ISOTROPIC LINEAR CONSTITUTIVE RELATIONS FOR
NONSIMPLE FLUIDS

ALESSANDRO MUSESTI

ABSTRACT. We investigate the general constitutive relation of an isotropic
linear fluid when the stress tensor can depend on higher-order spatial gradients
of the velocity. We apply the results to the case of second-grade and third-
grade fluids, be compressible or not. However, the expression of the general
isotropic tensor can be a matter of interest also for other classes of nonsimple
materials.

1. INTRODUCTION

In a recent paper, [2], Fried and Gurtin developed a theory for a class of second-
grade incompressible fluids. In particular, the main properties of the material are
expressed by means of two tensor fields: the usual second-order Stress Tensor T,
which depends on the symmetric gradient D of velocity, and a further third-order
tensor G, which depends on the second gradient grad grad v of the velocity. Facing
the problem of the constitutive assumptions, they choose the standard isotropic
linear dependence, both for T and for G.

With that choice for T, by standard arguments one gets the well-known incom-
pressible Cauchy—Poisson relation

Tij = —pdij + 2uD;j
where 0;; is the usual Kronecker symbol and p a constant (positive by a dissipation
principle). On the contrary, the form of G is not so clear. By setting

Gy = Gijk + 6ijm

where 7 is the so-called hyperpressure, we will deal with the problem of finding the
most general isotropic linear relation between G° and grad grad v.

Fried and Gurtin assumed that such a relation is
(1) Gk = ik + n2(Vkij + ik — Virr0ji)

(see [2, (72)2]). Indeed, in Footnote 13 they declare: “We conjecture that [the
above formula] is the most general linear, isotropic relation possible between GY
and grad grad v”.

The aim of this note is to prove that indeed the conjecture is “almost” true.
Precisely, the following theorem will be proved.
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Theorem 1.1. Under the hypotheses of incompressibility and regularity of v, every
isotropic linear relation between G° and grad grad v has the form

(2)

0
Gyjk = muijk + N2 (Vk,ij + Vj,ik — Vipr0jk)

i k=1,...,N
+ 03 (Vg pr0ij + Vjrrdie — 40i 00k

where N is the dimension of the space.

Hence, the only fault in the conjecture (1) is the assumption that 73 = 0. The
proof of Theorem 1.1 relies on [3], where the link between isotropic tensors and
Weyl’s orthogonal invariant polynomial functions is made explicit.

2. ISOTROPIC LINEAR FUNCTIONS OF EVEN ORDER

A constitutive relations, under the assumption of linearity, is usually prescribed
by means of a tensor of even order, relating, for instance, the stress and the gradient
of velocity, or the hyperstress and the second gradient of velocity. Hence from now
on, we will consider only linear functions of even order.

Denote with | the second order identity tensor, i.e. lpr = dpr. Let us introduce
the orthogonal group

Orth = {R is a second order tensor and RR” = 1}.

Definition 2.1. A linear function is isotropic if its components are the same in
any orthogonal reference frame. In particular, F;, _; is an isotropic linear function
of order n if and only if

(3) FJlJn = leil N Rjnin thn
for every R € Orth.

Remark 2.2. If the space dimension N is odd, then the previous definition does
not change replacing Orth by the positive orthogonal subgroup

Orth™ = {R € Orth : detR = +1}.

On the contrary, if IV is even the two notions are different, and an alternative defi-
nition of invariance can be introduced, namely the so-called odd isotropy, where (3)
is replaced by

(3" Fir.gn = (det R)Rjyiy - Ry i, Fiy
for every R € Orth.

Suiker & Chang [3] observed that an isotropic linear function is related to a so-
called, in Weyl’s terminology, even orthogonal invariant and an odd isotropic linear
function is related to an odd orthogonal invariant (see [4, pp. 52-53]). In particular
we are interested in the following result, which is proved in [4]:

Theorem 2.3 (Weyl). An isotropic linear function is represented by the most gen-
eral combination of Kronecker symbols 0;5, while an odd isotropic linear function is
represented by combinations of Kronecker symbols and permutation symbols €;,. ;. .

