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Cauchyinteractionsbetweensubbodiesof acontinuousbodyareintroducedin theframeworkof
MeasureTheory,extendingthe classof previouslyadmissibleones.A decompositiontheorem
into a volume and a surfaceinteractionis proved,as well as characterizationsof the single
components.Finally, an extensionresultanda generalizedbalancelaw aregiven.
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1 Intr oduction

It is well-knownthatthemodelizationof interactionsin ContinuumPhysicsdealswith setfunctionsassociated
with physicalquantitiesrather than with functionsevaluatedat single points (seee.g. [7]). Very important
examplesof theseare the stressand the heatflux. This, in turn, implies that the conceptof subbodyof a
material body B has to be taken into account.However,subbodiesare not completelyphysical (although
they may be usedto describethe situationarising in the body in a very satisfactoryway), sincethe classof
subsetswhich haveto representthemis a matterof choice.

For suchsetfunctionsshouldsatisfysomereasonableadditivity condition,it is naturalto put theapproach
into theframeworkof MeasureTheory.An exampleof how this way of thinking hasbeendevelopedis given
by the CauchyStressTheorem,leadingin [3] to the notion of Cauchyflux. For further developments,we
refer the readerto [3, 8, 5, 1] andthe referencesquotedtherein.

In [4], Gurtin,Williams andZiemerproposedto choosethenormalizedsetsof finite perimeterassubbodies
and introducedthe conceptof Cauchyinteraction in order to representan interactionbetweentwo disjoint
subbodies,possiblyhavinga part of their boundaryin common.This is, roughly speaking,a set function I
of two variables,the subbodies,which is additive on eachvariableand which is Lipschitz continuouswith
respectto the areameasureof the commonpart of the boundariesand the volumemeasure.In that paperit
is provedthat:

(a) I can be decomposedas the sum of a “body interaction” Ib and a “contact interaction” Ic , satisfying
the bounds

|Ib(A, C)| � KCL n(A) , |Ic(A, C)| � K H n−1(∂∗A ∩ ∂∗C) ;
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(b) Ib admitsthe representation

Ib(A, C) =
∫

A×C
b(x, y) dx dy , for a suitableb ∈ L1(B × B) ;

(c) in the balancedcase,i.e. when |I (A, Rn \ A)| � K L n(A), the contactpart Ic is a Cauchyflux which
admitsthe representation

Ic(A, C) =
∫

∂∗A∩∂∗C
q · n∂∗A∩∂∗C dH n−1 ,

whereq : B → R
n is a boundedvectorfield with boundeddivergence.

In our work we extendthis definition of Cauchyinteractionin orderto allow the correspondingdensities
to be also distributionsof order zero. In this way, also interactionswhich are singularcan be considered.
To do this, we deal with notions of “almost all subbodies”and “almost every material surface”, already
introducedby Šilhav́y [5] andextendedby Degiovanni,MarzocchiandMusesti[1] for the formulationof
the CauchyStressTheorem.In particular,for almostall subbodieswe first showthat:

(a′) I can be decomposedas the sum of a “body interaction” Ib and a “contact interaction” Ic , satisfying
the bounds

|Ib(A, C)| � η(A × C) , |Ic(A, C)| �

∫

∂∗A∩∂∗C
h(x) dH n−1(x) ,

whereη is a Radonmeasureandh a positivefunction in L1
loc;

(b′) Ib admitsthe representation

Ib(A, C) =
∫

A×C
b(x, y) dµ(x, y) ,

whereµ is a Radonmeasureandb : B × B → {−1, 1} is a Borel function;
(c′) in the balancedcase,i.e. when |I (A, Rn \ A)| � λ(A) for a Radonmeasureλ, the contactpart Ic is a

Cauchyflux which admitsthe representation

Ic(A, C) =
∫

∂∗A∩∂∗C
q · n∂∗A∩∂∗C dH n−1 ,

whereq : B → R
n is a locally integrablevectorfield with divergencemeasure.

Next, we showthe uniquenessof the decomposition(a′) anda correspondencebetweencontactinteractions
and Cauchyfluxes also in the non-balancedcase(Theorem6.1), which is not treatedin [1]. Finally, we
derive from the previous theoremsa generalizedform of the balanceequationassociatedto a balanced
Cauchyinteraction.

Our last result, in the spirit of [1], is that the choice of all normalizedsubsetsof finite perimeteras
subbodiesis a naturalone: in fact, it is sufficient to verify the existenceof a Cauchyinteractionon a very
small (in comparisonwith that of the setsof finite perimeter)classof subbodies,to haveautomaticallyan
essentiallyuniqueextensionof the interactionon almosteverydisjoint pair of normalizedsubbodiesof finite
perimeter,with the samepropertiesgiven on the simpler subbodies(seeSect.8). Since the aboveclassis
comprisedof parallelepipeds,which anybodywould wish to considerassubbodies,our resultshowsthat the
classof the normalizedsubsetsof finite perimeteris the smallest(althoughvery wide, sincesetsof finite
perimetercanbe quite irregular) “natural” classof subbodiesof a materialbody.

It is worth to point out that our definition of Cauchyinteraction,as well as that of [4], is modeledon
the situationin which the set function representsthe sumof the heatgeneratedin the subbodyandthe heat
transferredthroughits boundary.This leadsto the peculiarchoiceof the subbodiesin Definition 3.1: it is
requestedthat either the subsetslie in the interior of the body,or that their complementshavethis property.
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2 Preliminary lemmasfr om Geometric Measure Theory

Let M ⊆ R
n. We denoteby cl M and int M the closureandthe interior of M in R

n, respectively.WhenM
is a Borel set,we alsodenoteby B (M ) the σ-algebraof Borel subsetsof M .

We denoteby L n the Lebesgueouter measureon R
n and by H k the k-dimensionalHausdorff outer

measure.Denotingby Bx (r ) the openball with centerx andradiusr , we introduce

M∗ =

{
x ∈ R

n : lim
r→0+

L n(Bx (r ) \ M )
L n(Bx (r ))

= 0

}

and
∂∗M = R

n \
[
M∗ ∪ (Rn \ M )∗

]
,

(thesocalledmeasure-theoretic interior andmeasure-theoreticboundaryof M , respectively).It is well-known
that M∗ and∂∗M areBorel subsetsof R

n. We saythat M is normalized, if M∗ = M .
Now let M ⊆ R

n, x ∈ ∂∗M andu ∈ R
n with |u| = 1. We say that u is a unit exterior normal vector to

M at x if

lim
r→0+

L n
(
{ξ ∈ Bx (r ) ∩ M : (ξ − x) · u > 0}

)

L n(Bx (r ))
= 0 ,

lim
r→0+

L n
(
{ξ ∈ Bx (r ) \ M : (ξ − x) · u < 0}

)

L n(Bx (r ))
= 0 .

If u and v are two unit exterior normal vectorsto M at x, it turns out that u = v, so we can definea
mapnM : ∂∗M → R

n, settingnM (x) equalto the unit exteriornormalvectorto M at x, whereit exists,and
nM (x) = 0 otherwise.ThennM is a Borel andboundedmap,that is called theunit exteriornormal to M .

We saythat M hasfinite perimeterif H n−1(∂∗M ) < +∞ (this implies the L n-measurabilityof M ). In
sucha case,|nM (x)| = 1 for H n−1-a.e.x ∈ ∂∗M andthe Gauss-GreenTheorem

∫

M
v · ∇f dL n =

∫

∂∗M
f v · nM dH n−1 −

∫

M
f div v dL n

holds wheneverf : R
n → R andv : R

n → R
n are Lipschitz continuouswith compactsupport(seee.g. [2,

Theorem4.5.6] or [9, Theorem5.8.2]).
Let Ω beanopensubsetof R

n. We denoteby M (Ω) thesetof Borel measuresµ : B (Ω) → [0, +∞] finite
on compactsubsetsof Ω andby L 1

loc,+ (Ω) thesetof Borel functionsh : Ω → [0, +∞] with
∫

K h dL n < +∞
for everycompactsubsetK ⊆ Ω.

For a finite-dimensionalnormedspaceX, we denoteby L 1
loc (Ω; X) the set of Borel mapsv : Ω → X

with
∫

K ‖v‖ dL n < +∞ for any compactsubsetK of Ω. We alsodenoteby L1
loc(Ω, µ) the quotientsetof

Borel functionsf : Ω → R suchthat
∫

K f dµ < +∞ for everycompactsubsetK ⊆ Ω, wherewe identify the
functionsthat agreeµ-almosteverywherein Ω.

In theremainderof thesectionwe establishsomegeneralpropertiesof measure-theoreticboundarywhich
will be usedin the sequel.

Proposition 2.1 Let M , N be two L n-measurablesubsetsof R
n.

