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Abstract. We investigate the general constitutive relation of an isotropic

linear fluid when the stress tensor can depend on higher-order spatial gradients

of the velocity. We apply the results to the case of second-grade and third-
grade fluids, be compressible or not. However, the expression of the general

isotropic tensor can be a matter of interest also for other classes of nonsimple

materials.

1. Introduction

In a recent paper, [2], Fried and Gurtin developed a theory for a class of second-
grade incompressible fluids. In particular, the main properties of the material are
expressed by means of two tensor fields: the usual second-order Stress Tensor T,
which depends on the symmetric gradient D of velocity, and a further third-order
tensor G, which depends on the second gradient grad gradv of the velocity. Facing
the problem of the constitutive assumptions, they choose the standard isotropic
linear dependence, both for T and for G.

With that choice for T, by standard arguments one gets the well-known incom-
pressible Cauchy–Poisson relation

Tij = −pδij + 2µDij ,

where δij is the usual Kronecker symbol and µ a constant (positive by a dissipation
principle). On the contrary, the form of G is not so clear. By setting

G0
ijk = Gijk + δijπk ,

where π is the so-called hyperpressure, we will deal with the problem of finding the
most general isotropic linear relation between G0 and grad gradv.

Fried and Gurtin assumed that such a relation is

(1) G0
ijk = η1vi,jk + η2(vk,ij + vj,ik − vi,rrδjk)

(see [2, (72)2]). Indeed, in Footnote 13 they declare: “We conjecture that [the
above formula] is the most general linear, isotropic relation possible between G0

and grad gradv”.
The aim of this note is to prove that indeed the conjecture is “almost” true.

Precisely, the following theorem will be proved.
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Theorem 1.1. Under the hypotheses of incompressibility and regularity of v, every
isotropic linear relation between G0 and grad gradv has the form

(2)
G0

ijk = η1vi,jk + η2(vk,ij + vj,ik − vi,rrδjk)

+ η3(vk,rrδij + vj,rrδik − 4vi,rrδjk) ,
i, j, k = 1, . . . , N

where N is the dimension of the space.

Hence, the only fault in the conjecture (1) is the assumption that η3 = 0. The
proof of Theorem 1.1 relies on [3], where the link between isotropic tensors and
Weyl’s orthogonal invariant polynomial functions is made explicit.

2. Isotropic linear functions of even order

A constitutive relations, under the assumption of linearity, is usually prescribed
by means of a tensor of even order, relating, for instance, the stress and the gradient
of velocity, or the hyperstress and the second gradient of velocity. Hence from now
on, we will consider only linear functions of even order.

Denote with I the second order identity tensor, i.e. Ihk = δhk. Let us introduce
the orthogonal group

Orth = {R is a second order tensor and RRT = I}.

Definition 2.1. A linear function is isotropic if its components are the same in
any orthogonal reference frame. In particular, Fi1...in is an isotropic linear function
of order n if and only if

(3) Fj1...jn
= Rj1i1 . . .Rjnin

Fi1...in

for every R ∈ Orth.

Remark 2.2. If the space dimension N is odd, then the previous definition does
not change replacing Orth by the positive orthogonal subgroup

Orth+ = {R ∈ Orth : det R = +1}.
On the contrary, if N is even the two notions are different, and an alternative defi-
nition of invariance can be introduced, namely the so-called odd isotropy, where (3)
is replaced by

(3’) Fj1...jn
= (det R)Rj1i1 . . .Rjnin

Fi1...in

for every R ∈ Orth.

Suiker & Chang [3] observed that an isotropic linear function is related to a so-
called, in Weyl’s terminology, even orthogonal invariant and an odd isotropic linear
function is related to an odd orthogonal invariant (see [4, pp. 52-53]). In particular
we are interested in the following result, which is proved in [4]:

Theorem 2.3 (Weyl). An isotropic linear function is represented by the most gen-
eral combination of Kronecker symbols δij, while an odd isotropic linear function is
represented by combinations of Kronecker symbols and permutation symbols εi1...in

.