In Appendix A we will prove that the number of free coefficients of an isotropic

linear function of even order 2n is
n

(4) [[@i-1),

i=1
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which is denoted sometimes by the double factorial (2n — 1)!!. For instance, a
second-order isotropic linear function has only one free component

Fij = Chd;
and a fourth-order isotropic linear function has three free components
Fijne = C10:0nk + C20:n051 + C30:105p -
Let us show the effectiveness of Weyl’s Theorem by a well-known example.

Example 2.4 (Compressible Newtonian fluids). We investigate the case of the
classical compressible Newtonian fluids, where the tensor

T =T+l

is assumed to be an isotropic linear function of D, the symmetric part of grad v. In
this case the isotropy condition is usually expressed as

VR € Orth: RTTY(D)R = T(RTDR),
which can be rewritten as
(5) VR € Orth: TD)=RT(R'DR)R” .
Moreover, by linearity we can introduce a fourth-order tensor F such that
T2 = FijimDum -
Then, equation (5) implies
VR € Orth:  FiimDim = Firjrrm Ris' R/ Ri Ry D

hence F is isotropic in the sense of Definition 2.1.
Taking into account the symmetries of ¢, j and of [, m, Weyl’s Theorem yields

Fijim = A0ij0im + 11(0i10jm + 8im0j1)

where A and p are free coefficients. Hence

1
T = FijimDim = =Fijim(Uim + vm1) = Nijor, + p(vi + vj.)

1] 2
and we deduce the usual compressible Cauchy—Poisson relation
(6) T=—pl+ A(tr D)l +2uD.

Now we prove the main theorem.

Proof of Theorem 1.1. We have to study the most general linear relation between
G® and grad grad v, which is a sixth-order linear function Fijkimn such that
(7) G?jk; = Fijklmnvl,mn .
In view of formula (4), there are 15 free components, and by Weyl’s Theorem the
general representation for an isotropic sixth-order linear function (see also [3, eq.
35]) is
Fijkimn = C10ij0k16mn + C20i0km0in + C30i;0kndim

+ C46i1610mn + C56i16jm0in + Ce0ik0jn0im
(8) + C76:1010mn + C36510 jmOkn + C96i10jn0km

+ C100im0k0n + C116im0510kn + C120im 00k

+ C136in0101m + C140in0;10km + C150in0mok
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where C1, ..., Cq5 are independent coefficients.

In the present case there are some further constraints: the velocity field is as-
sumed to be at least of class C?, yielding the symmetry of the last two indices of
U, mn - Moreover, the fluid is incompressible, hence v;; = 0. Since GO is in the dual
space of grad grad v, without loss of generality we can impose the same constraints
also on G°. Summarizing,

(9) G?jk = G?kj sy Ulmn = Vlnm s
(10) G?ik = G?ki =0, wvn=vm=0,
where the summation convention over repeated indices is tacitly assumed. By the

symmetries (9) and formula (23) in Appendix B it follows that six free coefficients
remain. Namely, in formula (8) we can choose

A:=C1 =04, B:=Cy=0C3=C5 =Cj, C:=0Cy,
D:=Cs=0Cy, E:=Ci=70Cis, F:=Cn=0C12=C1y=0Cs,
hence GY has the form
ngk = FijkimnVi,mn = A('Uk,rr(sij + 'Uj,rr(;ik:)
(11) + B(Vrkr0ij + Up jrOi) + CU; pr 0k
+ Dvi ji + Evpir 0 + F(vjik + Vkij) -
Moreover, by (10) it follows that
0 =Gy = 4Av v + Cppr + Fog
hence C = —4A — F. Substituting in (11) we get
(12) G?jk = A(vg,rr0ij + Vj rr0it — 405 71 0jk)
+ Dv; ji + F(vji6 + Vk,ij — VirrOjk) -