Thenwehave
[
((∂∗M ) \ N∗) ∪ ((∂∗N ) \ M∗)

]
\ (∂∗M ∩ ∂∗N ) ⊆ ∂∗(M ∪ N ) ⊆ ((∂∗M ) \ N∗) ∪ ((∂∗N ) \ M∗) ,

(N∗ ∩ ∂∗M ) ∪ (M∗ ∩ ∂∗N ) ⊆ ∂∗(M ∩ N ) ⊆ (N∗ ∩ ∂∗M ) ∪ (M∗ ∩ ∂∗N ) ∪ (∂∗M ∩ ∂∗N ) ,
[
((∂∗M ) \ N∗) ∪ (M∗ ∩ ∂∗N )

]
\ (∂∗M ∩ ∂∗N ) ⊆ ∂∗(M \ N ) ⊆ ((∂∗M ) \ N∗) ∪ (M∗ ∩ ∂∗N ) .

Proof. It is well-known that if (andonly if) M is L n-measurable,thenL n((M \ M∗) ∪ (M∗ \ M )) = 0. In
particular,this implies that ∂∗M = ∂∗(M∗) for everyL n-measurablesubsetM ⊆ R

n. Thuswe cansuppose
that M andN arenormalized.The claimedpropertiesfollow now from [4, Lemma3.2] and[5, Proposition
2.1]. ��
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The following refinesProposition2.1, establishingdecompositionsof the measure-theoreticboundaryof
M ∪ N , M ∩ N andM \ N up to setsof zerosurfacemeasure.

Proposition 2.2 Let M , N be two L n-measurablesubsetsof R
n of finite perimeterandlet A = (∂∗M \ (N∗ ∪

∂∗N )), B = (∂∗N \ (M∗ ∪ ∂∗M )), C = (M∗ ∩ ∂∗N ), D = (N∗ ∩ ∂∗M ),

E = {x ∈ ∂∗M ∩ ∂∗N : nM (x) �= 0, nN (x) �= 0, nM (x) �= −nN (x)} ,

F = {x ∈ ∂∗M ∩ ∂∗N : nM (x) �= 0, nN (x) �= 0, nM (x) �= nN (x)} .

Thenthere existthreesetsRk ⊆ ∂∗M ∩ ∂∗N, for k = 1, 2, 3, suchthat H n−1(Rk) = 0 and

∂∗(M ∪ N ) = A ∪ B ∪ E ∪ R1 ,

∂∗(M ∩ N ) = C ∪ D ∪ E ∪ R2 ,

∂∗(M \ N ) = A ∪ C ∪ F ∪ R3 ,

where theunionsare disjoint.

Proof. As in Proposition2.1, we cansupposethat M andN arenormalized.We start from the last equality.
From Proposition2.1 we havethat ∂∗M \ (N ∪ ∂∗N ) ⊆ ∂∗(M \ N ) andM ∩ ∂∗N ⊆ ∂∗(M \ N ). Let x ∈ F
andconsiderthe cone

Ce = {ξ ∈ R
n : (ξ − x) · nN (x) < 0 < (ξ − x) · nM (x)} ;

for every r > 0 we havethat

(Ce ∩ Bx (r )) ⊆ {ξ ∈ Bx (r ) ∩ M : (ξ − x) · nM (x) > 0} ∪ [Bx (r ) \ (M \ N )] .

By the definition of unit exteriornormalvector,this implies that

lim sup
r→0+

L n(Bx (r ) \ (M \ N ))
L n(Bx (r ))

� lim
r→0+

L n(Ce ∩ Bx (r ))
L n(Bx (r ))

> 0 ,

hencex �∈ (M \ N )∗ .
In the sameway, setting

Ci = {ξ ∈ R
n : (ξ − x) · nM (x) < 0 < (ξ − x) · nN (x)} ,

for every r > 0 onecanprovethat
[
(Ci ∩ Bx (r )) \ {ξ ∈ Bx (r ) \ M : (ξ − x) · nM (x) < 0}

]

\ {ξ ∈ Bx (r ) ∩ N : (ξ − x) · nN (x) > 0} ⊆ Bx (r ) ∩ (M \ N ) ,

hencex �∈ (Rn \ (M \ N ))∗ . ThusF ⊆ ∂∗(M \ N ).
Now let x ∈ ∂∗M ∩ ∂∗N be suchthat nM (x) = nN (x) �= 0; for every r > 0 we havethat the set

{ξ ∈ Bx (r ) ∩ M : (ξ − x) · nM (x) > 0} ∪ {ξ ∈ Bx (r ) \ N : (ξ − x) · nN (x) � 0}

containsBx (r ) ∩ (M \ N ), hence

lim
r→0+

L n(Bx (r ) ∩ (M \ N ))
L n(Bx (r ))

= 0 .

This meansthat x ∈ (Rn \ (M \ N ))∗ , thusx �∈ ∂∗(M \ N ). Setting

R3 = ∂∗(M \ N ) \ [(∂∗M \ (N ∪ ∂∗N )) ∪ (M ∩ ∂∗N ) ∪ F ] ,

it follows that
R3 ⊆ {ξ ∈ ∂∗M ∩ ∂∗N : nM (x) = 0 or nN (x) = 0}

and,by the propertiesof the unit exteriornormal,we haveH n−1(R3) = 0. This provethe last equality.
Theothertwo formulasturn out if we write M ∩N asM \(Rn \N ) andM ∪N asR

n \((Rn \M )∩(Rn \N )).
��

Proposition 2.3 Let M1, M2, M3 be threemutuallydisjoint subsetsof R
n of finite perimeter.Then

H n−1(∂∗M1 ∩ ∂∗M2 ∩ ∂∗M3) = 0 .

Proof. It is aneasyconsequenceof thepropertiesof theunit exteriornormal.Seee.g.[4, Proposition3.4]. ��



Cauchyinteractions 153

3 Main definitions

Throughoutthe remainderof this work, B will denotea boundednormalizedsubsetof R
n of finite perimeter,

which we call a body.

Definition 3.1 Let M be thecollectionof all normalizedsubsetsof B of finite perimeter.We set(as in [4])

N = {C ⊆ R
n : C is normalized, C ∈ M or (Rn \ C)∗ ∈ M} ,

D = {(A, C) ∈ M × N : A ∩ C = ∅} .

Moreover,wedefine

Mloc = {A ∈ M : cl A ⊆ int B} ,

N loc = Mloc ∪ {A ∪ (Rn \ B)∗ : A ∈ Mloc} ,

D
loc = {(A, C) ∈ Mloc × N loc : A ∩ C = ∅} .

Let nowh ∈ L 1
loc,+ (int B) andν ∈ M (int B). We set,following the ideasof [5],

Mloc
hν =

{
A ∈ Mloc :

∫

∂∗A
h dH n−1 < +∞, ν(∂∗A) = 0

}
,

N loc
hν =

{
C ∈ N loc : (C ∩ B) ∈ Mloc

hν

}
,

D
loc
hν = D

loc ∩
(
Mloc

hν × N loc
hν

)
.

Remark3.1 In Definition 3.1 we may assume,without loss of generality, that h : int B → [0, +∞] is
a Borel function with

∫
int B h dL n < +∞ and ν : B (int B) → [0, +∞] is a positive Borel measurewith

ν(int B) < +∞. In fact,givenanincreasingsequence(Km) of compactsubsetsof int B with int B =
∞⋃

m=1
int Km,

we canset

ĥ(x) =





h(x)
1 +
∫

K1
h dL n

if x ∈ K1,

h(x)
2m−1(1 +

∫
Km

h dL n)
if x ∈ Km \ Km−1, m � 2,

ν̂(M ) =
ν(M ∩ K1)
1 +ν(K1)

+
∞∑

m=2

ν(M ∩ (Km \ Km−1))
2m−1(1 + ν(Km))

(M ∈ B (int B)) .

Then ĥ, ν̂ havethe requiredpropertiesandMloc
ĥν̂

= Mloc
hν , N loc

ĥν̂
= N loc

hν , D
loc
ĥν̂

= D
loc
hν .

Remark3.2 For everyη ∈ M (int B × int B) we candefinea measureν ∈ M (int B) suchthatη � ν × ν. In

fact, we cantakean increasingsequence(Km) of compactsubsetsof int B with int B =
∞⋃

m=1
int Km andset

∀E ∈ B (int B) : ν(E) =
∞∑

m=1

η((E ∩ Km) × Km) + η(Km × (E ∩ Km))
2m−1(1 + η(Km × Km))

.

In this way, given h ∈ L 1
loc,+ (int B) we haveη((∂∗A) × int B) = η((int B) × ∂∗A) = 0 for everyA ∈ Mloc

hν .

Remark3.3 If (A, C) ∈ D
loc, thenA ∩ ∂∗C = C ∩ ∂∗A = ∅. In fact, from Proposition2.1 we have

(A ∩ ∂∗C) ∪ (C ∩ ∂∗A) ⊆ ∂∗(A ∩ C) = ∅ .
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Definition 3.2 WesaythatD ⊆ Mloc containsalmostall of Mloc, if Mloc
hν ⊆ D for someh ∈ L 1

loc,+ (int B)
andν ∈ M (int B).

