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We derive the homogenized governing equations for
a double porosity system where the fluid flow within
the individual compartments is governed by the
coupling between the Darcy and the Darcy–Brinkman
equations at the microscale, and are subjected to
inhomogeneous body forces. The homogenized
macroscale results are obtained by means of the
asymptotic homogenization technique and read as a
double Darcy differential model with mass exchange
between phases. The role of the microstructure is
encoded in the effective hydraulic conductivities
which are obtained by solving periodic cell problems
whose properties are illustrated and compared. We
conclude by solving the new model by means of a
semi-analytical approach under the assumption of
azimuthal axisymmetry to model the movement of
fluid within a lymph node.

1. Introduction
Flow of a Newtonian fluid inside a rigid porous
matrix can be macroscopically described by Darcy’s Law.
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The law was formulated by Henry Darcy based on the results of experiments on the
flow of water through beds of sand [1], and can be rigorously derived by a large variety of
upscaling methods such as mixture theory and asymptotic homogenization, see, e.g. [2] and [3,4],
respectively. An alternative approach that describes the fluid flow of a Newtonian fluid inside a
rigid porous matrix relies on the Darcy–Brinkman equation. The equation has been introduced by
Brinkman adding the so-called Brinkman term, that is, an additional viscous term to the classical
Darcy equation [5], represented by a Laplacian weighted by an effective viscosity μe. This model
has been used widely to analyse high-porosity porous media. In particular, the Darcy–Brinkman
formulation allows us to specify the boundary conditions [6] and the interaction between a free-
fluid region and a porous region [7], having a differential form similar to the Stokes’ one. Despite
its practical feedback, the Darcy–Brinkman equation is more complex and less straightforward to
justify than Darcy’s Law via upscaling method such as homogenization, see, e.g. [3,8,9], and is
also computationally more demanding. Furthermore, the Darcy and Darcy–Brinkman equations
possess very different differential structures.

In this article, we derive a new macroscale model which is obtained by upscaling a system of
partial differential equations resulting from the coupling between Darcy’s and Darcy–Brinkman’s
models. This means that, while we are considering the interactions between two porous media,
pore-scale inhomogeneities are already ‘smoothed out’ from a geometrical viewpoint, and
the upscaling process is performed by considering the interaction between the two phases
at the mesoscale level. The two media are both considered intrinsically incompressible and
subjected to inhomogeneous body forces, which can, for example, arise from the application of
electromagnetic fields on e.g. magnetorheological fluids or electrolytes, see also [10]. We have
also assumed that the two compartments are exchanging mass through their interface, which is
modelled as a semi-permeable membrane. As a result, we obtain a double porosity macroscale
model which is equipped with an effective source. This latter comprises contributions related
to both the meso- and macroscale variations of the prescribed body forces mediated by the
properties of the mesoscale structure, as well as mass exchange terms involving the pressure
jumps between the two compartments at the macroscale.

The derivation of the macroscopic equations related to this problem is as general as possible,
so the model is applicable to a large variety of scenarios of interest involving multiscale fluid
flow in porous media. However, the chief motivation driving the present study is the application
of the results to fluid flow within a lymph node. The lymph node is an essential component
of the immune and lymphatic system, playing a critical role in safeguarding the body against
infection and disease. It accomplishes this by harbouring lymphocytes, including B and T cells,
which travel through the bloodstream and reside within the nodes. B cells are responsible for
generating antibodies that specifically attach to antigens, thus initiating an immune response.
When B cells are stimulated, they can transform into plasma cells, which secrete antibodies,
or memory cells that provide defence in future encounters. Additionally, antigen-presenting
cells, such as dendritic cells, capture and process antigens from various sources. These cells
migrate to the lymph nodes, presenting the antigens to T cells to activate them and start the
adaptive immune response [11,12]. These substances are transported inside the nodes (which
are scattered throughout the lymphatic system) by the interstitial fluid, called lymph once inside
the lymphatic system [12]. The main features of the lymph node from a mechanical point of
view are the presence of a thin channel near the wall (subcapsular sinus, SCS) where the fluid
can flow freely surrounding a porous core (lymphoid compartment, LC) that is the parenchyma
of the lymph node [13], where the fluid can enter from the SCS through a conduit system
network [14–16] formed by fibroblastic reticular cells (FRCs). We can see a reconstruction of this
conduit system in figure 1. The lymph flow inside lymph nodes has various important functions,
such as directing the distribution of macromolecules, enhancing ligand expression, aligning the
extracellular matrix and facilitating cell migration [11]. Additionally, the fluid flow through the
endothelial monolayers and fibroblastic reticular cell (FRC) network enhances the expression
of chemokines, that generate a chemokine gradient by entering the lymph node, which helps
in directing the localization and migration of immune cells [11,12]. Increased fluid flow also
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Figure 1. Reconstruction of the conduit systemnetwork (in yellow) and of the blood vessel network (in red) inside the lymphoid
compartment. This figure is taken from [15] and reproduced with permission from Bocharov.

enhances the proliferation and drug sensitivity of certain types of lymphomas [17]. The study
of fluid flow is significant in understanding tumour metastasis [18] and drug transport [19].
Furthermore, damage to or removal of lymph nodes can lead to lymphœdema [20,21], a condition
related to inadequate lymph transport [20]. In particular, in this paper we focus our attention
on the porous region of the lymph node (the LC) and the fluid exchange between the node
and the blood vessels, which are only in this part of the node [22–24]; using the hypothesis of
axisymmetry and isotropy of the porous medium, we find an explicit solution and analyse it by
varying physiological parameters related to the lymph node.

As far as we know, the lymph flow through a lymph node has not been extensively explored
from a mechanical and fluid dynamical perspective, and only a few models in the literature
try to describe the behaviour of a lymph node (LN) from a fluid dynamical point of view
[25,26]. In [27,28], they simulate the fluid flow inside the lymph node using an image-based
modelling approach to investigate how the internal structure of the node affects the fluid
flow pathways within the node. In [22], they developed a computational flow model based
on the mouse popliteal LN, and they identify the important system characteristics by doing a
parameter sensitivity analysis. In [15], they propose an object-oriented computational algorithm
to model the three-dimensional geometry of the fibroblastic reticular cell graph network and
the microvasculature, and then they analyse the lymph flow properties through the edges
and the vertex of the conduit network. In [16], they developed a computational modelling
algorithm that generates the conduit system graph network and then they study the fluid flow
inside them imposing momentum balance along each segment and mass conservation in every
node of the network. In [29], they developed a microfluidic platform replicating the lymph
node microenvironment, they simulate the fluid flow in this microenvironment and then they
visualize the direction of the fluid flow within the device using live imaging microscopy. Another
microfluidic platform was developed by Birmingham et al. [18] that recreates the fluid dynamics
of the lymph node’s subcapsular sinus microenvironment; they estimate the levels of wall shear
stress and evaluate how physiological flow patterns impact the adhesion of metastatic cancer
cells. Tretiakova et al. [30] developed an artificial neural network model to describe the lymph
node drainage function. The first attempts to describe the fluid flow in the lymph node from a
more explicit point of view are in [31,32], where an explicit and a numerical solution are presented
in a time-dependent setting in simplified geometries (a very idealized geometry for [31] and a
spherical geometry in [32]), without considering the drainage of the blood vessels. The model
presented in this work allows us to describe the blood vessel’s drainage function in the lymph
node considering the multiscale nature of the latter, obtaining a rigorous mathematical model
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using the asymptotic homogenization technique that describes the fluid flow inside both the FRC
and the blood vessels networks. Moreover, thanks to the fact that we start with a formulation that
is already smoothed out, we do not need precise information about the microstructure geometry
of the lymph node, which is in general very complex and hard to describe.

The work is organized as follows. In §2, we define the starting equations of our problem.
We formulate the balance equations of Continuum Mechanics and the corresponding boundary
conditions. In §3, we use the asymptotic homogenization technique to find the equations that
describe the motion of the fluid at the macroscale, one starting with the Darcy–Brinkman equation
and the other with the Darcy equation, and to describe the fluid exchange between them. In §4, we
find the macroscopic equations by averaging the leading order terms of the asymptotic expansion.
In §5, we analyse the difference in having as a microscale cell problem Darcy, Darcy–Brinkman or
Stokes, finding an explicit result to the microscale cell problem in a specific case. In §6, we find the
macroscopic explicit solution in a sphere with axisymmetry and isotropic permeability in terms
of Bessel’s and Legendre’s polynomials. Finally, in §7, we analyse the solution found in §6 with
lymph node physiological data obtained from the literature.

2. Statement of the problem
Let us consider a domain Ω =Ωv ∪Ωm, where Ωm and Ωv are the portions of the domain that
indicate two different phases. The labels m and v stand for the matrix and the vessel regions,
respectively.

We use Darcy equation with inhomogeneous body forces to describe the fluid flow in the
domain Ωv [10]:

uv(x) = −K̂v(x)(∇pv(x) − f v(x)) in Ωv
∇ · uv(x) = 0 in Ωv .

}
(2.1)

The Darcy–Brinkman equation with inhomogeneous body forces in the phase Ωm can be written
as

−∇pm(x) − K̂
−1
m (x)um(x) + μe�um(x) + f m(x) = 0 in Ωm

∇ · um(x) = 0 in Ωm.

}
(2.2)

Here we are considering two fluid phases: one inΩv and one inΩm. For γ = v, m, uγ is the velocity
of the fluid, pγ the pressure, fγ the external force density, K̂γ (x) is hydraulic conductivity tensor,
which is given by the permeability tensor divided by the viscosity μ of the fluid, and μe is the
effective viscosity. We assume that the hydraulic conductivity tensor is symmetric and positive
definite, that is

K̂γ (x) = K̂
T
γ (x), ∀a �= 0 : a · K̂γ (x) · a> 0.

As our starting points are the Darcy and Darcy–Brinkman representations, the pore structure
is considered already smoothed out, and the microscale geometry information is encoded in the
hydraulic conductivity K̂γ (x).

