id.

We finally get the following result:

Theorem 6.1. Assuming (6.3), there exists a subsequence of {ε} (not relabeled) such that, as
ε→ 0, (uε, pε) solutions of (6.2) satisfy

uε ⇀ u weakly in H1
0 (Ω;RN ) and pε ⇀ p weakly in L2(Ω; MN

D),

where (u, p) ∈ H1
0 (Ω;RN )× L2(Ω; MN

D) is such that

(6.8)


−div[Chom(E(u)− Ahomp)] = f in Ω

u = 0 on ∂Ω

Dhomp− (Ahom)TChom(E(u)− Ahomp) = 0 in Ω.

In particular, u ∈ H1
0 (Ω;RN ) solves{

−div
[(

Chom − (ChomAhom
(
Dhom + (Ahom)TChomAhom

)−1
(Ahom)TChom

)
E(u)

]
= f in Ω

u = 0 on ∂Ω.

Remark 6.2. Note that the solution (u, p) of (6.8) can be equivalently seen as the minimizer on
H1

0 (Ω;RN )× L2(Ω; MN
D) of

Fhom(ū, p̄) :=
1

2

∫
Ω

(
Chom(E(ū)− Ahomp̄) · (E(ū)− Ahomp̄) + Dhomp̄ · p̄

)
dx−

∫
Ω

f · ū dx.

¶
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Remark 6.3. In the particular case where Cε = Ĉ, i.e., when the elastic moduli do not oscillate,
we deduce easily from (6.5) and (6.6) that

A0 = P0 = Ĉ, E0 = N0 = H0 = 0,

and that for every q ∈ MN
D

D0q = Ĉq + lim
ε
bεQε0,q.

We then obtain

Chom = Ĉ, Ahom = Id,

and for every q ∈ MN
D

Dhomq = lim
ε
bεQε0,q.

We conclude that

Fhom(ū, p̄) :=
1

2

∫
Ω

(
Ĉ(E(ū)− p̄) · (E(ū)− p̄) + Dhomp̄ · p̄

)
dx−

∫
Ω

f · ū dx.

The elastic part of the functional remains thus unchanged in the homogenization limit. Because
the tensor Dhom occurring in the plastic part is constructed with the help of bε and Qε0,q, it will
depend on the plastic and elastic moduli of Ω, as well as on the characteristic length scale `. ¶

In the periodic case, which is the focus of [7], the functions bε and Cε are given as b(xε ), resp.

C(xε ), where y 7→ (b(y),C(y)) is an e.g. bounded measurable function on Y := (0, 1)N , extended

by periodicity to all of RN . In our setting, it is sufficient to identify the functions W ε
e,q, Q

ε
e,q. A

straightforward computation would establish that, denoting by We,q(y) ∈ H1
per,0(Y ;RN ), Qe,q(y) ∈

H1
per(Y ; MN

D) with
∫
Y
Qe,q dy = q the minimum of (1.4), then a good candidate for (6.4) is

W ε
e,q(x) := ex+ εWe,q

(x
ε

)
and Qεe,q(x) := Qe,q

(x
ε

)
.

Thanks to Riemann-Lebesgue’s lemma, the energy Fhom(e, q) defined in (1.4) is the weak L1-limit
of

1

2

(
C
(x
ε

)
(E(W ε

e,q)−Qεe,q) · (E(W ε
e,q)−Qεe,q) + b

(x
ε

) (
|Qεe,q|2 + ε2`2|∇Qεe,q|2

))
.

But that weak limit is in turn that of

(6.9)
1

2

(
C
(x
ε

)
(E(W ε

e,q)−Qεe,q) · E(W ε
e,q)

+
[
b
(x
ε

)
Qεe,q − C

(x
ε

)
(E(W ε

e,q)−Qεe,q)− ε2`2div
(
bε
(x
ε

)
∇Qεe,q

)]
Qεe,q

)
,

as immediately seen upon testing both limits against a C∞c (Ω)-function and appealing to the
fourth relation in (6.4).

In view of (6.5), (6.7), the weak limit of (6.9) is found to be

1

2

(
Chom(e− Ahomq) · (e− Ahomq) + Dhomq · q

)
,

so that Fhom in Remark 6.2 equivalently reads as

Fhom(ū, p̄) :=
1

2

∫
Ω

Fhom (E(ū), p̄) dx−
∫
Ω

f · ū dx,

which is precisely the result obtained in [7].
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