A propertyπ holdsalmosteverywherein Mloc, if theset
{

A ∈ Mloc : π(A) is definedandπ(A) holds
}

containsalmostall of Mloc.
We say that D ⊆ D

loc containsalmostall of D
loc, if D

loc
hν ⊆ D for someh ∈ L 1

loc,+ (int B) and ν ∈
M (int B).

A propertyπ holdsalmosteverywherein D
loc, if theset

{
(A, C) ∈ D

loc : π(A, C) is definedandπ(A, C) holds
}

containsalmostall of D
loc.

For a discussionaboutthis conceptwe refer the readerto [1, Section3].

Proposition 3.1 Thefollowing assertionshold:

(a) if h ∈ L 1
loc,+ (int B), ν ∈ M (int B) andM1, M2 ∈ Mloc

hν , then(M1∪M2)∗, M1∩M2, (M1\M2)∗ ∈ Mloc
hν ;

(b) if (hm), (νm) aresequencesin L 1
loc,+ (int B) andM (int B) respectively,thenthereexisth ∈ L 1

loc,+ (int B)
andν ∈ M (int B) suchthat

Mloc
hν ⊆

∞⋂

m=1

Mloc
hmνm

.

Proof. Assertion(a) is a simpleconsequenceof Proposition2.1.

To prove(b), we cantakeanincreasingsequence(Km) of compactsubsetsof int B with int B =
∞⋃

m=1
int Km.

Setting

∀x ∈ int B : h(x) =
∞∑

m=1

hm(x)

2m
(

1 +
∫

Km
hm dL n

) ,

∀E ∈ B (int B) : ν(E) =
∞∑

m=1

νm(E)
2m(1 + νm(Km))

,

it is not difficult to seethat h andν havethe requiredproperties. ��

Remark3.4 In view of (b) of Proposition3.1, given a countableset of propertiessuch that eachof them
holdson almostall of Mloc, thereexist h ∈ L 1

loc,+ (int B) andν ∈ M (int B) suchthat they hold on Mloc
hν .

The samehappensfor N loc andD
loc.

Definition 3.3 An ordered orthonormalbasis(e1, . . . , en) in R
n will be called a frame. A frame (e1, . . . , en)

is said to bepositively oriented, if thedeterminantof thematrix with columnse1, . . . , en is positive.
A grid G is an ordered triple

G =
(

x0, (e1, . . . , en), Ĝ
)

,

where x0 ∈ R
n, (e1, . . . , en) is a positivelyorientedframein R

n and Ĝ is a Borel subsetof R. If G1, G2 are
two grids, wewrite G1 ⊆ G2 if thefirst two componentscoincideandĜ1 ⊆ Ĝ2. A grid G is said to be full , if
L 1(R \ Ĝ) = 0.

Let G be a grid; a subsetI of R
n is said to bean openn-dimensionalG-interval, if

I =
{

x ∈ R
n : a(j ) < (x − x0) · ej < b(j ) ∀j = 1, . . . , n

}

for somea(1), b(1), . . . , a(n), b(n) ∈ Ĝ. We set

IG = {I : I is an openn-dimensionalG-interval with cl I ⊆ int B} ,
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MG =



Y : Y =

(
⋃

I ∈F

I

)

∗

for somefinite family F in IG



 ,

DG = {(A, C) ∈ D : A, C ∈ IG, A ∩ C = ∅}

∪{(A, C ∪ (Rn \ B)∗) : A, C ∈ IG, A ∩ C = ∅} .

Proposition 3.2 Let x0 ∈ R
n and (e1, . . . , en) be a positively oriented frame in R

n. Then for every h ∈

L 1
loc,+ (int B) and ν ∈ M (int B) there existsa full grid G of the form G =

(
x0, (e1, . . . , en), Ĝ

)
suchthat

MG ⊆ Mloc
hν .

Proof. See[1, Proposition4.5]. ��

Definition 3.4 Let A ⊆ N . We saythat a functionF : A → R is additive if for everyA1, A2 ∈ A such
that (A1 ∪ A2)∗ ∈ A andA1 ∩ A2 = ∅, we have

F ((A1 ∪ A2)∗) = F (A1) + F (A2) .

Let D ⊆ D. We saythat a functionF : D → R is biadditive if the functions

F ( · , C) : {A′ ∈ M : (A′, C) ∈ D } → R ,

F (A, · ) : {C ′ ∈ N : (A, C ′) ∈ D } → R ,

are additivefor every(A, C) ∈ D .

We aregoing to introducethe main characterof the paper.

Definition 3.5 Let D ⊆ D
loc be a setcontainingalmostall of D

loc and let I : D → R. We saythat I is a
Cauchyinteraction, if the following propertieshold:

(a) I is biadditive;
(b) there existh ∈ L 1

loc,+ (int B), η ∈ M (int B × int B) andηe ∈ M (int B) suchthat the inequality

|I (A, C)| �





∫

∂∗A∩∂∗C
h dH n−1 + η(A × C) if C ⊆ B,

∫

∂∗A∩∂∗C
h dH n−1 + η(A × (C ∩ B)) + ηe(A) otherwise,

(3.1)

holdsalmosteverywhere in D
loc.

Remark3.5 The dichotomy in the previous definition arise from the thermodynamicalintuition that the
exteriorof the body is consideredregardlessto its structure,but it caninteractwith the body, like e.g.a heat
reservoir.Of course,onecanforget the exteriorsettingηe = 0.

Definition 3.6 A CauchyinteractionI is said to be:

(a) a body interaction, if in thepreviousdefinitionwecanchooseh = 0;
(b) a contactinteraction, if in thepreviousdefinitionwecanchooseη = 0 andηe = 0.
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4 Decompositionof Cauchy interactions

In this sectionwe will showthat Cauchyinteractionscanbe decomposedin an essentiallyuniqueway into
a sumof a body anda contactinteraction,in the sensespecifiedbelow.

Lemma 4.1 Let G be a full grid and K be a compactsubsetof int B. Thenfor every (A, C) ∈ D
loc with

C ⊆ B there existtwo sequences(Ak), (Ck) in MG suchthat cl Ak ∩ cl Ck = ∅ for everyk ∈ N and

lim
k

η ((Ak�A) × K )= 0, lim
k

η (K × (Ck�C))= 0, lim
k

ηe(Ak�A)= 0,

where � denotesthesymmetricdifferenceof sets.

Proof. For k ∈ N let K1, K2 be compactsubsetsof int B suchthat K1 ⊆ A, K2 ⊆ C and

η
(
(A \ K1) × K

)
<

1
k

, η
(
K × (C \ K2)

)
<

1
k

,η e(A \ K1) <
1
k

.

Let Ak , Ck ∈ MG with K1 ⊆ Ak , K2 ⊆ Ck , cl Ak ∩ cl Ck = ∅, suchthat

η
(
(Ak \ K1) × K

)
<

1
k

, η
(
K × (Ck \ K2)

)
<

1
k

,η e(Ak \ K1) <
1
k

.

We havethereforethat A \ Ak ⊆ A \ K1 andAk \ A ⊆ Ak \ K1, hence

η ((Ak�A) × K ) <
2
k

, ηe(Ak�A) <
2
k

.

The samehappensfor η (K × (Ck�C)). ��

Theorem 4.1 Let I be a Cauchyinteraction.Thenthere exista bodyinteractionIb anda contactinteraction
Ic suchthat I = Ib + Ic on almostall of D

loc.
Moreover,if there exista bodyinteractionÎb and a contactinteractionÎc suchthat I = Îb + Îc on almost

all of D
loc, then

Ib = Îb, Ic = Îc

on almostall of D
loc.

Finally, if I1, I2 are two Cauchyinteractionsthat agree,for somefull grid G, on DG, then(I1)b = (I2)b on
almostall of D

loc.