The interface conditions are prescribed as follows:

uv(x) · n = um(x) · n = Lp(pm(x) − pv(x) − p̄) on Γ

um(x) · τ = −
√
μK̂m(x)
α

[(n · ∇)um(x)] · τ on Γ ,

}
(2.3)

where Γ = ∂Ωm ∩ ∂Ωv is the interface between the domains Ωv and Ωm, n the outer normal to
Ωm, τ any tangential vector to Γ , p̄ is a constant and α is a constant that must be found with
experiments. The second equation of (2.3) is the Beavers–Joseph–Saffman boundary condition [33],
which is a quite general interface condition on the tangent component of the velocity; instead,
for the normal component of the velocity, we impose the interface condition described by the
first equation of (2.3). We impose this type of interface condition having in mind biological
applications of this model (such as lymph nodes, tumours); indeed, if we have p̄ = σ (πm − πv),
we obtain the Starling equation [34,35], which describes the fluid exchange between two different
phases separated by a membrane, where σ is the Staverman’s reflection coefficient, πv the oncotic
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Figure 2. The cell problem domainsΩv (blue on the left) andΩm (gray on the right), with the geometrical parameters in
dimensional form, where rc is the radius of the cylinders, d is the microscale variable, and r̂c = rc/d.

pressure of phaseΩv and πm the oncotic pressure of phaseΩm. For simplicity, in this work, we assume
that the oncotic pressures πv and πm are constant, although in general, they can depend on the
concentration of solutes which vary over time and space [36,37]. The quantity Lp is given by
experimental measurements and depends on both the geometry and the tissue wall material of the
intersection Γ . Nevertheless, our model remains valid for other choices of boundary conditions.

Now we want to write the Darcy–Brinkman equation and the interface conditions in a non-
dimensional form; we define the following non-dimensional quantities (denoted with a prime
symbol):

p = Pp′, u = Uu′, x = Lx′ and ε = d
L

,

where P is the characteristic pressure, U is the characteristic velocity, d is the fine scale length
and L is the coarse scale length. In particular, d physically represents the distance between two
vascularized regions. Here we are not resolving the fine details characterizing individual vessels
and we instead represent the vascular network region as a domainΩv geometrically consisting of
interconnected cylinders (figure 2), where Darcy’s Law holds. As such, d is then identified as the
distance between two such adjacent cylinders. C is a representative pressure gradient (with P = CL),
say:

C = U
Kref

,

where Kref is the representative (scalar) value for the hydraulic conductivity given by

Kref ≈ d2

μ
,

and we set

K′
γ = K̂γ

Kref
and f ′

γ =
fγ
C

,

where γ = m, v. Substituting into (2.2) and omitting the primes, we obtain:

−∇pm(x) − K−1
m (x)um(x) + μ̂�um(x) + f m(x) = 0 in Ωm,

∇ · um(x) = 0 in Ωm,

}
(2.4)

where

μ̂= Krefμe

L2 .

Assuming that μe ≈μ, we have μ̂≈ O(ε2).
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Substituting these relations into (2.1) and (2.4), we obtain the non-dimensional equations:

uv(x) = −Kv(x)(∇pv(x) − f v(x)) in Ωv
∇ · uv(x) = 0 in Ωv ,

}
(2.5)

and
−∇pm(x) − K−1

m (x)um(x) + ε2μ∗�um(x) + f m(x) = 0 in Ωm,
∇ · um(x) = 0 in Ωm,

}
(2.6)

where μ∗ =μe/μ.
Now we want to non-dimensionalize the interface conditions (2.3): by the Starling equation,

the flux Jv passing through the interface between the two phases is given by

Jv = LpS̄(pm(x) − pv(x) − p̄),

where S̄ is the total exchange surface density. From the fact that d is related to the distance between
the vessels of the domain Ωv , we have

S̄ ∝ L
d

= 1
ε

.

It is likely that the measured flux of a specific area of tissue will remain finite, even if the number
of capillaries and their total surface area within that volume increases; hence we need to scale the
interface condition by ε to have a finite flux. The same conclusion can also be recovered for the
Beavers–Joseph–Saffman interface condition (see [36] for more details).

Then, if we non-dimensionalize and we substitute the previous fact into equation (2.3) we have

uv(x) · n = um(x) · n = εL̄p(pm(x) − pv(x) − p̄) on Γ

um(x) · τ = −ε
√

Km(x)
α

[(n · ∇)um(x)] · τ on Γ ,

}
(2.7)

where L̄p = LpμL2/d3 [36].

3. Asymptotic homogenization
In this section, we employ the asymptotic homogenization technique [3,4] to derive a continuum
macroscale model for the systems (2.5)–(2.7). Since we suppose ε = (d/L) � 1, we enforce the sharp
length-scale separation between d (fine scale) and L (coarse scale) and we decouple spatial scales
by introducing a new local variable

y = x
ε

, (3.1)

where x and y represent the coarse and fine scale spatial coordinates, respectively. They have to
be formally considered independent variables. From now on, pγ , uγ , Kγ and fγ (where γ = m, v)
are assumed to depend on both x and y.

Before we start with the asymptotic homogenization technique, we recall some assumptions
concerning the geometry of the multiscale problem:

— Local periodicity: we assume that pγ , uγ , Kγ and fγ are y-periodic. This assumption allows
us to study fine scale variations of the fields on a restricted portion of the domain. In
particular, we have thatΩ is the periodic cell domain, andΩm andΩv are the portions of
the domain Ω related to the two different phases.

— Macroscopic uniformity: we neglect geometric variations of the cell and inclusions with
respect to the coarse scale variable x. Thanks to this assumption, we can consider only
one periodic cell Ωγ for every macroscale point x, and we have that

∇x ·
∫
Ωγ

(·) dy =
∫
Ωγ

∇x · (·) dy. (3.2)
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The differential operator transforms accordingly

∇ → ∇x + 1
ε
∇y. (3.3)

Now we employ a power series representation with respect to ε as follows (with γ = m, v):

uγ (x, y) ≡ uεγ (x, y) =
∞∑

l=0

u(l)
γ (x, y)εl, (3.4)

pγ (x, y) ≡ pεγ (x, y) =
∞∑

l=0

p(l)
γ (x, y)εl, (3.5)

and fγ (x, y) ≡ f εγ (x, y) =
∞∑

l=0

f (l)
γ (x, y)εl. (3.6)

Substituting the power series representations (3.4)–(3.6) and the differential operator (3.3)
into the non-dimensionalized Darcy equation (2.5), the Darcy–Brinkman equation (2.6) and the
interface conditions (2.7), we have:

εuεv(x, y) + εKv(x, y)∇xpεv(x, y)

+Kv(x, y)∇ypεv(x, y) − εKv(x, y)f εv(x, y) = 0 in Ωv ,

ε∇x · uεv(x, y) + ∇y · uεv(x, y) = 0 in Ωv ,

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

−ε∇xpεm(x, y) − ∇ypεm(x, y) − εK−1
m (x, y)uεm(x, y)

+μ∗ε3�xuεm(x, y) + μ∗ε�yuεm(x, y) + μ∗ε2∇x · (∇yuεm(x, y))

+μ∗ε2∇y · (∇xuεm(x, y)) + εf εm(x, y) = 0, in Ωm

ε∇x · uεm(x, y) + ∇y · uεm(x, y) = 0 in Ωm,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

uεv(x, y) · n = uεm(x, y) · n = εL̄p(pεm(x, y) − pεv(x, y) − p̄) on Γ

uεm(x, y) · τ = −ε
√

Km(x, y)
α

[(
n ·

(
∇x + 1

ε
∇y

))
uεm(x, y)

]
· τ on Γ .

⎫⎪⎬
⎪⎭ (3.9)

If we collect the terms of order ε0 in systems (3.7) and (3.8):

∇yp(0)
v (x, y) = 0 ⇒ p(0)

v = p(0)
v (x), (3.10)

∇yp(0)
m (x, y) = 0 ⇒ p(0)

m = p(0)
m (x), (3.11)

∇y · u(0)
v (x, y) = 0, (3.12)

and ∇y · u(0)
m (x, y) = 0, (3.13)

and for the interface conditions (3.9):

u(0)
m (x, y) · n = u(0)

v (x, y) · n = 0 on Γ (3.14)

and

u(0)
m (x, y) · τ = −

√
Km(x, y)
α

[(n · ∇y)u(0)
m (x, y)] · τ on Γ . (3.15)
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Collecting the terms of order ε1 in systems (3.7) and (3.8) and in the interface conditions (3.9),
we obtain:

u(0)
v (x, y) + Kv(x, y)(∇xp(0)

v (x)

+ ∇yp(1)
v (x, y) − f (0)

v (x, y)) = 0 in Ωv , (3.16)

∇x · u(0)
v (x, y) + ∇y · u(1)

v (x, y) = 0 in Ωv , (3.17)

− ∇xp(0)
m (x) − ∇yp(1)

m (x, y) − K−1
m (x, y)u(0)

m (x, y)

+ μ∗�yu(0)
m (x, y) + f (0)

m (x, y) = 0 in Ωm, (3.18)

∇x · u(0)
m (x, y) + ∇y · u(1)

m (x, y) = 0 on Ωm, (3.19)

u(1)
m (x, y) · n = u(1)

v (x, y) · n = L̄p(p(0)
m (x) − p(0)

v (x) − p̄) on Γ (3.20)

and u(1)
m (x, y) · τ = −

√
Km(x, y)
α

[(n · ∇x)u(0)
m (x, y)

+ (n · ∇y)u(1)
m (x, y)] · τ on Γ . (3.21)

Applying the ∇y· operator to equation (3.16) and using equation (3.12), we obtain

∇y · [Kv(x, y)(∇xp(0)
v (x) + ∇yp(1)

v (x, y) − f (0)
v (x, y))] = 0 in Ωv , (3.22)

and the boundary condition (3.14) becomes

[Kv(x, y)(∇xp(0)
v (x) + ∇yp(1)

v (x, y) − f (0)
v (x, y))] · n = 0 on Γ . (3.23)

Since the problem is linear and the vector function ∇xp(0) is y-constant, we state the following
ansatz of the solution:

p(1)
v (x, y) = gv(x, y) · ∇xp(0)

v (x) + g̃v(x, y). (3.24)

Equation (3.24) is a solution of the problem (3.22) and (3.23) (up to a y-constant function),
provided that the auxiliary vector field gv and the auxiliary scalar function g̃v solve the following
cell problems:

∇y · [∇ygv(x, y)Kv(x, y)T] = −∇y · Kv(x, y)T, in Ωv

[∇ygv(x, y)Kv(x, y)T] · n = −Kv(x, y)T · n on Γ ,

}
(3.25)

and
∇y · [Kv(x, y)∇yg̃v(x, y)] = ∇y · Kv(x, y)f (0)

v (x, y), in Ωv

[Kv(x, y)∇yg̃v(x, y)] · n = Kv(x, y)f (0)
v (x, y) · n on Γ .