Switching to a notation similar to [2], setting 171 = D, no = F and 3 = A we obtain
the final form

G = mijk + 02(Vj.ik + Vkiij — VirrOjk) + 03(Vk rrbij + U rrOik — 40 0 Ojk)

which proves Theorem 1.1. O

3. THE FLOW EQUATION FOR SECOND-GRADE INCOMPRESSIBLE FLUIDS

Following [2], we will briefly show how the equation for incompressible second-
grade fluids can be deduced. The essential tool is the Principle of Virtual Power,")
i.e. the assumption that

(13) Wint (R, v) = Wexs (R, v) ,

where R is a generic subbody, v any possible virtual velocity, Wiy, and Weyt the
internal and external power, resp.
For a second-grade material, the internal power is assumed to have the form

Wint (R, v) = / (T-gradv + G- grad grad v) dx
R

(Dgee also [1] for a general approach to the subject.
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with T a second-order tensor (the Cauchy stress tensor) and G a third-order tensor
(the hyperstress). In particular, using the divergence theorem one has

Wing(R,v) = / (=divT +divdivG) - vdz
(14) v

+ / [Gn - gradv 4+ (Tn — (divG)n) - v]dS.
OR

On the contrary, introducing the external body force b = f — pa (accounting
also for inertial forces), the surface stress tosr and the surface hyperstress mog, the
external power is assumed to be of the form

Wext (R, v) = /

(taR'v+maR~&)> dS—i—/b-'udx.
OR on R

By imposing the balance (13), keeping into account the arbitrariness of R and v,
under natural regularity assumptions one gets the local balance

(15) —divT +divdivG=1b

equipped with some surface conditions.

Considering now the Cauchy—Poisson relation, the term div T gives rise to the
classical block pAv — grad p. Moreover, keeping into account Theorem 1.1 and the
incompressibility, one has

(div G)ij = Gijik = —0iTh,k + Vi jkk
+ 02(vjikk — Vigrr) + 03(Vji0r — 405 jrr)
and
(divdiv G); = Gijk kj = —Th,ki + (M1 — N2 — 403)V; jjkk ,
hence
divdivG = —graddivm + (1 — 2 — 4n3)AAv.

A dissipation principle imposes the further conditions
(16) T-gradv, G-gradgradv >0

for any test velocity v. By (16); it follows that p > 0. Moreover, inequality (16)2
can be rewritten as

MVi jkVi jk T 772('Uk7ijvi7jk + VjikVi ik — 'Ui,rrvi,jj) — 4n3v; rrs55 > 0.

In particular, if the dimension of the space is greater that 2, one can choose v =
tafey, where ¢ is a coefficient with dimensions of (length)~*(time) ™!, yielding
v2,11 = ¢ and v; jr = 0 otherwise. The dissipation principle then implies 17, — 12 —
dnz > 0.

Setting then & = 1, — 12 — 4n3 and recalling that b = f — pa, we come to the

flow equation for second-grade incompressible fluids
(17) pa = f —grad P+ pAv — EAAv,

where P =p —divw, 4 >0, & > 0.
We do not deal in this paper with the important problem of boundary conditions
for a nonsimple fluid. We refer the reader to [2] for a deep discussion on the subject.
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4. SECOND-GRADE COMPRESSIBLE FLUIDS

The generality of Weyls’s Theorem, and in particular of formula (8), allows
us to remove quite easily the incompressibility assumption, giving a more general
description of second-grade fluids. In such a case, the only constraints on the form
of F are the symmetry of j, k and the symmetry of m,n, which come from the
symmetry in the last two indices of grad grad v. Then we can start directly from
equation (11), obtaining:

Gijk = —0i;Tk + AV rr0ij + Vjrr0ik)
+ B(Ur,kr(sij + 'Ur,jr(sik) + Cvi,rréjk
+ Dvj ji + Evpin 0k + F(vj ik + Vk,ij) -
Then one has
Gijie = —0ijTh, ke + A(Vk krr0ij + Vjirr)
+ B(Ur,kkr(sij + Ur,ijr) + Cvi,jrr
+ Dv; ki + Evpijr + F(Vjikk + Uk ijk) -

and
Gijk,kj = —Th,ki + 2AVk ikrr

+ 2By ikkr + C4 jjrr

+ Dv; jikk + Evrijir + 2805 4550k -
Setting & =2A+ 2B+ E+ F and & = C + D, it follows that
(18) divdivG = — grad divw + &; grad div Av + &AAw.