Proof. Let h ∈ L 1
loc,+ (int B), η ∈ M (int B × int B) andηe, ν ∈ M (int B) be suchthat η � ν × ν, ηe � ν,

the domainof I containsDloc
hν and3.1 holds for every (A, C) ∈ D

loc
hν , as specifiedin Remark3.4. Let H be

a full grid as in Proposition3.2. For (A, C) ∈ D
loc
hν with C ⊆ B, thereare two compactsubsetsKA, KC of

int B suchthat cl A ⊆ int KA andcl C ⊆ int KC . By Lemma4.1, considertwo sequences(Ak), (Ck) in MH

suchthat cl Ak ∩ cl Ck = ∅ and

lim
k

η ((Ak�A) × KC )= 0, lim
k

η (KA × (Ck�C))= 0,

lim
k

ηe(Ak�A)= 0;

without lossof generality,we canrequirethat Ak ⊆ KA andCk ⊆ KC . It follows from the biadditivity of I
andthe propertiesof normalizedsubsetsthat

|I (Ak , Ck) − I (Ai , Ci )| = |I ((Ak \ Ai )∗ , Ck) + I (Ak ∩ Ai , (Ck \ Ci )∗)

−I (Ai , (Ci \ Ck)∗) − I ((Ai \ Ak)∗ , Ci ∩ Ck)|

� η((Ak�Ai ) × KC ) + η(KA × (Ck�Ci ))

� η((Ak�A) × KC ) + η(KA × (Ck�C))

+η((Ai �A) × KC ) + η(KA × (Ci �C)) ,

therefore(I (Ak , Ck)) is a Cauchysequencein R. Moreover,
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|I (A, C) − I (Ak , Ck)| � |I ((A \ Ak)∗ , C) + I (A ∩ Ak , (C \ Ck)∗)

−I ((Ak \ A)∗ , Ck) − I (Ak ∩ A, (Ck \ C)∗)|

�

∫

∂∗(A\Ak )∩∂∗C
h dH n−1 +

∫

∂∗(A∩Ak )∩∂∗(C\Ck )
h dH n−1 (4.1)

+η((Ak�A) × KC ) + η(KA × (Ck�C))

� 2
∫

∂∗A∩∂∗C
h dH n−1 + η((Ak�A) × KC ) + η(KA × (Ck�C)) ,

wherethe last inequality follows from Remark3.3. For every(A, C) ∈ D
loc
hν we define

Ib(A, C) =





lim
k

I (Ak , Ck) if C ⊆ B,

lim
k

[
I (Ak , (C ∩ B)k) + I (A, (Rn \ B)∗)

]
otherwise.

It is easyto seethat Ib doesnot dependon the chosensequences.Moreoverwe have

|Ib(A, C)| �

{
η(A × C) if C ⊆ B,

η(A × (C ∩ B)) + ηe(A) otherwise,

since∂∗Ak ∩ ∂∗Ck = ∅ for everyk ∈ N.
We now show the biadditivity of Ib. Let A, A′, C be three mutually disjoint subsetsof B such that

(A, C), (A′, C) ∈ D
loc
hν andlet (Ak), (A′

k), (Ck) threesequencesin MH asin Lemma4.1. We canrequirethat
cl Ak ∩ cl A′

k = ∅. Since
(A ∪ A′)�(Ak ∪ A′

k) ⊆ (A�Ak) ∪ (A′�A′
k) ,

A ∪ A′ ⊆ (A ∪ A′)∗ ⊆ A ∪ A′ ∪ (∂∗A ∩ ∂∗A′) ,

it follows that
lim

k
η
(
((A ∪ A′)∗�(Ak ∪ A′

k)) × K
)

= 0

for everycompactsubsetK ⊆ int B. Hence

Ib((A ∪ A′)∗, C) = lim
k

I ((Ak ∪ A′
k), Ck) = lim

k
(I (Ak , Ck) + I (A′

k , Ck))

= Ib(A, C) + Ib(A′, C) .

ThecaseC �⊆ B is similar. In thesameway, we canprovetheadditivity on thesecondcomponent,therefore
Ib is a body interaction.

Setting
∀(A, C) ∈ D

loc
hν : Ic(A, C) = I (A, C) − Ib(A, C) ,

it follows that Ic is a biadditivefunction on D
loc
hν ; by 4.1 it is a contactinteraction.

Now takeh ∈ L 1
loc,+ (int B) andν ∈ M (int B) suchthat

I = Ib + Ic = Îb + Îc

on D
loc
hν . Given (A, C) ∈ D

loc
hν , let (Ak), (Ck) be two sequencesin MH asin Lemma4.1; we havethen

Ic(Ak , Ck) = Îc(Ak , Ck) = 0 .

Passingto the limit ask → ∞, it follows

∀(A, C) ∈ D
loc
hν : Ib(A, C) = Îb(A, C) ,

andthenalso Ic = Îc on D
loc
hν .

Finally, if two Cauchy interactionsI1, I2 agreeon DG for some full grid G, we can chooseh ∈
L 1

loc,+ (int B), ν ∈ M (int B) and the full grid H in the precedingconstructionsuch that I1, I2 are de-
fined on D

loc
hν andH ⊆ G. It follows that (I1)b = (I2)b on D

loc
hν . ��
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5 Body interactions

In this sectionwe will denoteby D the set{(x, x) : x ∈ int B}.
The following lemmacanbe checkedby a combinatorialtechnique.

Lemma 5.1 Let x0 ∈ R
n and (e1, . . . , en) bea positivelyorientedframein R

n. Let

J1 =
{

x ∈ R
n : a(j ) < (x − x0) · ej < b(j ) ∀j = 1, . . . , n

}
,

J2 =
{

x ∈ R
n : c(j ) < (x − x0) · ej < d(j ) ∀j = 1, . . . , n

}

betwoopenn-dimensionalG-intervalssuchthatJ1∩J2 = ∅ and(J1∪J2)∗ is anopenn-dimensionalG-interval.
Thenthere existsi ∈ {1, . . . , n} suchthat:

(i ) eitherb(i ) = c(i ) or a(i ) = d(i );
(ii ) a(j ) = c(j ) andb(j ) = d(j ) for everyj �= i .

Theorem 5.1 Letµ1 ∈ M (int B × int B), µ2 ∈ M (int B) andlet f ∈ L1
loc(int B×int B, µ1), g ∈ L1

loc(int B, µ2).
Thenf is µ1-summableon A × (C ∩ B) and g is µ2-summableon A for every(A, C) ∈ D

loc; moreover,the
formula

I (A, C) =





∫

A×C
f dµ1 if C ⊆ B,

∫

A×(C∩ int B)
f dµ1 +

∫

A
g dµ2 otherwise,

definesa bodyinteraction.

Proof. The summabilityof f andg is clear.Now let h = 0 andν ∈ M (int B) be suchthat µ1 � ν × ν and
µ2 � ν, which is possibleby Remark3.4. Then I is biadditiveon D

loc
hν . Moreover,settingη = |f | dµ1 and

ηe = |g| dµ2, inequality3.1 is satisfied,henceI is a body interaction. ��

The main resultof this sectionis the converseof Theorem5.1.

Theorem 5.2 Let I be a bodyinteractionand η ∈ M (int B × int B), ηe ∈ M (int B) be as in Definition 3.5.
Then there exist µ ∈ M (int B × int B), µe ∈ M (int B) and two Borel functionsb : int B × int B → R,
be : int B → R suchthat

µ(D) = 0 ,

|b(x, y)| = 1 for µ-a.e.(x, y) ∈ int B × int B ,

|be(x)| = 1 for µe-a.e.x ∈ int B,

I (A, C) =





∫

A×C
b dµ if C ⊆ B,

∫

A×(C∩ int B)
b dµ +

∫

A
be dµe otherwise,

on almostall of D
loc.

Moreover,wehaveµ � η andµe � ηe.

Proof. Let ν ∈ M (int B) suchthatη � ν×ν andthedomainof I containsDloc
hν . Let G =

(
x0, (e1, . . . , en), Ĝ

)

be a full grid suchthat MG ⊆ Mloc
hν andconsiderthe opensetΩ = (int B × int B) \ D , the full grid

G̃ =
(
(x0, x0),

(
(e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en)

)
, Ĝ
)

andthe set
JG = {J ⊆ R

2n : J is an open2n-dimensionalG̃-interval with cl J ⊆ Ω} .

SinceΩ doesnot contain the pairs (x, x), it is clear that every J ∈ JG is of the form J = J1 × J2 with
J1, J2 ∈ IG, J1 ∩ J2 = ∅. By meansof this decomposition,we definea function R : JG → R setting

R(J ) = I (J1, J2) .

Let J , J ′ ∈ JG be suchthat (J ∪ J ′)∗ ∈ JG; if J1, J2, J ′
1, J ′

2 ∈ IG aresuchthat J = J1 × J2, J ′ = J ′
1 × J ′

2,
thenby Lemma5.1 we havethe following alternative:
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(i) eitherJ1 ∩ J ′
1 = ∅ and J2 = J ′

2 ,
(ii) or J2 ∩ J ′

2 = ∅ and J1 = J ′
1 .

Supposefor instancethat (i ) holds; it follows

R((J ∪ J ′)∗) = I ((J1 ∪ J ′
1)∗, J2) = I (J1, J2) + I (J ′

1, J2) = R(J ) + R(J ′) .

The samehappensin the case(ii ), henceR is additive.Moreover,|R(J )| � η(J1 × J2) for everyJ = J1 × J2

in JG, so R is countablyadditive.By well-known theoremsaboutextensionsof additivefunctions(seee.g.
[6, Chap.12, Sect.2]), thereexistsa uniquesignedmeasurêµ on B (Ω) suchthat

∀J ∈ JG : µ̂(J ) = R(J ) ,

∀E ∈ B (Ω) : |µ̂|(E) � η(E) .