}
(3.26)

Moreover, we impose that 〈gv(x, y)〉Ωv
= 0 and 〈g̃v(x, y)〉Ωv

= 0 to ensure the uniqueness of the
solution, where 〈·〉Ωγ

is defined as

〈h〉Ωγ
= 1

|Ωγ |
∫
Ωγ

h dy. (3.27)

To solve the Darcy–Brinkman problem in Ωm, since the problem is linear and the vector
function ∇xp(0) is y-constant, we formulate the following ansatz for the solution:

p(1)
m (x, y) = −gm(x, y) · ∇xp(0)

m (x) + g̃m(x, y) (3.28)

and

u(0)
m (x, y) = −Wm(x, y)∇xp(0)

m (x) + w̃m(x, y). (3.29)

Putting together equations (3.13)–(3.15) and (3.18), we obtain an auxiliary Darcy–Brinkman
system in (u(0)

m , p(1)
m ). Hence, we have that (3.28) and (3.29) are solutions of the problem (3.13)–



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230137

..........................................................

(3.15) and (3.18) provided that the auxiliary fields gm, Wm, w̃m, and g̃m solve the following cell
problems:

K−1
m (x, y)Wm(x, y) − μ∗�yWm(x, y) − I

+ (∇ygm(x, y))T = 0 in Ωm,

∇y · Wm(x, y) = 0 in Ωm,

Wm(x, y) · n = 0 on Γ ,

Wm(x, y)τ = −
√

Km(x, y)
α

[(∇yWm(x, y))n]τ on Γ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.30)

and
−K−1

m (x, y)w̃m(x, y) + μ∗�yw̃m(x, y) − ∇yg̃m(x, y)

+ f (0)
m (x, y) = 0 in Ωm,

∇y · w̃m(x, y) = 0 in Ωm,

w̃m(x, y) · n = 0 on Γ ,

w̃m(x, y) · τ = −
√

Km(x, y)
α

[(∇yw̃m(x, y))n]τ on Γ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.31)

Moreover, we impose that 〈gm(x, y)〉Ωm = 0 and 〈g̃m(x, y)〉Ωm = 0 to ensure the uniqueness of the
solution.

4. The macroscopic model
Applying the average operator 〈·〉Ωm to the ansatz (3.29), we obtain:

〈u(0)
m (x, y)〉Ωm = −〈Wm(x, y)〉Ωm∇xp(0)

m (x) + 〈w̃m(x, y)〉Ωm , (4.1)

where Wm and w̃m solve (3.30) and (3.31), respectively.
We recall the equation of order ε1 for the divergence (3.19):

∇x · u(0)
m (x, y) + ∇y · u(1)

m (x, y) = 0.

Applying the average operator, we obtain, using the macroscopic uniformity assumption (3.2):

∇x · 〈u(0)
m (x, y)〉Ωm + 〈∇y · u(1)

m (x, y)〉Ωm = 0.

Moreover, using the divergence theorem and the interface conditions (3.20):

〈∇y · u(1)
m 〉Ωm = 1

|Ωm|
∫
Ωm

∇y · u(1)
m (x, y) dy = 1

|Ωm|
∫
Γ

u(1)
m (x, y) · n dS

= L̄pS
|Ωm| [p(0)

m (x) − p(0)
v (x) − p̄], (4.2)

where |Ωm| is the volume fraction of the cell phase m and S is the unit cell capillary walls surface;
hence we have

∇x · 〈u(0)
m (x, y)〉Ωm = − L̄pS

|Ωm| [p(0)
m (x) − p(0)

v (x) − p̄]. (4.3)

For the Darcy problem, we apply the average operator to equation (3.16) and, substituting the
ansatz (3.24), we obtain

〈u(0)
v (x, y)〉Ωv

= −〈Kv(x, y) + Kv(x, y)(∇ygv(x, y))T〉Ωv
∇xp(0)

v (x)

− 〈Kv(x, y)∇yg̃v(x, y)〉Ωv
+ 〈Kv(x, y)f (0)

v (x, y)〉Ωv
. (4.4)
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Using the same technique, applying the average operator and the divergence theorem to equation
(3.17), it follows that

∇x · 〈u(0)
v (x, y)〉Ωv

= L̄pS
|Ωv | [p(0)

m (x) − p(0)
v (x) − p̄], (4.5)

where we considered that nv = −n.
We can write the total macroscale velocity uC as

uC = |Ωm|〈u(0)
m (x, y)〉Ωm + |Ωv |〈u(0)

v (x, y)〉Ωv

= −|Ωm|〈Wm(x, y)〉Ωm∇xp(0)
m (x) + |Ωm|〈w̃m(x, y)〉Ωm

− |Ωv |〈Kv(x, y) + Kv(x, y)(∇ygv(x, y))T〉Ωv
∇xp(0)

v (x)

− |Ωv |〈Kv(x, y)∇yg̃v(x, y)〉Ωv
+ |Ωv |〈Kv(x, y)f (0)

v (x, y)〉Ωv
. (4.6)

Remark 4.1. We notice that the fluid is macroscopically incompressible, as the macroscale
divergence of the leading-order average fluid velocity (4.6) reduces to zero by means of (4.5)
and (4.3). The two individual phases can have non-zero divergences due to the fluid exchange
between compartments, as in [36,38].

Substituting (4.1) into equation (4.3) and (4.4) into equation (4.5), respectively, we obtain

∇x ·
(
〈Wm(x, y)〉Ωm∇xp(0)

m (x)
)

= ∇x · 〈w̃m(x, y)〉Ωm + L̄pS
|Ωm| [p(0)

m (x) − p(0)
v (x) − p̄], (4.7)

and

∇x ·
(
〈Kv(x, y) + Kv(x, y)(∇ygv(x, y))T〉Ωv

∇xp(0)
v

)
= −∇x · 〈Kv(x, y)∇yg̃v(x, y)〉Ωv

+ ∇x · 〈Kv(x, y)f (0)
v (x, y)〉Ωv

− L̄pS
|Ωm| [p(0)

m (x) − p(0)
v (x) − p̄]. (4.8)

The equations (4.7) and (4.8) are the classical Darcy Law diffusion problem with additional
terms related to the multiscale forces [10] and the fluid exchange between phases. We note that if
the multiscale forces f m and f v are zero, the unique solutions g̃v(x, y) and w̃m(x, y) of the systems
(3.25) and (3.30) are both zero. In this latter case, equations (4.7) and (4.8) reduce to the double
Darcy’s model with fluid exchange between phases as derived in [38] and subsequently solved
and generalized in [36,39], respectively. However, even when ignoring the contributions related to
the external volume loads, the final model that we have obtained differs from the one obtained in
[38] due to the Darcy–Brinkman type cell problem which is to be solved to compute the hydraulic
conductivity 〈Wm〉Ωm for the matrix compartment Ωm.

Equations (4.1) and (4.3)–(4.5) are in non-dimensional form. We have the following relations:

|Ωm| = |Ω tot
m |

|Ω| , |Ωv | = |Ω tot
v |

|Ω| and S = Stotd
|Ω| , (4.9)

where |Ω| is the total volume of the lymph node, |Ω tot
m | is the total volume of the phase m, |Ω tot

v | is
the total volume of the phase v, and Stot is the total vessel surface. Thanks to the above relations,
we have that equations (4.1), (4.3)–(4.5) in the dimensional form are

〈u(0)
m (x, y)〉Ωm = −d2

μ
〈Wm(x, y)〉Ωm∇xp(0)

m (x) + Cd2

μ
〈w̃m(x, y)〉Ωm , (4.10)

∇x · 〈u(0)
m (x, y)〉Ωm = −LpStot

|Ω tot
m | [p(0)

m (x) − p(0)
v (x) − p̄]. (4.11)
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〈u(0)
v (x, y)〉Ωv

= −d2

μ
〈Kv(x, y) + Kv(x, y)(∇ygv(x, y))T〉Ωv

∇xp(0)
v (x)

− Cd2

μ
〈Kv(x, y)∇yg̃v(x, y)〉Ωv

+ d2

μ
〈Kv(x, y)f (0)

v (x, y)〉Ωv
. (4.12)

and ∇x · 〈u(0)
v (x, y)〉Ωv

= LpStot

|Ω tot
v | [p(0)

m (x) − p(0)
v (x) − p̄], (4.13)

and then we call

K̄m = d2

μ
〈Wm(x, y)〉Ωm (4.14)

and

K̄v = d2

μ
〈Kv(x, y) + Kv(x, y)(∇ygv(x, y))T〉Ωv

, (4.15)

the dimensional hydraulic conductivity of the phase m and v, respectively.

5. A comparison between different fluid regimes
In this section, we want to study the differences in using Darcy, Stokes or Darcy–Brinkman for the
domain Ωv in the cell problem. We can see the cell problem domain in figure 2.