Since in the compressible case the Cauchy—Poisson relation (6) for the first-gradient
term gives rise to the classical block

—gradp + (A + p) grad div v + pAv,
by (18) and the local balance (15) we obtain the flow equation for second-grade
compressible fluids
pa=f —grad P+ (A + p) graddive + pAv — & grad div Av — &A A

where P = p — div .

5. THE FLOW EQUATION FOR THIRD-GRADE FLUIDS

We are also able to extend the above theory to a more general class of nonsimple
materials, the so-called third-grade fluids, where one takes into account a depen-
dence on the third-order gradient of the velocity. Without changing the notation,
we assume the internal power to be of the form

Wint (R, v) = / (T-gradv + G- grad grad v + H - grad grad grad v) dz,
R

where H is a fourth-order tensor which depends linearly and isotropically on the
third-order gradient of the velocity. Using the divergence theorem as in Section 3,
the Principle of Virtual Power yields the balance equation

(19) —divT +divdivG —divdivdivH = b
apart from the surface conditions. Setting

HYine = Hijnk + 0ihk
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with I a tensor-valued pressure, we now study the tensor H. We introduce an
eighth-order isotropic linear function F such that

H° = Fgrad grad grad v , H?jhk = FijnkimnpVi,mnp
The isotropy assumption drops to 7!! = 105 the number of free components of
F. Moreover, in analogy with (9), the symmetry of grad grad grad v yield
(20) H?jhk = Hszkh = H?hjk y  Vimnp = Vimpn = Ulnmp »
In this case there remain eight free coefficients:(?)
H?jhk = A(6:5(Vnkrr + Vi hrr) + 0in (V) krr + Vi jrr) + ik (Vnjrr + Vjohrr))
+ B(8i0nk + 0indjk + 0irdjn)viirr
+ C(0ijVrrhk + 0inUrrjk + GikVr rin) + D(0inVi krr + 8kVi her + OnkVi jrr)
+ Ev; jhk + F(0nkvjirr + 010k irr + 81Vh irr)
+ G(vj,ink + Vhijk + Vk,ijh) + H(Ohkrirj + 0jk0rirh + 0jnUr irk) -

Now we are able to compute the divergences of H:

Hijnkkhi = —0ii i knj

+ A((Uh,k'r'rkhi + Vi hrrkhi) + (V) krrkij + Uk jrrkig) + (Un,jrring + 'Uj,hr'r'ihj))

+ B(virrhhi + Ui irrjij + Vlirrijj)

+ C(Vrrhkkhi + Urrjkkij + Urrjhing)

+ D(Vi kerrkjj + Vihrrjhi + Vi jrrihg)

+ Ev; jhkknj + F(Vjirrhhj + Uk irrkij & Ohirrihg)

+ G(Vj inkkhj + Vh,ijkkhj + Uk ijhkh;)

+ H(Vrirjhhj + Urirhjhj + Urirkkjj) -
Collecting the terms we obtain

Hijnk,khy = =05 hic khj + 7105 jhhkks + Y2Vi jjhhkk »
where 11 =3(244+ B+ C+ F+ G+ H) and 2 = 3D + E. In intrinsic notation,
divdivdivH = — grad divdiv 1 + ~; grad div AAv + 2 AAAw.
Then the balance (19) yields the flow equation for third-grade (compressible) fluids
pa = f —grad P+ (A + p) graddive + pAv
— & grad div Av — &AAD 4+ v grad div AAv + v, AAAw

where P = p — divew + divdiv .