We definea measureµ ∈ M (int B × int B) settingµ(E) = |µ̂|(E ∩ Ω) for everyE ∈ B (int B × int B), anda

function b : int B × int B → R as
dµ̂

dµ
. Clearly, |b(x, y)| = 1 µ-a.e.in int B × int B and

I (A, C) =
∫

A×C
b dµ

for every(A, C) ∈ D
loc
hν with C ⊆ B. Modifying the valueof b on a µ-negligibleset,we cansupposethat b

is a Borel function on int B × int B asin the assertion.
Now we definean additivefunction Re : IG → R, suchthat |Re(J )| � ηe(J ), by Re(J ) = I (J , (Rn \ B)∗).

Thenthereexistsa signedmeasurêµe on B (int B) suchthat

∀J ∈ IG : µ̂e(J ) = Re(J ) ,

∀A ∈ B (int B) : |µ̂e|(A) � ηe(A) .

Settingµe = |µ̂e|, we definebe =
dµ̂e

dµe
; as we cansupposethat be is a Borel function, the proof is complete.

��

Theorem 5.3 Let I1, I2 betwobodyinteractionsandfor j = 1, 2 let µ(j ), µ
(j )
e , b(j ), b(j )

e beasin thestatementof
Theorem5.2.ThenI1 = I2 on almostall of D

loc if andonly if µ(1) = µ(2), µ(1)
e = µ(2)

e , b(1)(x) = b(2)(x) µ(1)-a.e.
in int B × int B andb(1)

e (x) = b(2)
e (x) µ(1)

e -a.e.in int B.

Proof. Let h ∈ L 1
loc,+ (int B) andν ∈ M (int B) besuchthat theequalityI1 = I2 holdsin D

loc
hν . Let G bea full

grid suchthat MG ⊆ Mloc
hν . Then,denotingby R(1), R(2) the functionson JG in the proof of Theorem5.2,

we havethat R(1) = R(2), henceµ(1) = µ(2). In the sameway, it follows that µ(1)
e = µ(2)

e . The remainderof the
proof is now easy. ��

6 Contact interactions

An orientedsurfaceS in R
n is a pair (Ŝ, nS), whereŜ is a Borel subsetof R

n andnS : Ŝ → R
n is a Borel

map such that thereexistsa normalizedset M ⊆ R
n of finite perimeterwith Ŝ ⊆ ∂∗M and nS = nM |̂

S
.

In this case,we say that S is subordinated to M . We call nS the normal to the surfaceS. If S, T are two
orientedsurfaces,we shall write S ⊆ T if Ŝ ⊆ T̂ andnT |̂

S
= nS. Two orientedsurfacesS andT aresaidto

be disjoint, if Ŝ ∩ T̂ = ∅. They aresaid to be compatible, if thereexistsa normalizedsetM ⊆ R
n of finite

perimetersuchthat S and T are subordinatedto M . If S and T are two compatibleorientedsurfaces,we
denoteby S ∪ T the orientedsurface(Ŝ ∪ T̂, nS∪T ) suchthat

nS∪T (x) =

{
nS(x) if x ∈ Ŝ,

nT (x) if x ∈ T̂.
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In the following, we shall sometimesidentify Ŝ with S and we shall considerexpressionslike, e.g., “S is
compact”,“H n−1(S)” insteadof “ Ŝ is compact”,“H n−1(Ŝ)”. In thesamespirit, if S is anorientedsurface
and T is a Borel subsetof Ŝ, we shall denoteby T also the orientedsurface

(
T, nS|T

)
, providedthat the

referenceto S is clear.

Definition 6.1 Let S be an oriented surface.We say that S is a material surfacein the body B, if S is
subordinatedto someA ∈ M.

We denoteby S thecollectionof thematerial surfacesin thebodyB.

Definition 6.2 For everyh ∈ L 1
loc,+ (int B) andν ∈ M (int B) weset

Shν =
{

S ∈ S : S is subordinatedto someA ∈ Mloc
hν

}
.

Definition 6.3 Given a set A ⊆ S , we say that A containsalmost all of S , if Shν ⊆ A for some
h ∈ L 1

loc,+ (int B) andν ∈ M (int B); givena propertyπ, we saythat π holdsalmosteverywherein S , if the
set

{S ∈ S : π(S) is definedandπ(S) holds}

containsalmostall of S .

Definition 6.4 For a grid G =
(
x0, (e1 . . . , en), Ĝ

)
and 1 � j � n, we denoteby S j

G the family of all the
orientedsurfacesS with nS = ej ,

Ŝ =
{

x ∈ R
n : (x − x0) · ej = s , a(i ) < (x − x0) · ei < b(i ) ∀i �= j

}
,

a(1), b(1), . . . , s, . . . , a(n), b(n) ∈ Ĝ andcl Ŝ ⊆ int B. We setalso

SG =
n⋃

j =1

S j
G .

Given a positively oriented frame (e1, . . . , en) and x0 ∈ R
n, for every h ∈ L 1

loc,+ (int B) and η ∈

M (int B × int B) thereexistsa full grid G =
(
x0, (e1 . . . , en), Ĝ

)
suchthat SG ⊆ Shν (see[1, Proposition

4.5]).

Definition 6.5 Let A ⊆ S be a setcontainingalmostall of S and let Q : A → R. We saythat Q is a
(scalar)Cauchyflux, if the following propertieshold:

(a) if S, T ∈ A are compatibleanddisjoint with S ∪ T ∈ A, then

Q(S ∪ T) = Q(S) + Q(T) ;

(b) there existsh ∈ L 1
loc,+ (int B) suchthat the inequality

|Q(S)| �

∫

S
h dH n−1

holdsalmosteverywhere in S .

Lemma 6.1 Let h ∈ L 1
loc,+ (int B), ν ∈ M (int B), A ∈ Mloc

hν , S be a material surfacesubordinatedto A.
Thenthere existsa sequence(Ck) in Mloc

hν suchthat A ∩ Ck = ∅ and

lim
k

H n−1
(

(∂∗A ∩ ∂∗Ck)�Ŝ
)

= 0 .
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Proof. Let G be a full grid suchthat MG ⊆ Mloc
hν . SinceH n−1(Ŝ) < +∞, it follows that for any fixed

k ∈ N thereexistsa compactsubsetof Ŝ, sayK , suchthat

H n−1(Ŝ \ K ) <
1
k

.

Let (Ym) be a decreasingsequencein MG suchthatK ⊆ Ym andK =
∞⋂

m=1
cl Ym. It happensthatH n−1(∂∗A∩

cl Y1) < +∞, thenthereexistsan index mk with

H n−1((∂∗A ∩ cl Ymk ) \ K ) <
1
k

.

SetCk = (Ymk \ A)∗ ; by Proposition2.1 it follows that Ck ∈ Mloc
hν , A ∩ Ck = ∅ and

(∂∗A ∩ ∂∗Ck) \ Ŝ ⊆ (∂∗A ∩ cl Ymk ) \ Ŝ ⊆ (∂∗A ∩ cl Ymk ) \ K ,

Ŝ \ (∂∗A ∩ ∂∗Ck) ⊆ Ŝ \ K .

Then(Ck) is the desiredsequence. ��

Lemma 6.2 Let I bea contactinteractionwhosedomaincontainsDloc
hν . LetA, A′ ∈ Mloc

hν andS bea material
surfacesubordinatedto A and to A′. Let (Ck), (C ′

k) be two sequencesin Mloc
hν suchthat

lim
k

H n−1
(

(∂∗A ∩ ∂∗Ck)�Ŝ
)

= 0 ,

lim
k

H n−1
(

(∂∗A′ ∩ ∂∗C ′
k)�Ŝ

)
= 0 .

Thenwehave
lim

k
|I (A, Ck) − I (A′, C ′

k)| = 0 .

Proof. We want to provethat eachelementof the decomposition

I (A, Ck) − I (A′, C ′
k) = I ((A \ A′)∗, Ck) + I (A ∩ A′, (Ck \ C ′

k)∗) +

−I ((A′ \ A)∗, C ′
k) − I (A ∩ A′, (C ′ \ C)∗)

vanishesask → ∞. By Proposition2.2 we havethat H n−1(∂∗(A \ A′) ∩ Ŝ) = 0, sinceA andA′ sharethe
sameunit exteriornormalon S. Hence

lim
k

H n−1(∂∗(A \ A′) ∩ ∂∗Ck) � lim
k

H n−1((∂∗A ∩ ∂∗Ck) \ Ŝ) = 0 ,

lim
k

I ((A \ A′)∗, Ck) = 0 .

On the otherhand,by Proposition2.3 we have

H n−1(∂∗(A ∩ A′) ∩ ∂∗(Ck \ C ′
k)) = H n−1((∂∗(A ∩ A′) ∩ ∂∗(Ck \ C ′

k)) \ ∂∗C ′
k)

� H n−1((∂∗A ∩ ∂∗Ck) \ ∂∗C ′
k)

� H n−1((∂∗A ∩ ∂∗Ck) \ Ŝ) + H n−1(Ŝ \ ∂∗C ′
k) ,

hence
lim

k
H n−1(∂∗(A ∩ A′) ∩ ∂∗(Ck \ C ′

k)) = 0 ,

lim
k

I (A ∩ A′, (Ck \ C ′
k)∗) = 0 .