For simplicity, we focus on the case f v = 0, replacing the interface boundary conditions with
the no-slip condition uv = 0 and assuming the isotropy of the porous medium, that is Kv = KvI.
Hence the Darcy cell problems (3.25) and (3.26) reduce to

∇y · [∇ygv(x, y)] = 0, in Ωv

∇ygv(x, y) · n = −n on Γ ,

⎫⎬
⎭ (5.1)

while the Darcy–Brinkman cell problems (3.30) and (3.31) reduce to

K∗−1WDB
v (x, y) − μ∗�yWDB

v (x, y) − I + (∇ygDB
v (x, y))T = 0 in Ωv ,

∇y · WDB
v (x, y) = 0 in Ωv ,

WDB
v (x, y) = 0 on Γ ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)

where K∗ = Kvμ/d2. Finally, the cell problem for the Stokes equation is [3]

−�yWS
v (x, y) − I + (∇ygS

v (x, y))T = 0 in Ωv ,

∇y · WS
v (x, y) = 0 in Ωv ,

WS
v (x, y) = 0 on Γ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

We want to solve and compare the problems above in the cell domain Ωv ; therefore, we
need to compare the same quantity at the macroscale. For Darcy–Brinkman and Stokes, the
dimensionalized macroscopic velocity is given by (4.10):

〈uDB/S
v 〉Ωv

= −d2

μ
〈WDB/S

v 〉Ωv
∇xp(0),

where WDB/S
v takes different expressions in Darcy–Brinkman’s and Stokes’ cases. On the other

hand, for the Darcy case we have, by equation (4.12):

〈uv〉Ωv
= −K∗ d2

μ
〈I + (∇ygv)T〉Ωv

∇xp(0).

Hence we compare 〈WDB/S〉Ωv
for the Darcy–Brinkman and the Stokes problem and K∗〈I +

(∇ygv)T〉Ωv
for the Darcy problem.

If we consider cylinders with a small radius, so that they have a small overlap region, we can
analytically solve the previous systems up to a small error. The differential problems (5.2) and
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(5.3) written in terms of the auxiliary tensor Wv can be shown to correspond to three standard
Darcy–Brinkman and three Stokes’ systems of equations, respectively, see also [10,39]. Using the
rotation invariance property of our geometry, we can choose one arbitrary row (i.e. direction) of
I, say e3 (the third row of I), and we set W3,v = Wve3. In this case, the solution is non-zero only in
the branch directed along e3, which means the only non-zero component is W3,ve3 = W33,v .

Hence the solution of the system (5.3) is [39]

WS
33,v = r̂2

c − r2

4
and WS

31,v = WS
32,v = 0, 0 ≤ r ≤ r̂c,

where r̂c is the radius of the cylinder (non-dimensional). Hence we have that the resulting
permeability is

〈WS
33,v〉Ωv

= 1
|Ωv |

∫ lc

0
dz

∫ 2π

0
dθ

∫ r̂c

0

r̂2
c − r2

4
r dr = π lcr̂4

c
8|Ωv | . (5.4)

For the system (5.2), the problem reduces to

WDB
33,v

′′
(r) + 1

r
WDB

33,v
′
(r) −

WDB
33,v(r)

μ∗K∗ = − 1
μ∗ , 0 ≤ r ≤ r̂c

and the solution is

WDB
33,v(r) = K∗

⎡
⎣1 −

J0

(
i
√

(1/μ∗K∗)r
)

J0

(
i
√

(1/μ∗K∗)r̂c

)
⎤
⎦ , WDB

31,v = WDB
32,v = 0,

where J0 is the Bessel function of the first kind of order zero. Hence we have (using the property
xν Jν−1 = (d/dx)(xν Jν (x))):

〈WDB
33,v〉Ωv

= 1
|Ωv |

∫ lc

0
dz

∫ 2π

0
dθ

∫ r̂c

0
K∗

⎡
⎣1 −

J0

(
i
√

(1/μ∗K∗)r
)

J0

(
i
√

(1/μ∗K∗)r̂c

)
⎤
⎦ r dr

= 2π lc
|Ωv |K∗

⎡
⎣ r̂2

c
2

+ i
√
μ∗K∗r̂c

J1

(
i
√

(1/μ∗K∗)r̂c

)
J0

(
i
√

(1/μ∗K∗)r̂c

)
⎤
⎦ . (5.5)

To solve system (5.1), we recall that n = (n1, n2, 0) = (cos θ , sin θ , 0). First of all, we focus on the
case n1 = cos θ , and we call the solution gv,1. From the periodicity condition in the e3 direction,
we have that gv does not depend on the z variable. Hence the problem reduces to

1
r
∂

∂r

(
r
∂gv,1

∂r

)
+ 1

r2
∂2gv,1

∂θ2 = 0, 0 ≤ r ≤ r̂c, 0 ≤ θ ≤ 2π .

Using the separation of variables gv,1 = R(r)Θ(θ ) and substituting into the equation above, we
obtain

r2R′′(r) + rR′(r) − cR(r) = 0,

Θ ′′(θ ) + cΘ(θ ) = 0,

}
(5.6)

where c is the constant obtained by the separation of variables. From the second equation of the
system (5.6), we have

Θ(θ ) = A sin(nθ ) + B cos(nθ ), n ∈ N.

From the boundary condition of the system (5.1), it follows that n = 1. Hence the solution of the
first equation of the system (5.6) is

R(r) = C1

r
+ C2r,

and, from the boundary condition of (5.1) and the non-degeneracy condition in r = 0, we have
C1 = 0 and C2 = 1. Hence we have

gv,1 = −r cos θ .
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Figure 3. (a) Darcy–Brinkman/Darcy comparison with respect to 1/μ∗, for K∗ = 6.67 × 10−6. (b) Darcy–Brinkman/Stokes
comparison with respect to K∗, forμ∗ = 1.

Table 1. Comparison between Darcy–Brinkman and Darcy (left), Darcy–Brinkman and Stokes (right).

μ∗ K∗ relative error

1 6.67 × 10−6 74%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10−4 6.67 × 10−6 0.67%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10−6 6.67 × 10−6 0.067%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 10−12 0.026%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 6.67 × 10−6 84%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 10−4 9.5%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 10−2 0.1%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 0.001%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the same way, for the case n2 = sin θ we get:

gv,2 = −r sin θ .

Hence it follows:

〈(∇ygv)T〉Ωv
= 1

|Ωv |
∫
Ωv

(∇ygv)T dV = −2
3

. (5.7)

These results are shown in figure 3, where we set r̂c = 7.7 × 10−3, |Ωv | = 3πR2lc (the volume
is indeed a bit smaller, but we are supposing that the intersection between the cylinders is
negligible).

As expected, the Darcy–Brinkman equation has a Stokes/Darcy duality behaviour. Indeed,
suppose we decrease the relevance of the Laplace operator in the Darcy–Brinkman cell problem
(5.2). In that case, we have that the solution tends to the solution of the Darcy cell problem (5.1).
We can see this behaviour in figure 3a. The resulting permeability of the cell problem (5.2) tends to
the one of the cell problem (5.1). We can see this behaviour even if we decrease the permeability
instead of the relevance of the Laplace operator because, in this case, both the Darcy and the
Darcy–Brinkman equations tend to zero. In figure 3b, we can see that if we increase K∗ in the
Darcy–Brinkman cell problem (5.2), the solution tends to that of the Stokes cell problem (5.3).
Table 1 shows that, if the permeability is not too small or the Laplace operator is relevant, then
the Darcy (resp. Stokes) and the Darcy–Brinkman equation give very different results; otherwise
the solutions of the two problems are similar.
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Table 2. Physiological and estimated parameters.

name physiological range/value description

R 0.49 mm macroscopic radius [18,32]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ 1 mg mm−1 s−1 viscosity [20,42]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ 0.75 porosity [29]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μe
μ

φ
effective viscosity [5,43–45]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ0 1 mg mm−3 density [20,42]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K̂m 3.84 × 10−9 mm2 permeability of the interstitium [16,29]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.88–0.9 Staverman’s coefficient [22,27,28,30]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πv − πm 3.41 × 105 − 2.08 × 106 mPa oncotic pressure difference [22,27,28,30,46–49]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lp 5.475 × 10−12 − 3.67 × 10−8 mm s−1 mPa−1 hydraulic conductivity of the blood vessel walls
[22,27,28,30]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p̄v 6.67 × 105 − 1.066 × 106 mPa mean blood vessel pressure [22,27,28,30]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stot 13.4 mm2 blood vessel surface [23,24]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|Ω tot
v | 0.0322 mm3 blood vessel volume [23]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N 1310 number of cells (electronic supplementary
material, appendix B)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rc 1.7 × 10−3 mm microscale cylinders radius (electronic
supplementary material, appendix B)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d 2 × 10−2 mm microscale cylinders mean distance (electronic
supplementary material, appendix B)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L 1 mm coarse scale characteristic length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c0 5.6 Kozeny constant [39]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kv d
2

μ
1.1 × 10−6 mm3 s mg−1 hydraulic conductivity of thebloodvessels using

the Kozeny–Carman formula [50,51]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fm, f v 0 body forces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K̄m 3.65 × 10−9 mm3 s mg−1 macroscopic interstitial hydraulic conductivity
(solving system (3.29))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K̄v 4.12 × 10−7 mm3 s mg−1 macroscopic blood hydraulic conductivity
(solving system (3.24))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. The explicit solution
In this section, we find an explicit solution to the macroscopic problem given in §4. More details
about this section are given in electronic supplementary material, appendix A. For simplicity, we
assume that the multiscale forces f εv and f εm vanish and that both porous media are isotropic, that
is:

K̄v = K̄vI and K̄m = K̄mI,

where, from equations (4.14) and (4.13), K̄v and K̄m correspond to (d2/μ)〈Kv + Kv
(∇ygv

)T〉Ωv
and

〈(d2/μ)Wm〉Ωm , respectively. We recall that the base value for the dimensional vessels’ hydraulic

conductivity Kvd2/μ is computed according to the Kozeny Carman model, i.e.
1

c0

(
Stot

|Ω tot
v |

)2 , see

table 2 and supplementary material, appendix B for further details. We have that K̄v and K̄m

are constants due to the geometry and the hypotheses used, and they are found solving the cell
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problems (3.24) and (3.29), respectively, using COMSOL Multiphysics, with α= 1 (see electronic
supplementary material, appendix C for more details). We consider a spherical domain Ω ,
denoting by r the radial coordinate, θ the polar coordinate, and φ the azimuthal angle. Moreover,
we assume axisymmetry with respect to the azimuthal angle φ. Hence our problem is:

�pv(r, θ ) = −Mv[pm(r, θ ) − pv(r, θ ) − p̄] r<R, θ ∈ [0, 2π [,

�pm(r, θ ) = Mm[pm(r, θ ) − pv(r, θ ) − p̄] r<R, θ ∈ [0, 2π [,

pv(R, θ ) = p̄v(θ ), pm(R, θ ) = p̄m(θ ) θ ∈ [0, 2π [,

non-degenericity r = 0, θ ∈ [0, 2π [,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.1)

where R is the radius of the spherical domain, Mv = LpStot/
(|Ω tot

v |K̄v
)
, and Mm =

LpStot/
(|Ω tot

m |K̄m
)
.