In Appendix A we will prove that the number of free coefficients of an isotropic
linear function of even order 2n is

(4)
n∏

i=1

(2i− 1) ,
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which is denoted sometimes by the double factorial (2n − 1)!! . For instance, a
second-order isotropic linear function has only one free component

Fij = C1δij

and a fourth-order isotropic linear function has three free components

Fijhk = C1δijδhk + C2δihδjk + C3δikδjh .

Let us show the effectiveness of Weyl’s Theorem by a well-known example.

Example 2.4 (Compressible Newtonian fluids). We investigate the case of the
classical compressible Newtonian fluids, where the tensor

T0 = T + pI

is assumed to be an isotropic linear function of D, the symmetric part of gradv. In
this case the isotropy condition is usually expressed as

∀R ∈ Orth : RT T0(D)R = T0(RT DR) ,

which can be rewritten as

(5) ∀R ∈ Orth : T0(D) = RT0(RT DR)RT .

Moreover, by linearity we can introduce a fourth-order tensor F such that

T0
ij = FijlmDlm .

Then, equation (5) implies

∀R ∈ Orth : FijlmDlm = Fi′j′l′m′Rii′Rjj′Rll′Rmm′Dlm ,

hence F is isotropic in the sense of Definition 2.1.
Taking into account the symmetries of i, j and of l,m, Weyl’s Theorem yields

Fijlm = λδijδlm + µ(δilδjm + δimδjl) ,

where λ and µ are free coefficients. Hence

T0
ij = FijlmDlm =

1
2

Fijlm(vl,m + vm,l) = λδijvr,r + µ(vi,j + vj,i)

and we deduce the usual compressible Cauchy–Poisson relation

(6) T = −pI + λ(tr D)I + 2µD .

Now we prove the main theorem.

Proof of Theorem 1.1. We have to study the most general linear relation between
G0 and grad gradv, which is a sixth-order linear function Fijklmn such that

(7) G0
ijk = Fijklmnvl,mn .

In view of formula (4), there are 15 free components, and by Weyl’s Theorem the
general representation for an isotropic sixth-order linear function (see also [3, eq.
35]) is

(8)

Fijklmn = C1δijδklδmn + C2δijδkmδln + C3δijδknδlm

+ C4δikδjlδmn + C5δikδjmδln + C6δikδjnδlm

+ C7δilδjkδmn + C8δilδjmδkn + C9δilδjnδkm

+ C10δimδjkδln + C11δimδjlδkn + C12δimδjnδkl

+ C13δinδjkδlm + C14δinδjlδkm + C15δinδjmδkl
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where C1, . . . , C15 are independent coefficients.
In the present case there are some further constraints: the velocity field is as-

sumed to be at least of class C2, yielding the symmetry of the last two indices of
vl,mn . Moreover, the fluid is incompressible, hence vl,l = 0. Since G0 is in the dual
space of grad gradv, without loss of generality we can impose the same constraints
also on G0. Summarizing,

G0
ijk = G0

ikj , vl,mn = vl,nm ,(9)

G0
iik = G0

iki = 0 , vl,ln = vl,nl = 0 ,(10)

where the summation convention over repeated indices is tacitly assumed. By the
symmetries (9) and formula (23) in Appendix B it follows that six free coefficients
remain. Namely, in formula (8) we can choose

A := C1 = C4 , B := C2 = C3 = C5 = C6 , C := C7 ,

D := C8 = C9 , E := C10 = C13 , F := C11 = C12 = C14 = C15 ,

hence G0 has the form

(11)

G0
ijk = Fijklmnvl,mn = A(vk,rrδij + vj,rrδik)

+B(vr,krδij + vr,jrδik) + Cvi,rrδjk

+Dvi,jk + Evr,irδjk + F (vj,ik + vk,ij) .

Moreover, by (10) it follows that

0 = G0
iik = 4Avk,rr + Cvk,rr + Fvk,rr ,

hence C = −4A− F . Substituting in (11) we get

(12)
G0

ijk = A(vk,rrδij + vj,rrδik − 4vi,rrδjk)

+Dvi,jk + F (vj,ik + vk,ij − vi,rrδjk) .