In the sameway we canshowthat

lim
k

I ((A′ \ A)∗, C ′
k) = lim

k
I (A ∩ A′, (C ′

k \ Ck)∗) = 0 ,

andthe proof is complete. ��
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The next theoremshowsthat there is a strict correspondencebetweencontactinteractionsand Cauchy
fluxes.For (A, C) ∈ D

loc, with ∂∗A∩∂∗C we will denotealsothematerialsurface
(
∂∗A ∩ ∂∗C , nA|∂∗A∩∂∗C

)
.

Theorem 6.1 Thefollowing factshold:

(i ) for everycontactinteractionI there existsa Cauchyflux Q suchthat

Q(∂∗A ∩ ∂∗C) = I (A, C)

on almostall of D
loc and

|Q(S)| �

∫

S
ĥ dH n−1

for almostall of S , where ĥ ∈ L 1
loc,+ (int B) is as in Definition3.5;

(ii ) for everyCauchyflux Q there existsa contactinteractionI suchthat

Q(∂∗A ∩ ∂∗C) = I (A, C) , |I (A, C)| �

∫

∂∗A∩∂∗C
ĥ dH n−1

on almostall of D
loc, where ĥ ∈ L 1

loc,+ (int B) is as in Definition6.5;
(iii ) if I1, I2 are two contactinteractionsandQ1, Q2 are two Cauchyfluxeswith

∀j = 1, 2 : Qj (∂∗A ∩ ∂∗C) = I j (A, C) on almostall of D
loc ,

thenwehaveQ1 = Q2 on almostall of S if andonly if I1 = I2 on almostall of D
loc.

Proof. (i ) Let h ∈ L 1
loc,+ (int B) andν ∈ M (int B) be suchthat the domainof I containsDloc

hν . Given a set
S ∈ Shν , thereexistsA ∈ Mloc

hν suchthatS is subordinatedto A. Let (Ck) be a sequenceasin Lemma6.1and
k, i ∈ N. Then(A, Ck), (A, Ci ) ∈ D

loc
hν andfrom Proposition2.3wehavethatH n−1(∂∗A∩∂∗(Ck\Ci )∩∂∗Ci ) =

0. Hence

H n−1(∂∗A ∩ ∂∗(Ck \ Ci )) = H n−1((∂∗A ∩ ∂∗(Ck \ Ci )) \ ∂∗Ci )

� H n−1((∂∗A ∩ (Ck ∪ ∂∗Ck)) \ ∂∗Ci )

� H n−1((∂∗A ∩ ∂∗Ck) \ Ŝ) + H n−1(Ŝ \ (∂∗A ∩ ∂∗Ci ))

� H n−1((∂∗A ∩ ∂∗Ck)�Ŝ) + H n−1((∂∗A ∩ ∂∗Ci )�Ŝ)

and,in the sameway,

H n−1(∂∗A ∩ ∂∗(Ci \ Ck)) � H n−1((∂∗A ∩ ∂∗Ci )�Ŝ) + H n−1((∂∗A ∩ ∂∗Ck)�Ŝ) .

Sincewe have

|I (A, Ck)−I (A, Ci )| = |I (A, (Ck\Ci )∗)−I (A, (Ci \Ck)∗)| �

∫

∂∗A∩∂∗(Ck\Ci )
ĥ dH n−1+

∫

∂∗A∩∂∗(Ci \Ck )
ĥ dH n−1 ,

it follows that (I (A, Ck)) is a Cauchysequencein R. We set Q(S) = lim
k

I (A, Ck); by Lemma6.2, Q(S) does

not dependon the setA andon the sequence(Ck). Moreover,we have

|Q(S)| �

∫

S
ĥ dH n−1

on almostall of S .
Now we prove the additivity. Let S, T be two compatibleand disjoint surfacesin Shν ; following

Lemma6.1, we canconstructtwo sequences(CS
k ) and(CT

k ) suchthat cl CS
k ∩ cl CT

k = ∅ and

lim
k

H n−1((∂∗A ∩ ∂∗CS
k )�Ŝ) = 0 ,

lim
k

H n−1((∂∗A ∩ ∂∗CT
k )�T̂) = 0 .
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Moreoverwe havethat ∂∗(CS
k ∪ CT

k ) = ∂∗CS
k ∪ ∂∗CT

k and

lim
k

H n−1((∂∗A ∩ ∂∗(CS
k ∪ CT

k ))�(Ŝ ∪ T̂)) = 0 ,

hence

Q(S) + Q(T) = lim
k

(I (A, CS
k ) + I (A, CT

k )) = lim
k

I (A, CS
k ∪ CT

k ) = Q(S ∪ T) .

ThenQ : Shν → R is a Cauchyflux.
(ii ) Let h ∈ L 1

loc,+ (int B) and ν ∈ M (int B) be such that the domain of Q containsShν . For every
(A, C) ∈ D

loc
hν , we set

I (A, C) = Q(∂∗A ∩ ∂∗C) .

First, it is clear that

|I (A, C)| �

∫

∂∗A∩∂∗C
ĥ dH n−1.

Now let (A1, C), (A2, C) ∈ D
loc
hν with A1 ∩ A2 = ∅. By Proposition2.3 we observethatH n−1(∂∗A1 ∩ ∂∗A2 ∩

∂∗C) = 0 and nA1(x) = −nA2(x) for H n−1-a.e.x ∈ ∂∗A1 ∩ ∂∗A2 . SinceA1 ∩ ∂∗A2 = A2 ∩ ∂∗A1 = ∅, by
Proposition2.2 it follows

Q(∂∗(A1 ∪ A2) ∩ ∂∗C) = Q(∂∗A1 ∩ ∂∗C) + Q(∂∗A2 ∩ ∂∗C) ,

henceI is additiveon thefirst component;theadditivity on theothercomponentis similar.ThenI : D
loc
hν → R

is a contactinteraction.
(iii ) Let h ∈ L 1

loc,+ (int B) and ν ∈ M (int B) be suchthat the domainsof I j and Qj containD
loc
hν and Shν

respectively,and

∀(A, C) ∈ D
loc
hν : Qj (∂∗A ∩ ∂∗C) = I j (A, C) ,

∀S ∈ Shν : Q1(S) = Q2(S) .

Given (A, C) ∈ D
loc
hν , we havethat ∂∗A ∩ ∂∗C ∈ Shν , hence

I1(A, C) = Q1(∂∗A ∩ ∂∗C) = Q2(∂∗A ∩ ∂∗C) = I2(A, C) .

On theotherhand,let h ∈ L 1
loc,+ (int B) andν ∈ M (int B) besuchthat thedomainsof I j andQj contain

D
loc
hν andShν respectivelyand

Qj (∂∗A ∩ ∂∗C) = I j (A, C) , I1(A, C) = I2(A, C) ,

for every(A, C) ∈ D
loc
hν . Let S ∈ Shν ; thenthereexistsA ∈ Mloc

hν suchthat S is subordinatedto A. Let (Ck)
be a sequencewith

lim
k

H n−1((∂∗A ∩ ∂∗Ck)�Ŝ) = 0;

for j = 1, 2 we havethat∂∗A∩∂∗Ck ∈ Shν andQj (S) = lim
k

Qj (∂∗A∩∂∗Ck). Since(A, Ck) ∈ D
loc
hν , it follows

that

Q1(S) = lim
k

I1(A, Ck) = lim
k

I2(A, Ck) = Q2(S) ,

andthe proof is complete. ��



164 A. Marzocchi,A. Musesti

7 Balancedinteractions

In this sectionwe will study the casein which I obeysa balancelaw, as specifiedbelow. In [4], sucha
balanceis expressedby the inequality

∃K � 0 : |I (A, (Rn \ A)∗)| � K L n(A) .

In view of the otherassumptionsof [4], suchan inequality is in turn equivalentto

∃K � 0 : |I (A, C)| � K L n(A)

whenever(A, C) ∈ D and∂∗A ⊆ ∂∗C (so thatbetweenA and(Rn \ (A∪C))∗ thereis no contactinteraction).
Thepurposeof thenextDefinition 7.1 is to generalizeandadaptsucha conditionto our setting.However,

we will seein Theorem7.4 that, in the balancedcase,also the interactionI (A, (Rn \ A)∗) can be naturally
definedandis subjectedto an inequalityof the form

∃λ ∈ M (int B) : |I (A, (Rn \ A)∗)| � λ(A) .

Definition 7.1 A CauchyinteractionI is said to bebalanced, if there existsλ ∈ M (int B) suchthat

∂∗A ⊆ ∂∗C =⇒ |I (A, C)| � λ(A) (7.1)

on almostall of D
loc. A Cauchyflux Q is said to bebalanced, if there existsλ ∈ M (int B) suchthat

|Q(∂∗A)| � λ(A)

on almostall of Mloc.