We define the quantity
ψ(r, θ ) = pm(r, θ ) − pv(r, θ ), (6.2)

and, taking the difference between the second and the first equation of the system (6.1), we obtain
the new problem

�ψ(r, θ ) = M[ψ(r, θ ) − p̄] r<R, θ ∈ [0, 2π [,

ψ(R, θ ) = p̄m(θ ) − p̄v(θ ), θ ∈ [0, 2π [,

non-degenericity r = 0, θ ∈ [0, 2π [,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

where M = Mv + Mm. Defining
ψ̂(r, θ ) =ψ(r, θ ) − p̄, (6.4)

we can reformulate the first equation of the system (6.3) as

�ψ̂(r, θ ) = Mψ̂(r, θ ). (6.5)

Details about the computations can be found in electronic supplementary material, appendix
A. The solution to the problem (6.5) is the following:

ψ̂(r, ζ ) =
∞∑

n=0

Ãn
1√
r

In+(1/2)

(√
Mr

)
Pn(ζ ), (6.6)

where ζ = cos θ , In+(1/2) is the modified Bessel polynomial of the first kind, Pn(ζ ) is the Legendre
polynomial of the first kind [40], and with the boundary condition from the second equation in
the system (6.3)

ψ(R, ζ ) = p̄m(ζ ) − p̄v(ζ ) =
∞∑

n=0

b(n)Pn(ζ ). (6.7)

We have that Ãn is given by the boundary conditions (6.7), and it is

Ã0 = [b(0) − p̄]
√

R

I 1
2

(√
MR

) for n = 0, Ãn = b(n)
√

R

In+ 1
2

(√
MR

) for n ∈ N, n �= 0. (6.8)

The solutions of the system (6.1) are

pm(r, ζ ) =
∞∑

n=0

[
c(n)

1 rn + MmÃn

M
1√
r

In+(1/2)

(√
Mr

)]
Pn(ζ ) (6.9)

and

pv(r, ζ ) =
∞∑

n=0

[
d(n)

1 rn − MvÃn

M
1√
r

In+(1/2)

(√
Mr

)]
Pn(ζ ), (6.10)

where the constants c(n)
1 and d(n)

1 are found explicitly in electronic supplementary material,
appendix A.
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7. Application to the lymph node
In this section, we show the results given by the explicit solution with physiological data
obtained or estimated by an idealized spherical mouse popliteal lymph node [32]. The lymph
node is basically formed by two parts: a porous bulk region called LC and a thin layer against
the wall where the fluid can flow freely, called subcapsular sinus (SCS) [11,41]. Owing to
the fact that the whole blood vasculature in the lymph node is in the LC [22–24], in this
section, we apply the explicit solution found in the previous section to the LC, implemented
in Matlab.

Here we have that Ωv is the blood vessels phase, and Ωm is the interstitial phase. The fluid
exchange between these two phases is described by the Starling equation, which corresponds
to choose p̄ = σ (πm − πv). The physiological data used in this work are explained in electronic
supplementary material, appendix B and are summarized in table 2.

To find the hydraulic conductivity K̄v and K̄m of the dimensional macroscale equations (4.12)
and (4.10) defined in (4.15) and (4.14), we solve the cell problems (3.25) and (3.30) with the body
forces f m = f v = 0, α= 1, and using the microstructure parameters described in table 2, using
COMSOL Multiphysics (see electronic supplementary material, appendix C for more information
about the numerical simulations). In [22], they used an interstitial hydraulic conductivity similar
to those measured in LS174T tumours of the value of ≈2 × 10−10 mm3 s−1 mg−1. In [27], they
found an average permeability of ≈3.8 × 10−5 mm2 fitting the results found in their model to the
data of a canine popliteal lymph node from Adair & Guyton [46]. In our model, we obtained the
hydraulic conductivity K̄m = 3.65 × 10−9 mm3 s−1 mg−1, starting with a permeability of 3.84 ×
10−9 mm2 for the Darcy-Brinkman equation, taken from [16,29]. The strength of our model is to
obtain a permeability for the macroscale using a rigorous homogenization method (i.e. asymptotic
homogenization), taking into account the geometry and the differential equations used in the
microscale. Moreover, we found the hydraulic conductivity and the fluid flow inside the blood
vessels too in order to better describe the fluid exchange between the blood vessels and the lymph.

As boundary conditions we choose:

pv(R, ζ ) = p̄v and pm(R, ζ ) = p̄m(ζ ),

where p̄v is a constant value given by the literature (mean blood vessels pressure), and p̄m(ζ ) can
be any function sufficiently regular of ζ .

To begin with (and for simplicity), we assume that p̄m(ζ ) = p̄m is a fixed constant value. In
this case, we can see the direction of the fluid exchange between the interstitial space and the
blood vessels explicitly. Indeed, in this case, remains only the n = 0 term (from equations (6.7), the
computations in electronic supplementary material, appendix A, and from the fact that P0(x) = 1
we have b(0) = b(0)

m − b(0)
n = p̄m − p̄v), and this implies that equation (6.6) reduces to

ψ̂(r) = Ã0

I1/2

(√
Mr

)
√

r
=

√
RI1/2

(√
Mr

)
√

rI1/2

(√
MR

) [p̄m − p̄v − σ (πm − πv)].

From the fact that (4.5) can be written as ∇x · 〈u(0)
v (x, y)〉Ωv

= (LpStot/|Ω tot
v |)ψ̂(r) and recalling

that I1/2(x) = √
(2/π ) sinh(x)/

√
x is positive for every x> 0, we have that the divergence in (4.5)

has the same sign as
p̄m − p̄v − σ (πm − πv), (7.1)

which is the opposite sign of the divergence in (4.3); this gives us information about the direction
of the fluid exchange.

The work [52] measured that the average pressure in a lymph node is about 6.86 ±
0.56 cmH2O ≈ 6.7 × 105 ± 5.5 × 104 mPa, so, for now, we fix p̄m = 6.7 × 105 mPa. With this value,
σ = 0.88 and �π = 1.02 × 106 mPa, we have that the sign of (7.1) is negative for p̄v � 1.5676 ×
106 mPa ≈ 11.8 mmHg (which means that the fluid goes from the interstitial space to the blood
phase), and start to have an inversion of the flow at p̄v ≈ 1.5676 × 106 mPa ≈ 11.8 mmHg.
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Figure4. The variation of pm and pv inmPa atθ = π/2, for some values of the Kozeny constant c0,withπv − πm = 1.02 ×
106 mPa, p̄v = 1.066 × 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1, p̄m = 6.7 × 105 mPa and the parameters in table 2.
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1.02 × 106 mPa, Lp = 5.475 × 10−10 mm s−1 mPa−1, p̄m = 6.7 × 105 mPa and the parameters in table 2.

In figure 4, we can see the resulting pressures pm and pv varying with respect to the Kozeny
constant c0. In this case, the range specified in figure 4 is used for c0 rather than solely the base
value reported in table 2. Increasing c0 means increasing the tortuosity of the blood vessels [39],
and this is related to an increase of pv and pm at the centre of the node, and that means that there
is less flow from the interstitial space to the blood vessels (remembering that Darcy’s Law linearly
relates the fluid discharge to the pressure difference, so the lymph moves accordingly to the
pressure, see figure 12 and below for more details). This is related to the fact that increasing c0 in
the Kozeny–Carman formula (electronic supplementary material, appendix B) means a decrease
in Kv . Consequently, an increase of the pressure pv at the centre of the node means an increase of
pm; we can see this behaviour better in figure 5. This is a parametric study with the variation of
c0 related to the tortuosity effect [39]; however, to study the role of the tortuosity in more detail,
we need to take it into account in the geometry of the microscale problem, which we did not do
in this case.

In figure 6, we can see the resulting pressures pm and pv varying with respect to the hydraulic
conductivity of the blood vessel walls Lp. Increasing Lp means a decrease of pm and an increase of
pv at the centre of the node, meaning a higher flow from the interstitial space to the blood vessels
(as expected).
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withπv − πm = 1.02 × 106 mPa, p̄v = 1.066 × 106 mPa, p̄m = 6.7 × 105 mPa and the parameters in table 2.
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In figure 7, we can see the resulting pressures pm and pv varying with respect to�π = πv − πm.
Increasing �π means increasing the concentration difference between the interstitial space and
the blood vessels, and consequently the increase of the fluid flow from Ωm to Ωv .

The strength of the explicit solution we found in §6 is to take into account the variation
with respect to θ of the boundary condition p̄m to mimic the pressure distribution in the SCS.
Unfortunately, as far as we know, there are no precise physiological data available for the pressure
distribution in the SCS. Hence, inspired by Grebennikov et al. [15], we take a linear variation of
the pressure along the θ coordinate between the values p̄m,max = 3.9 mmHg ≈ 5.2 × 105 mPa and
p̄m,min = 3 mmHg ≈ 4 × 105 mPa; these values are taken from the resulting pressure in [22]. Hence
we can write:

p̄m(ζ ) = p̄m,min + ζ + 1
2

(p̄m,max − p̄m,min). (7.2)

Given this boundary condition, if we use the physiological values used in [22] (σ = 0.88 and
πv − πm = 1.02 × 106 mPa), we have an inversion of the flow at ≈ 1.4 × 106 mPa ≈ 10.5 mmHg, the
same found in [22]. We can see this behaviour in figure 8.