(21)

Finally, if the fluid is assumed to be incompressible, the tensor H® becomes
H?jhk = A((Sij(vmkrr + Uk hrr) + 6ih<vj,k:7‘r + Uk,jrr) + 6ik(vh,jrr + Uj,hrr))
+ D(5jhvi,kr7' + 5jkvi,hrr + 6hkvi,jrr)
+ Ev; jhk + F(Onkvjirr + 00k irr + 0kVh irr)
+ G(vjink + Vn,ijk + Vk,ijn)

2)gee Appendix B.
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and it follows that
divdivdivH = — grad divdiv 1 + yAAAw,

where v := 3D + E. As in the case of a second-grade fluid, a dissipation principle
imposes that
H - grad grad gradv > 0

c

for any virtual velocity v. Choosing v = Gaﬁeg, where ¢ is a coefficient with
dimensions of (length)~2(time) !, one gets v > 0. Then we get the flow equation
for third-grade incompressible fluids:

(22) pa = f —grad P + pAv — EAAv + yAAAv,

where P =p —divw +divdivll, u >0,£ >0, v > 0.
A discussion about boundary conditions for third-order fluids, which goes beyond
the goal of the present paper, would be desirable.

APPENDIX A. FREE COEFFICIENTS OF AN ISOTROPIC TENSOR

By Weyl’s Theorem, the number D, of free coeflicients of an isotropic (2n)-tensor
is a general combination of (products of) Kronecker symbols ;,i, . 0y, _1in, -
Hence the number of free components of an isotropic linear function of order 2n can
be computed as the number of partitions of a set with 2n elements into sets with
two elements. Such a number can be computed in many ways: for instance, we can
take the number of permutations of the indices, (2n)!, and divide it by n!, since
we do not have to take into consideration the order of the sets with 2 elements.
Moreover, we divide again by 2", since we do no want to account for the order of
the elements in a set. Hence we have

(2n)! (2n)!

Dn = nl2n :2-4.....(2n_2)_(2n) :(277,—1)!!,

APPENDIX B. FREE COEFFICIENTS OF A SYMMETRIC ISOTROPIC TENSOR

We prove that an isotropic (2n)-tensor Fij, . ;. ,imi..m,_, Which is symmetric
inj,...j5n—1 and mq ...m,_1 has a number E, of free coefficients, where

(23) 5o {5"24 if n is even,

m=3  if p ig odd.

Such a number can be easily written as

B, - {571—3}7

2

where [a] denotes the largest integer less than or equal to a.

Let us assume that n > 2 and consider a symmetric isotropic tensor of order 2n,
Fiji...jn_1lmy...mn_,- The tensor F is a combinations of Kronecker symbols. Focusing
the attention on the indices 7,1, we split the products of Kronecker symbols into
five disjoint families, according as they contain a term of the type 6;;015, 0ij0im,
0im 01, OimOim, 0;1. Then we count the elements of each family, by computing how
many terms of the type d.,, they contain, since the other possible terms are of type
Omm and Opp,.
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Suppose that n is even. In the first case, §;;0;;, there remain n — 3 of j’s and
n — 1 of m’s. Since n — 3 and n — 1 are odd numbers, the term §;,, can appear

1,3,...,n — 3 times, so we have 5 — 1 different possibilities.
In the second case, 0;j0;m, there remain n — 2 of j’s and n — 2 of m’s, which are
even numbers, then the term d;,, can appear 0,2,...,n — 2 times and we have 4

different possibilities. In the same way, there are 7 possibilities for the case d;n,d;;
and § — 1 possibilities for the case d4,,,0,,. The last case, d;;, leaves n — 1 of j’s
and n — 1 of m’s, which are odd numbers, giving again 4 possibilities.

All in all, we have
2(n 1+n) n _ 5n—4
2 2/ 2 2
The case n odd can be managed in the same way.
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