Theorem 7.1 Thefollowing propertieshold:

(i ) a CauchyinteractionI is balancedif andonly if Ib and Ic are bothbalanced;
(ii ) a bodyinteractionI is balancedif andonly if µ(K × int B) < +∞ for eachcompactsubsetK ⊆ int B,

where µ is givenby Theorem5.2; if this is thecase,onehas

|I (A, C)| � λ(A)

on almostall of D
loc;

(iii ) a contactinteractionI is balancedif andonly if theCauchyflux inducedby I is balanced.

Proof. (i ) Let λ ∈ M (int B) be asin Definition 7.1 andlet h, ν asin the proof of Theorem4.1 with λ � ν.
Let also H be as in the proof of Theorem4.1. If A, C ∈ MH and cl A ∩ cl C = ∅, let Ĉ ∈ MH be such
that (A ∪ C) ∩ Ĉ = ∅ and∂∗A ⊆ ∂∗Ĉ . It follows that ∂∗A ⊆ ∂∗(C ∪ Ĉ), hence

|I (A, C)| � |I (A, (C ∪ Ĉ)∗)| + |I (A, Ĉ)| � 2λ(A) .

Let now (A, C) ∈ D
loc
hη with C ⊆ B andlet (Ak , Ck) be a sequenceasin the proof of Theorem4.1 suchthat

lim λ(Ak�A) = 0. We havethat |I (Ak , Ck)| � 2λ(Ak), then

|Ib(A, C)| � 2λ(A) . (7.2)

If C �⊆ B, inequality7.2 still holds,sincewe canfind againa similar Ĉ .
In particular,Ib and Ic areboth balanced.The converseis obvious.

(ii ) Let I be a balancedbody interaction.From 7.2 it follows that

|I (A, C)| � 2λ(A)

on almostall of D
loc. Let h ∈ L 1

loc,+ (int B) andν ∈ M (int B) be suchthat Theorem5.2 andthe preceding
inequalityhold on D

loc
hν . Let G be a full grid suchthatDG ⊆ D

loc
hν . We denotewith P the seton which b = 1

and with Q a normalizedfinite union of 2n-dimensionalG-intervalssuch that µ(P�Q) < 1. Let K be a
compactsubsetof int B andlet Y ∈ MG besuchthatK ⊆ Y ; clearlyµ(Y×Y) < +∞. SettingE = (int B)\Y ,
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it is enoughto provethatµ(Y × E) < +∞; we argueby contradiction,supposingµ(Y × E) = +∞. For every
m ∈ N thereexistsa setFm ∈ MG with cl Fm ∩ cl Y = ∅ andµ(Y × Fm) > m. The set (Y × Fm) ∩ Q is a
normalizedfinite unionof 2n-dimensionalG-intervals,hencewe canfind somesetsYk ∈ IG andGk ∈ MG

suchthat the Yk ’s aremutually disjoint and

(Y × Fm) ∩ Q =

(
q⋃

k=1

(Yk × Gk)

)

∗

.

In the sameway,

((Y × Fm) \ Q)∗ =

(
p⋃

k=1

(Y ′
k × G′

k)

)

∗

,

whereY ′
k ∈ IG aremutually disjoint andG′

k ∈ MG . We have

2λ(Y) � 2λ

((
q⋃

k=1

Yk

)

∗

)
�

∣∣∣∣∣

q∑

k=1

I (Yk , Gk)

∣∣∣∣∣ =

∣∣∣∣
∫

(Y×Fm)∩Q
b dµ

∣∣∣∣ � µ((Y × Fm) ∩ Q) − 2 .

Acting in the sameway, we canprovethat

2λ(Y) � µ
(
((Y × Fm) \ Q)∗

)
− 2 .

Adding the two inequalitieswe find that

4λ(Y) � µ(Y × Fm) − 4 � m − 4 ;

sinceY hascompactclosurein int B, letting m → +∞ we get the contradiction.
Conversely,supposethat µ(K × int B) < +∞ for every compactsubsetK ⊆ int B and considerthe

measureλ = µ( · × int B) + µe ; it follows immediatelythat λ ∈ M (int B) and

|I (A, C)| �

∣∣∣∣
∫

A×(C∩ int B)
b dµ

∣∣∣∣ +

∣∣∣∣
∫

A
be dµe

∣∣∣∣ � µ(A × (C ∩ B)) + µe(A) � λ(A)

on almostall of D
loc, henceI is balanced.

(iii ) It is obvious. ��

Theorem 7.2 Let I1, I2 be two balancedCauchyinteractionsthat agreeon DG for somefull grid G. Then
I1 = I2 on almostall of D

loc.

Proof. Let I1 = (I1)b + (I1)c, I2 = (I2)b + (I2)c where(I j )b arebody interactionsand(I j )c contactinteractions.
From Theorem4.1, we havethat (I1)b = (I2)b on almostall of D

loc; in particular,thereexistsa full grid H
suchthat (I1)c = (I2)c on IH . Defining two CauchyfluxesQ1, Q2 by the formula

Qj (∂∗A ∩ ∂∗C) = (I j )c(A, C)

as in (a) of Theorem6.1, it follows that Q1 and Q2 are balancedand agreeon SH . Hencethey agreeon
almostall of S by [1, Theorem4.9]. By (c) of Theorem6.1, it comesthat (I1)c = (I2)c on almostall of
D

loc. ��

Theorem 7.3 Let I be a balancedcontactinteraction.Thenthere existsa vectorfield q ∈ L 1
loc (int B; R

n)
with divergencemeasure suchthat

I (A, C) =
∫

∂∗A∩∂∗C
q · n∂∗A∩∂∗C dH n−1

on almostall of D
loc.

Moreover,q is uniquelydeterminedL n-almosteverywhere.
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Proof. Let Q be a Cauchyflux suchthat

Q(∂∗A ∩ ∂∗C) = I (A, C)

on almostall of D
loc, as in (a) of Theorem6.1. SinceI is balanced,thenQ is alsobalanced.Moreover,Q

is uniquelydeterminedon almostall of S .
Now we canapply [1, Theorem7.1] andobtainthe assertion. ��

For a balancedCauchyinteractionI we cangive the following integral representation.

Theorem 7.4 Let I be a balancedCauchyinteractionand let b, be, µ, µe andq as in Theorems5.2 and7.3.
Thenthere existh ∈ L 1

loc,+ (int B) andν ∈ M (int B) suchthat

I (A, C)=





∫

A×C

b dµ +
∫

∂∗A∩∂∗C

q · n∂∗A∩∂∗C dH n−1 if C ⊆ B,

∫

A×(C∩ int B)

b dµ +
∫

A

be dµe +
∫

∂∗A∩∂∗C

q · n∂∗A∩∂∗C dH n−1 otherwise,

(7.3)

for every(A, C) ∈ D
loc
hν and thesameformulaadmitsa natural extensionto all

D
loc
hν ∪ {(A, C) ∈ Mloc

hν × N : (Rn \ C)∗ ∈ Mloc
hν , A ∩ C = ∅} .

Moreover,there existsλ ∈ M (int B) suchthat

∀A ∈ Mloc
hν : |I (A, (Rn \ A)∗)| � λ(A) .

Proof. Let h0 ∈ L 1
loc,+ (int B), ν ∈ M (int B) andλ ∈ M (int B) be suchthat 7.1 andTheorems5.2 and7.3

hold on D
loc
h0ν

. Then it is easyto deduce7.3. Settingh = h0 + |q | andrememberingthat µ(K × int B) < +∞
for everycompactsubsetK ⊆ int B, it is possibleto extendthe domainof I asstatedin the assertion.

Moreover,let G be a full grid with MG ⊆ Mloc
hν . For a given A ∈ Mloc

hν , we canfind a sequence(Yk)

in MG suchthat cl A ⊆ Yk and
∞⋃
k=1

Yk = int B. As I is balanced,we have

|I (A, (Yk \ A)∗ ∪ (Rn \ B)∗)| � λ(A) ,

andthe left membergoesto |I (A, (Rn \ A)∗)| by the DominatedConvergenceTheorem. ��

Finally, we canstatea weakform of the balanceequationfor a balancedCauchyinteraction.

Theorem 7.5 Let I be a balancedCauchyinteractionand let µ, µe, b, be, q be as in Theorems5.2 and 7.3.
Thenthere existh ∈ L 1

loc,+ (int B), ν ∈ M (int B), γ ∈ M (int B) anda Borel functionc : int B → R suchthat
|c(x)| = 1 for γ-a.e.x ∈ int B and

∫

A
c dγ = I (A, (Rn \ A)∗) +

∫

A×A
b dµ

for everyA ∈ Mloc
hν .