In figure 9, we show the interstitial pressure distribution in the whole domain (recalling
that we assume axisymmetry) varying the hydraulic conductivity of the blood vessel walls Lp.
As we can see, we have that the position and the value of the minimum of the pressure vary
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with respect to Lp; as Lp increases, the minimum of the pressure decreases (figure 6) and moves
towards the centre of the node. This is due to a combination of the pressure variation given by
the boundary conditions (7.2) and the fluid exchange between phases. These results confirm that
the θ dependence in our explicit solution is essential to describe the fluid motion and the pressure
distribution inside a lymph node. The value of the minimum pressure is related to a sink term due
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Figure 10. The variation of pm in mPa in all the domain, for some values of p̄v in mPa, with πv − πm = 1.02 × 106 mPa,
Lp = 5.475 × 10−10 mm s−1 mPa−1 the boundary conditions (7.2) and the parameters in table 2.

to the blood vessel’s drainage function; here we have that the blood vessel’s effect is less relevant
with respect to the one found in [22], but the behaviour is the same. This is in line with the results
of [22], because the permeability that we obtain with our multiscale formulation is bigger than
the one used by them.

In figure 10, we can see the interstitial pressure distribution in the whole domain varying the
blood vessel pressure p̄v . As we can see, we have that increasing p̄v increases the minimum of the
pressure pm and moves the minimum from the centre to the lower part (ζ = −1 where we have
the minimum in equation (7.2)) of the node. This behaviour is the opposite of what we have in
figure 9, in accordance with the results found in figures 5 and 6.

As we mentioned before, we can choose as boundary condition p̄m(ζ ) what we want; hence we
can choose the more complicated pressure distribution found with the stream function approach
in the steady case (see [53] for more details):

p̄m(R, ζ ) = Csteady − μ

∞∑
n=1

[
2(2(n + 1) + 1)

n
Cs

nRn + 2(2(n + 1) − 3)
n + 1

Ds
nR−n−1

]
Pn(ζ ) (7.3)

where the constants Csteady, Cs
n and Ds

n are calculated in [32] in a steady case without
fluid-exchange (div-free solution), where we fix the pressure at one point p̄m(R2, −1) = 6.18 ×
105 mPa and with an inlet and outlet boundary condition defined in the domain [−1, −1 +
ζ0] (outlet condition) and [1 − ζ0, 1] (inlet condition), where ζ0 = cos[arcsin(RLV/

√
R2

LV + R2
2)] =

R2/

√
R2

LV + R2
2, RLV = 0.04 mm and R2 = 0.5 mm. The boundary pressure distribution is plotted

in figure 11. We can see that we have a fast increment of pressure near the inlet boundary
condition (and a fast decrement near the outlet boundary condition). With these boundary
conditions and the parameters p̄v = 1.06 × 106 mPa, πv − πm = 1.02 × 106 mPa and Lp = 5.475 ×
10−11 mm s−1 mPa−1, we obtain the pressure and the velocity distribution shown in figure 12.
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Varying the parameters that regulate the fluid exchange, we obtain the same behaviour obtained
above. As we can see, we have a pressure distribution similar to those found earlier, but we have
a higher (lower) pressure distribution near the inlet (outlet), and we have the same behaviour
for the velocity magnitude. In this case, we have an inversion of flow with the mean blood
vessels pressure p̄v ≈ 1.53 × 106 mPa ≈ 11.476 mmHg, similar to the one found with the constant
value p̄m ≈ 6.7 × 105 mPa. The pressure values found here are in range with the ones measured
in [52] and found in [32]. In this case, instead of observing a pressure gradient that varies from
a high-pressure region near the inlet to a low-pressure region near the outlet, we find that the
low-pressure zone is closer to the centre of the LC. This particular region experiences reduced
pressure due to the exchange of fluids between lymph and blood vessels, and this phenomenon
is represented by a sink term. Owing to this, we have that lymph moves toward the low-pressure
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zone in the centre of the node, and we can see this from the velocity plot in figure 12. Moreover,
the velocity behaviour is very similar to the one found in [22], although the velocities found here
are slightly higher: this is due to the fact that we used a higher Lp than the one used by them and
because we found a higher hydraulic conductivity.

8. Conclusion
In this article, we have proposed a macroscopic model using the asymptotic homogenization
technique resulting from the starting equations (2.1) and (2.2) and the interface condition (2.3),
which account for blood transcapillary exchange across the vessels walls, under the assumption
of local periodicity and macroscopic uniformity in a steady setting. Our starting point is the
Darcy/Darcy–Brinkman equation, so we have considered the pore structure already smoothed
out, and that simplifies the model because we do not need precise information about the
microscale geometry (this information is encoded in the hydraulic conductivity K̂γ , γ = m, v).
After that, in §5 we have analysed in detail the differences between using Darcy, Darcy–Brinkman
or Stokes as our starting point, and we have found that the Darcy–Brinkman equation has a
Darcy–Stokes duality behaviour depending on the value of the permeability (and the relevance
of the Laplace operator). Although it is less theoretically justified than the Darcy equation, the
Darcy–Brinkman equation is a valid starting point for our multiscale formulation since we have
a Stokes-like structure of the differential equation, which allow us to specify in more detail the
boundary condition without the need for a precise structure of the microscale, which is described
by the permeability parameter (that in most cases is easier to obtain). Moreover, the coupling
between the Darcy and Darcy–Brinkman equation has allowed the separation of the cell problem
into two distinct phases, one involving the blood vessels and the other involving the FRC network
so that we could solve the cell problems in the two domains separately.

After this model analysis, in §6 we have found the macroscopic explicit solution of the
resulting equation of the proposed model (described in §4) in a spherical domain (under certainly
simplified hypothesis) in terms of Bessel and Legendre polynomials. Then, in §7 we have applied
this explicit solution to an idealized spherical lymph node using physiological data from the
literature; our multiscale formulation of the problem has allowed us to study the fluid behaviour
in the interstitial space and in the blood vessels within the node, allowing us to study the
interaction and the fluid exchange between these two phases in more detail. We have mainly
focused on the porous part of the lymph node (the LC) and on the fluid exchange between the
interstitial space of the lymph node and the blood vessels, which are only in this part of the node
[22–24]; despite the blood vessel pressure being higher than the interstitial pressure of the node,
we have that the blood vessels have a higher concentration of protein too, and this leads to the fact
that the lymph goes from the node to the blood circulation, making the lymph nodes important
in the fluid regulation within the lymphatic system [21]. We have analysed how the parameters
affect the fluid absorption and the pressure (i.e. the velocity) with different boundary pressure,
and the behaviour of the results is in line with those found in the literature [22,46–48,52].

The current work is open for improvements. First of all, in this analysis, we have considered
only the LC and we have supposed a given pressure of the SCS; in general, we need to couple
these two motions.

We have assumed that the multiscale forces vanished when we applied our model to a lymph
node for the sake of simplicity. In general, these forces can be relevant, for example, when electro-
magnetic fields are used (see, e.g. [54,55] in the context of cancer hyperthermia) so that the role
of inhomogeneous volume loads as considered in [10] should be considered when physiological
data become available.

We study the fluid flow in a steady case, but in general, we have a time dependence of the
flow given by the time-pulsation of the lymphangion [20,42,56]; it will be of crucial importance to
address this aspect in future works [31,32].

Finally, we have proposed to use a spherical geometry for the sake of simplicity and to
find an explicit solution, but, in general, the LNs are not characterized by a spherical shape
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and it is reportedly more similar to an ellipsoid [22,27,28,31]. Assuming that more realistic
information concerning the shape, e.g. suggested by medical images, become available, our
modelling framework could be in future exploited to compute the macroscale solution of the
model numerically in order to formulate physiologically relevant predictions.
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A. Explicit solution
In this section, we find an explicit solution to the macroscopic problem given in Section 3. For
simplicity, we assume that the multiscale forces f ϵ

v and f ϵ
m vanish and that both porous media

are isotropic, that is:
K̄v = K̄vI, K̄m = K̄mI,

where, from equations (3.15) and (3.14), K̄v and K̄m correspond to ⟨Kv +Kv (∇ygv)
T ⟩Ωv

and
⟨d

2

µ Wm⟩Ωv
, respectively. We have that K̄v and K̄m are constants due to the geometry and the

hypotheses used, and they are found solving the cell problems (2.25) and (2.30), respectively,
using COMSOL Multiphysics, with α= 1. Our problem is

∆pv =−Mv [pm − pv − p̄] in Ω,

∆pm =Mm [pm − pv − p̄] in Ω,

pv = p̄v, pm = p̄m on ∂Ω,

(A1)

where Mv =
LpS

tot

|Ωtot
v |K̄v

, and Mm =
LpS

tot

|Ωtot
m |K̄m

.