Moreover,γ is uniquelydeterminedandc is uniquelydeterminedγ-a.e.
Finally, onehas

∫

int B
f c dγ = −

∫

int B
q · ∇f dL n +

∫

int B
f be dµe +

∫ ∫

int B×int B
f (x) b(x, y) dµ(x, y)

for everyf ∈ C∞
0 (int B).
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Proof. Let h ∈ L 1
loc,+ (int B) and ν ∈ M (int B) be as in Theorem7.4; then we can define a function

g : Mloc
hν → R setting

g(A) =
∫

A
div q +

∫

A×int B
b dµ +

∫

A
be dµe .

Extendingg to a (signed)measureon B (int B), we canfind γ ∈ M (int B) anda Borel functionc : int B → R

suchthat |c(x)| = 1 for γ-a.e.x ∈ int B and
∫

A
c dγ = g(A)

for everyA ∈ Mloc
hν . The measureγ is clearly uniqueandthe function c is uniquelydeterminedγ-a.e.

The last assertionfollows from the Gauss-GreenTheorem. ��

8 An extensionresult

Although the domainof a Cauchyinteractionis quite large, in this sectionwe will provethat eachfunction
definedonly on DG, for somefull grid G, and satisfyingsuitableconditions,can be uniquely extendedto
almostall of D

loc.
Let G0 = (x0, (e1, . . . , en), Ĝ0) denotea full grid and I0 : DG0 → R a map satisfying the following

properties:

(a) I0 is biadditive;
(b) thereexist h ∈ L 1

loc,+ (int B), η ∈ M (int B × int B) andηe ∈ M (int B) suchthat

|I0(A, C)| �





∫

∂∗A∩∂∗C
h dH n−1 + η(A × C) if C ⊆ B,

∫

∂∗A∩∂∗C
h dH n−1 + η(A × (C ∩ B)) + ηe(A) otherwise,

for every(A, C) ∈ DG0.

Theorem 8.1 There exista full grid G ⊆ G0 andtwo functions(I0)b, (I0)c : DG → R satisfyingproperties(a)
and (b) for every(A, C) ∈ DG with h = 0 andη = 0, ηe = 0 respectively,suchthat I0 = (I0)b + (I0)c on DG.

Moreover,if Ǧ, (Ǐ0)b and (Ǐ0)c havethesameproperties,then(Ǐ0)b = (I0)b and (Ǐ0)c = (I0)c on DG ∩ DǦ .

Proof. Let G bea full grid suchthatG ⊆ G0 and
∫

∂∗A h dH n−1 < +∞, η((∂∗A)× int B) = η((int B)×∂∗A) =
ηe(∂∗A) = 0 for everyA ∈ IG. Let (A, C) ∈ DG; then

A =
{

x ∈ R
n : a(j ) < (x − x0) · ej < b(j ) ∀j = 1, . . . , n

}
,

C =
{

x ∈ R
n : c(j ) < (x − x0) · ej < d(j ) ∀j = 1, . . . , n

}
,

for somea(j ), b(j ), c(j ), d(j ) ∈ G. If ∂∗A ∩ ∂∗C = ∅, then we set (I0)b(A, C) = I0(A, C) and (I0)c(A, C) = 0.
Elsewhere,denoteby i the index in {1, . . . , n} suchthat

∂∗A ∩ ∂∗C ⊆ {x ∈ R
n : x · ei = 0}

andsupposethat b(i ) � c(i ). Let (sk) be a sequencein G suchthat sk ↓ c(i ) ask → ∞. We set

Ck = C ∩ {x ∈ R
n : x · ei > sk} .

Thenit is clear that (A, Ck) ∈ DG for everyk ∈ N, (I0(A, Ck)) is a Cauchysequencein R and |I0(A, Ck)| �

η(A × Ck). Moreover,

|I0(A, C) − I0(A, Ck)| � |I0(A, (C \ Ck)∗)| �

∫

∂∗A∩∂∗(C\Ck )
h dH n−1 + η(A × (C \ Ck)) .
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We define

(I0)b(A, C) =





lim
k

I0(A, Ck) if C ⊆ B,

I0(A, (Rn \ B)∗) + lim
k

I0(A, (C ∩ B)k) otherwise,

andalso
(I0)c(A, C) = I0(A, C) − (I0)b(A, C) .

Then(I0)b and(I0)c satisfy(a) and(b) with h = 0 andη = 0, ηe = 0 respectively.The remainderof the proof
is now easy. ��

Theorem 8.2 Let I0 : DG0 → R be a mapsatisfyingproperties(a) and (b) with h = 0. Thenthere existsa
bodyinteractionI suchthat:

(i ) its domaincontainsDG0;
(ii ) it coincideswith I0 on DG0.

Moreover,if anotherbodyinteractionǏ sharesproperties(i ) and (ii ), thenǏ = I on almostall of D
loc.

Proof. Following theproof of Theorem5.2,we find µ ∈ M (int B × int B) andb ∈ L1
loc(int B × int B, µ) such

that

I0(A, C) =
∫

A×C
b dµ

for every (A, C) ∈ DG0 with C ⊆ B . In the sameway we find µe ∈ M (int B) andbe ∈ L1
loc(int B, µe) such

that

I0(A, (Rn \ B)∗) =
∫

A
be dµe .

Defining,wheneverpossible,

I (A, C) =





∫

A×C
b dµ if C ⊆ B,

∫

A×(C∩B)
b dµ +

∫

A
be dµe otherwise,

we havethat the domainof I containsDG0, I is a body interactionby Theorem5.1 and

I0(A, C) = I (A, C) for every(A, C) ∈ DG0 .

If Ǐ is anotherbodyinteractionthatextendsI0, it is obviousthat Ǐ (A, C) = I (A, C) for every(A, C) ∈ DG0;
thenby Theorem4.1 we havethat Ǐ = I on almostall of D

loc. ��

Now we requirethe map I0 to satisfyalsothe following balanceproperty:

(c) thereexistsλ ∈ M (int B) suchthat
∣∣∣∣∣∣

k∑

j =1

I0(A, C (j ))

∣∣∣∣∣∣
� λ(A)

whenever(A, C (j )) ∈ DG0 for every j = 1, . . . , k, the sets C (j ) are mutually disjoint and ∂∗A ⊆

∂∗

(
k⋃

j =1
C (j )

)
.

Theorem 8.3 Considerthefull grid G andthemaps(I0)b and(I0)c of Theorem8.1; consideralsotheextension
Ib of (I0)b, as statedin Theorem8.2.Thenthe following factshold:

(i ) there exista balancedcontactinteractionIc anda full grid H ⊆ G suchthat thedomainof Ic contains
DH and Ic = (I0)c on DH ; moreover,if Ȟ and Ǐc havethesamepropertiesof H and Ic, thenǏc = Ic on
almostall of D

loc;
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(ii ) Ib is balanced.

Proof. (i ) First of all, we will provethat(I0)c satisfiesproperty(c). In fact, for j = 1, . . . , k let (A, C (j )) ∈ DG

be suchthat the setsC (j ) aremutually disjoint and∂∗A ⊆ ∂∗

(
k⋃

j =1
C (j )

)
; thenconsiderthe sequences(C (j )

k )

as in the proof of Theorem8.1. We havethat

(I0)c(A, C (j )) = lim
k

I0(A, (C (j ) \ C (j )
k )∗)

and∂∗A ⊆ ∂∗

(
k⋃

j =1
(C (j ) \ C (j )

k )∗)

)
; hence

∣∣∣∣∣∣

k∑

j =1

(I0)c(A, Cj )

∣∣∣∣∣∣
= lim

k

∣∣∣∣∣∣

k∑

j =1

I0(A, (C (j ) \ C (j )
k )∗)

∣∣∣∣∣∣
� λ(A) .

Now let S ∈ SG; then thereexists(A, C) ∈ DG suchthat (∂∗A ∩ ∂∗C , nA|∂∗A∩∂∗C ) = (S, nS). If (Â, Ĉ)
hasthe sameproperty,by biadditivity of (I0)c andproperties(a) and(b) it is easyto provethat

(I0)c(A, C) = (I0)c(A ∩ Â, C ∩ Ĉ) = (I0)c(Â, Ĉ) .

This allows us to definethe map

Q0 : SG −→ R

S �→ (I0)c(A, C) ,

which happensto satisfy(i ), (ii ) and(iii ) of [1, sect.6].
Combining [1, Theorem6.1] with Theorems6.1 and 7.1, it resultsthat thereexist a balancedcontact

interactionIc anda full grid H ⊆ G suchthat the domainof Ic containsDH and

Ic(A, C) = (I0)c(A, C) for every(A, C) ∈ DH .

(ii ) This is easilyprovednoting that, by difference,also(I0)b satisfiesproperty(c). ��

It is appropriateto summarizeTheorems8.1, 8.2 and8.3 in the following statement.

Corollary 8.1 There existsa full grid G ⊆ G0 anda balancedCauchyinteractionI suchthat thedomainof
I containsDG and I = I0 on DG.

Moreover,if Ǧ and Ǐ havethesamepropertiesof G and I , thenǏ = I on almostall of D
loc.
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