We consider a spherical domain Ω, denoting by r the radial coordinate, θ the polar coordinate,
and ϕ the azimuthal angle. Moreover, we assume axisymmetry with respect to the azimuthal
angle ϕ. Hence problem (A1) becomes:

∆pv(r, θ) =−Mv [pm(r, θ)− pv(r, θ)− p̄] r <R, θ ∈ [0, 2π[,

∆pm(r, θ) =Mm [pm(r, θ)− pv(r, θ)− p̄] r <R, θ ∈ [0, 2π[,

pv(R, θ) = p̄v(θ), pm(R, θ) = p̄m(θ) θ ∈ [0, 2π[,

non-degeneracity r= 0, θ ∈ [0, 2π[,

(A2)

where R is the radius of the spherical domain.
We define the quantity

ψ(r, θ) = pm(r, θ)− pv(r, θ), (A3)

and, taking the difference between the second and the first equation of the system (A2), we obtain
the new problem 

∆ψ(r, θ) =M [ψ(r, θ)− p̄] r <R, θ ∈ [0, 2π[,

ψ(R, θ) = p̄m(θ)− p̄v(θ), θ ∈ [0, 2π[,

non-degeneracity r= 0, θ ∈ [0, 2π[,

(A4)

where M =Mv +Mm. Defining
ψ̂(r, θ) =ψ(r, θ)− p̄, (A5)

we can reformulate the first equation of the system (A4) as

∆ψ̂(r, θ) =Mψ̂(r, θ). (A6)

In spherical coordinates, we have:

1

r2
∂

∂r

(
r2
∂ψ̂(r, θ)

∂r

)
+

1

r2
1

sin θ

∂

∂θ

(
sin θ

∂ψ̂(r, θ)

∂θ

)
=Mψ̂(r, θ),

calling ζ = cos θ, we obtain

1

r2
∂

∂r

(
r2
∂ψ̂(r, ζ)

∂r

)
+

1

r2
∂

∂ζ

((
1− ζ2

) ∂ψ̂(r, ζ)
∂ζ

)
=Mψ̂(r, ζ).

giros
Barra
$(d^2/\mu)\langle\K_v+\K_v\left(\nabla_{\y} \g_v\right)^T\rangle_{\Omega_v}$

giros
Barra
m
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We search for a solution in the form

ψ̂(r, ζ) =R(r)Z(ζ);

we obtain (multiplying by r2, dividing by ψ̂ and rearranging the terms):

1

R(r)

∂

∂r

(
r2
∂R(r)

∂r

)
− r2M =− 1

Z(ζ)

∂

∂ζ

((
1− ζ2

) ∂Z(ζ)
∂ζ

)
, (A7)

and we obtain the two differential equations:

r2
∂2R(r)

∂r2
+ 2r

∂R(r)

∂r
− (Mr2 + n(n+ 1))R(r) = 0, (A8)

∂

∂ζ

((
1− ζ2

) ∂Z(ζ)
∂ζ

)
+ n(n+ 1)Z(ζ) = 0, (A9)

where n∈N.
The differential equation (A8) is in the form of a spherical Bessel equation, of which the

solution is
R(r) =Aj−n−1

(
i
√
Mr
)
+By−n−1

(
i
√
Mr
)
, (A10)

where j−n−1 and y−n−1 are the spherical Bessel function of the first and second kind, respectively,
and are connected to the classical Bessel function with the relations:

j−n−1 (x) =

√
π

2x
J−n−1+ 1

2
(x) , y−n−1 (x) =

√
π

2x
Y−n−1+ 1

2
(x) , (A11)

where J−n− 1
2

and Y−n− 1
2

are the Bessel function of the first and second kind. The differential
equation (A9) is in the form of the Legendre differential equation, of which the solution is

Z(ζ) =CPn(ζ) +DQn(ζ), (A12)

where Pn and Qn are the Legendre polynomials of the first and second kind, respectively. From the
non-degeneracy at r= 0, we obtain

A=D= 0.

Using the following property
Y−n− 1

2
(x) = (−1)nJn+ 1

2
(x),

and the fact that
Jn(ix) = inIn(x),

where In is the modified Bessel function of the first kind of order n, we have that the solution is

ψ̂(r, ζ) =

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr
)
Pn (ζ) , (A13)

and then, using (A5), we obtain

ψ(r, ζ) = p̄+

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr
)
Pn (ζ) , (A14)

with the boundary condition from the second equation in the system (A4)

ψ(R, ζ) = p̄m(ζ)− p̄v(ζ). (A15)

From the properties of the orthogonal Legendre polynomials [39,52], we can rewrite

p̄m(ζ)− p̄v(ζ) =

∞∑
n=0

b(n)Pn(ζ), (A16)

where

b(n) =
1

2
(2n+ 1)

∫1
−1

[p̄m(ζ)− p̄v(ζ)]Pn(ζ)dζ, (A17)
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and, recalling that P0(ζ) = 1, we can rewrite equation (A15) as:

ψ(R, ζ)− (p̄m(ζ)− p̄v(ζ)) =

[
p̄+ Ã0

1√
R
In+ 1

2

(√
MR

)
− b(0)

]
P0 (ζ)

+

∞∑
n=1

[
Ãn

1√
R
In+ 1

2

(√
MR

)
− b(n)

]
Pn (ζ) = 0,

and using the linear independence of the Legendre polynomials, we obtain, for n= 0:

Ã0 =

[
b(0) − p̄

]√
R

I 1
2

(√
MR

) , (A18)

and for n∈N, n≥ 1:

Ãn =
b(n)

√
R

In+ 1
2

(√
MR

) . (A19)

Exploiting the function ψ found in equation (A14) with (A18), (A19) and (A5), we can rewrite the
first two equations in the system (A2) in this way:

∆pm(r, ζ) =Mmψ̂(r, ζ) =Mm

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr
)
Pn (ζ) (A20)

∆pv(r, ζ) =−Mvψ̂(r, ζ) =−Mv

∞∑
n=0

Ãn
1√
r
In+ 1

2

(√
Mr
)
Pn (ζ) . (A21)

Now we search the solutions of equations (A20) and (A21) in these forms:

pm(r, ζ) =

∞∑
n=0

mn(r)Pn(ζ), (A22)

pv(r, ζ) =

∞∑
n=0

vn(r)Pn(ζ). (A23)

We focus on the equations for pm (A20) and (A22), but for the equations in pv the computations
are similar. Substituting (A22) into the equation (A20), we obtain (in spherical coordinates):

∞∑
n=0

(
1

r2
∂

∂r

(
r2
∂mn(r)

∂r

))
Pn(ζ) +

1

r2
∂

∂ζ

((
1− ζ2

) ∂Pn(ζ)

∂ζ

)
mn(r)

−MmÃn
1√
r
In+ 1

2
(
√
Mr)Pn(ζ) = 0,

using the fact that Pn(ζ) is the Legendre polynomial and the form of the Legendre differential
equation (A9), we have

∞∑
n=0

[(
1

r2
∂

∂r

(
r2
∂mn(r)

∂r

))
− n(n+ 1)

r2
mn(r)−MmÃn

1√
r
In+ 1

2
(
√
Mr)

]
Pn(ζ) = 0,

and, from the linear independence of the Legendre polynomials and for every n, we obtain:

m′′
n(r) +

2

r
m′

n(r)−
n(n+ 1)

r2
mn(r) =MmÃnr

1
2 In+ 1

2

(√
Mr
)
. (A24)

The homogeneous part of equation (A24) is

m′′
n(r) +

2

r
m′

n(r)−
n(n+ 1)

r2
mn(r) = 0,

and the solution is
m

(0)
n (r) = c

(n)
1 rn + c

(n)
2 r−n−1. (A25)
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Looking for a particular solution of equation (A24), we compute the Wronskian Wr:

Wr=
−2n− 1

r2
,

hence a particular solution is given by

m
(p)
n (r) = c̄

(n)
1 (r)y1(r) + c̄

(n)
2 (r)y2(r),

where y1 and y2 are the independent solutions of the homogeneous equation and

c̄
(n)
1 (r) =−

∫
y2(r)f(r)

Wr(r)
dr, c̄

(n)
2 (r) =

∫
y1(r)f(r)

Wr(r)
dr.

We have

c̄
(n)
1 (r) =

MmÃn

2n+ 1

∫
r−n+ 1

2 In+ 1
2

(√
Mr
)
dr,

calling t=
√
Mr we obtain

MmÃn

2n+ 1

∫
r−n+ 1

2 In+ 1
2

(√
Mr
)
dr=

MmÃn

2n+ 1

(
1√
M

)−n+ 3
2
∫
t−n+ 1

2 In+ 1
2
(t) dt, (A26)

and using the property ∫
x−p+1Ip(x)dx= x1−pIp−1(x)dx,

we have

MmÃn

2n+ 1

(
1√
M

)−n+ 3
2
∫
t−n+ 1

2 In+ 1
2
(t) dt=

MmÃn

2n+ 1

(
1√
M

)−n+ 3
2

t−n+ 1
2 In− 1

2
(t),

and it follows that

c̄
(n)
1 (r) =

MmÃn

(2n+ 1)
√
M
r−n+ 1

2 In− 1
2

(√
Mr
)
.

For c̄(n)2 (r) we have

c̄
(n)
2 (r) =−MmÃn

2n+ 1

∫
rn+

3
2 In+ 1

2

(√
Mr
)
dr,

calling t=
√
Mr we obtain

−MmÃn

2n+ 1

∫
rn+

3
2 In+ 1

2

(√
Mr
)
dr=−MmÃn

2n+ 1

(
1√
M

)n+ 5
2
∫
tn+

3
2 In+ 1

2
(t) dt,

and using the following property of the Bessel function∫
xp+1Ip(x)dx= xp+1Ip+1(x)dx,

we have

−MmÃn

2n+ 1

(
1√
M

)n+ 5
2
∫
tn+

3
2 In+ 1

2
(t) dt=−MmÃn

2n+ 1

(
1√
M

)n+ 5
2

tn+
3
2 In+ 3

2
(t),

and it follows that

c̄
(n)
2 (r) =− MmÃn

(2n+ 1)
√
M
rn+

3
2 In+ 3

2

(√
Mr
)
.

Finally, the particular solution is

m
(p)
n (r) =

MmÃn
√
r

(2n+ 1)
√
M

(
In− 1

2

(√
Mr
)
− In+ 3

2

(√
Mr
))

=
MmÃn

M

1√
r
In+ 1

2

(√
Mr
)
, (A27)

where we used the fact that
Ip−1(x)− Ip+1(x) =

2p

x
Ip(x).



5

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

Hence we have that the solution is:

mn(r) =m
(0)
n (r) +m

(p)
n (r) = c

(n)
1 rn + c

(n)
2 r−n−1 +

MmÃn

M

1√
r
In+ 1

2

(√
Mr
)
. (A28)

By similar computations we obtain that vn(r) in (A23) is

vn(r) = d
(n)
1 rn + d

(n)
2 r−n−1 − MvÃn

M

1√
r
In+ 1

2

(√
Mr
)
. (A29)

We impose the boundary conditions (A2). To have non-degeneracy at r= 0, for every n we
need that

c
(n)
2 = d

(n)
2 = 0;

on the other hand, rewriting the boundary condition at r=R in terms of Legendre polynomials

p̄m(R, ζ) =

∞∑
n=0

b
(n)
m Pn (ζ) , p̄v(R, ζ) =

∞∑
n=0

b
(n)
v Pn (ζ) ,

where

b
(n)
m =

1

2
(2n+ 1)

∫1
−1

p̄m(ζ)Pn(ζ)dζ, b
(n)
v =

1

2
(2n+ 1)

∫1
−1

p̄v(ζ)Pn(ζ)dζ,

we obtain, using the linear independence of the Legendre polynomials:

c
(n)
1 =

[
b
(n)
m − MmÃn

M
√
R
In+ 1

2

(√
MR

)]
Rn

, (A30)

d
(n)
1 =

[
b
(n)
v +

MvÃn

M
√
R
In+ 1

2

(√
MR

)]
Rn

. (A31)

B. Lymph Node Data
The aim of this section is to justify the choices made on the values of the parameters of Table 2.

We assume a radius R= 0.49mm of the LC [18,23]. The lymph that flows inside the lymph
node is modeled as an incompressible Newtonian fluid similar to water [20] with viscosity µ=

1
mg

mm s and density ρ0 = 1
mg

mm3 . The interstitial permeability is considered homogeneous [16]
with value K̂m = 3.84× 10−9 mm2 [29]. The effective viscosity is taken as µe = µ

ϕ [43,45], where
ϕ is the porosity taken as ϕ= 0.75 [29].

The parameters that regulate the fluid exchange between the lymph node and the blood vessels
are very heterogeneous in the literature, but we try to summarize them here. The Staverman’s
reflection coefficient σ is estimated between σ= 0.88− 0.9. In [41,46,47] they estimate the oncotic
pressure difference πv − πm in a canine popliteal lymph node as ≈ 2080Pa = 2.08× 106 mPa,
in [22] they estimate the values πv ≈ 1.53× 106 mPa and πm ≈ 5.06× 106 mPa in a mouse using
the assumption that the protein content of lymph is 40% of that of the plasma, [27,28] found
πv − πm ≈ 3.41× 105 mPa by fitting the wild type mouse model to experimental data, [48]
measured the value πv − πm ≈ 1.5× 106 mPa in the skin of mice and [30] estimates πv − πm ≈
1.69× 106 mPa.

For the hydraulic conductivity of the blood vessel wall Lp, we have that [22] assumed a value
of Lp = 5.475× 10−12 mm

s mPa based on the measured hydraulic conductivity of rat mesenteric

venular microvessels, [27,28] assumed a range of Lp ≈ 1.02× 10−11 − 6.7× 10−10 mm
s mPa from

the values of the blood capillaries, [30] estimates directly Lp
Stot

|Ωtot
m| ≈ 10−6 1

s mPa (that means, in

our case, Lp ≈ 3.667× 10−8 mm
s mPa , see below).

Moreover, we have that the mean blood vessels pressure p̄v in the node is estimated as p̄v ≈
6.67× 105 mPa in [22], as p̄v ≈ 9.73× 105 mPa in [27,28] and as p̄v ≈ 1.06× 106 mPa in [30].
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The surface of fluid exchange Stot between the lymph node and the blood vessels is given by
an average of the values found in [23] and it is

Stot = 13.4mm2; (B1)

the volume of the blood vessels inside the node |Ωtot
v | is about the 6.15% of the whole lymph node

volume [23,24], and hence we have (supposing that the SCS height is ≈ 10−2 mm [18,22,32])

|Ωtot
v |= 0.0322mm3. (B2)

We suppose the geometry of the cell domain is as in Figure 1. This microscale geometry is
simpler with respect to the physiological one [23,24]; we can assume this simplified microscale
geometry because we start with a formulation that is already smoothed out (our starting point
was a Darcy/Darcy-Brinkman formulation). Hence, we do not need precise information about
the microstructure geometry. What we want to keep in the physiological geometry are the surface
area of the blood vessels Stot and the volume of the blood vessels |Ωtot

v |. For this reason, we
estimate the normalized radius of the cylinders r̂c = rc/d, where rc is the radius of the cylinders
and d is the microscale variable that indicates the distance between the centers of the cylinders, in
such a way that we keep the physiological parameters Stot and |Ωtot

v |. For a spherical lymph node
as in our case, the total volume is

|Ω|= 0.5236mm3. (B3)

It follows that
|Ωtot

m |= 0.4914mm3. (B4)

From these values, we have that

|Ωm|= |Ωtot
m |

|Ω| =
0.4914mm3

0.5236mm3
= 0.9385, (B5)

|Ωv|=
|Ωtot

v |
|Ω| =

0.0322mm3

0.5236mm3
= 0.06149, (B6)

and hence we have
|Ωm|+ |Ωv|= 1. (B7)

We have that the cell volume is d3, and hence for N cells we have

Nd3 = |Ω|. (B8)

The radius of the normalized cylinders that gives us the volume fraction values |Ωm| and |Ωv|
is found numerically using COMSOL Multiphysics, and it is

r̂c =
rc
d

= 0.0869, (B9)

and it follows that
rc = 0.0869d. (B10)

We have that the surface area of the tricylinder of our cell problem is

3
[
2πrcd− (16− 8

√
2)r2c

]
, (B11)

and for N cells, we have that the total surface of the blood vessel network is

3N
[
2πrcd− (16− 8

√
2)r2c

]
; (B12)

using the relation (B10), equation (B12) becomes

3N

[
2π

r2c
0.0869

− (16− 8
√
2)r2c

]
. (B13)



7

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

Figure 1. The cell problem domains Ωv (left) and Ωm (right) in a non-dimensional form. The cube has side 1 and the

tricylinder has radius r̄= rc/d.

Imposing that the total surface of the tricylinders (B13) equal to the blood network surface area
Stot (B1), we obtain

Nr2c = 0.1981. (B14)

Putting together equations (B8), (B10) and (B14), we obtain a system with three equations and
three unknowns: 

Nd3 = |Ω|,
rc = 0.0869d,

Nr2c = 0.1981;

(B15)

solving this system gives us the values d≈ 0.02 mm, rc ≈ 0.0017 mm and N ≈ 1310. Thanks to
this estimation, we have that, at the macroscale, Stot and |Ωtot

v |are the same as in the physiological
data. Hence we can use these parameters to estimate the hydraulic conductivity of the blood
vessels Kv using the Kozeny-Carman formula [49,50]:

Kv =
1

c0

(
S

|Ωv|

)2 , (B16)

where c0 is the Kozeny constant and depends on the tortuosity of the vessels [38]. In the case with
little tortuosity, we can take into account the tortuosity effect by varying only the constant c0 and
not the geometry of the cell problem. However, to study the role of tortuosity in more detail, we
need to take it into account in the geometry of the microscale problem, which we did not do in
this case. With no tortuosity effect, c0 = 5.6, and this implies Kv = 1.03× 10−6 mm2.

Moreover, with these data, we have

ϵ=
d

L
≈ 10−2.

C. Numerical Simulations
In this section we discuss the numerical simulations used to find the solutions of the cell problems
(2.25), (2.26), (2.30) and (2.31). We can see the geometry of the cell problems using the data
found in Appendix B in Figure 1. For the sake of simplicity, we assume that the multiscale
forces f ϵ

v and f ϵ
m vanish; hence the unique solutions of the cell problems (2.26) and (2.31) are

zero (remembering that ⟨g̃m(x,y)⟩Ωm
= 0 and ⟨g̃v(x,y)⟩Ωv

= 0). Moreover, we assume that both
porous media are isotropic, which means that the solutions of the cell problems (2.25) and (2.30)
are in these forms

Wm =WmI, ∇xgv =GvI,

where Wm and Gv are constants due to the geometry symmetry of the cell problems and the
hypotheses used.

giros
Barra
1.1

giros
Testo inserito
non-dimensional
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Figure 2. The velocity solution of cell problem (2.30) in the geometry Ωm in a non-dimensional form using the

physiological data found in Appendix B.

We solve these cell problems using COMSOL Multiphysics, with α= 1. For the cell problem
(2.30) in the geometry Ωm, we use the Brinkman equations module of COMSOL, with a P32 − P1
discretization for the fluid and the pressure variable, respectively; moreover, we use the PARDISO
solver. We can see the solution (the velocity) in Figure 2. This solution is calculated in the direction
e1, but thanks to the geometry symmetry and the isotropy of the porous medium, we have the
same solution for every direction.

To find the hydraulic conductivity in (3.1) we need to calculate ⟨Wm⟩Ωm
, which is the average

of the velocity calculated above, and the value is

⟨Wm⟩Ωm
≈ 9.1163× 10−6. (C1)

To study in more detail the mesh of the previous solution, we perform an adaptive mesh
refinement study. After this process, we find a value of

⟨W ref
m ⟩Ωm

≈ 9.1187× 10−6, (C2)

giving a relative error of ≈ 0.026%.
The cell problem (2.25) in the geometry Ωv is in the form of Poisson’s equation. We use

Poisson’s equation module in COMSOL with a quadratic element order for the discretization,
and we use MUMPS as a solver. We can see the solution in Figure 3. The solution is calculated in
the direction e1 but, as in the previous case, we have the same solution for every direction thanks
to the symmetry of the geometry and the isotropy of the porous medium.

We need to calculate ⟨Gv⟩Ωv
to find the hydraulic conductivity in (3.4), which is the average

of the gradient of the solution calculated above, and the value is

⟨Gv⟩Ωv
≈−0.60060. (C3)

We perform an adaptive mesh refinement study for this problem as in the previous one. After this
process, we find a value of

⟨Gref
v ⟩Ωm

≈−0.60054, (C4)

giving a relative error of ≈ 0.01%.
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Figure 3. The solution of cell problem (2.25) in the geometry Ωv in a non-dimensional form using the physiological data

found in Appendix B.
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