Switching to a notation similar to [2], setting η1 = D, η2 = F and η3 = A we obtain
the final form

G0
ijk = η1vi,jk + η2(vj,ik + vk,ij − vi,rrδjk) + η3(vk,rrδij + vj,rrδik − 4vi,rrδjk)

which proves Theorem 1.1. �

3. The flow equation for second-grade incompressible fluids

Following [2], we will briefly show how the equation for incompressible second-
grade fluids can be deduced. The essential tool is the Principle of Virtual Power,(1)

i.e. the assumption that

(13) Wint(R,v) = Wext(R,v) ,

where R is a generic subbody, v any possible virtual velocity , Wint and Wext the
internal and external power, resp.

For a second-grade material, the internal power is assumed to have the form

Wint(R,v) =
∫

R

(T · gradv + G · grad gradv) dx

(1)See also [1] for a general approach to the subject.
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with T a second-order tensor (the Cauchy stress tensor) and G a third-order tensor
(the hyperstress). In particular, using the divergence theorem one has

(14)
Wint(R,v) =

∫
R

(−div T + div div G) · v dx

+
∫

∂R

[Gn · gradv + (Tn− (div G)n) · v] dS .

On the contrary, introducing the external body force b = f − ρa (accounting
also for inertial forces), the surface stress t∂R and the surface hyperstress m∂R, the
external power is assumed to be of the form

Wext(R,v) =
∫

∂R

(
t∂R · v +m∂R ·

∂v

∂n

)
dS +

∫
R

b · v dx .

By imposing the balance (13), keeping into account the arbitrariness of R and v,
under natural regularity assumptions one gets the local balance

(15) −div T + div div G = b

equipped with some surface conditions.
Considering now the Cauchy–Poisson relation, the term div T gives rise to the

classical block µ∆v− grad p. Moreover, keeping into account Theorem 1.1 and the
incompressibility, one has

(div G)ij = Gijk,k = −δijπk,k + η1vi,jkk

+ η2(vj,ikk − vi,jrr) + η3(vj,irr − 4vi,jrr)

and
(div div G)i = Gijk,kj = −πk,ki + (η1 − η2 − 4η3)vi,jjkk ,

hence
div div G = − grad divπ + (η1 − η2 − 4η3)∆∆v .

A dissipation principle imposes the further conditions

(16) T · gradv , G · grad gradv ≥ 0

for any test velocity v. By (16)1 it follows that µ ≥ 0. Moreover, inequality (16)2
can be rewritten as

η1vi,jkvi,jk + η2(vk,ijvi,jk + vj,ikvi,jk − vi,rrvi,jj)− 4η3vi,rrvi,jj ≥ 0 .

In particular, if the dimension of the space is greater that 2, one can choose v =
c
2x

2
1e2 , where c is a coefficient with dimensions of (length)−1(time)−1, yielding

v2,11 = c and vi,jk = 0 otherwise. The dissipation principle then implies η1 − η2 −
4η3 ≥ 0.

Setting then ξ = η1 − η2 − 4η3 and recalling that b = f − ρa, we come to the
flow equation for second-grade incompressible fluids

(17) ρa = f − gradP + µ∆v − ξ∆∆v ,

where P = p− divπ, µ ≥ 0, ξ ≥ 0.
We do not deal in this paper with the important problem of boundary conditions

for a nonsimple fluid. We refer the reader to [2] for a deep discussion on the subject.
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4. Second-grade compressible fluids

The generality of Weyls’s Theorem, and in particular of formula (8), allows
us to remove quite easily the incompressibility assumption, giving a more general
description of second-grade fluids. In such a case, the only constraints on the form
of F are the symmetry of j, k and the symmetry of m,n, which come from the
symmetry in the last two indices of grad gradv. Then we can start directly from
equation (11), obtaining:

Gijk = −δijπk +A(vk,rrδij + vj,rrδik)

+B(vr,krδij + vr,jrδik) + Cvi,rrδjk

+Dvi,jk + Evr,irδjk + F (vj,ik + vk,ij) .

Then one has
Gijk,k = −δijπk,k +A(vk,krrδij + vj,irr)

+B(vr,kkrδij + vr,ijr) + Cvi,jrr

+Dvi,jkk + Evr,ijr + F (vj,ikk + vk,ijk) .

and
Gijk,kj = −πk,ki + 2Avk,ikrr

+ 2Bvr,ikkr + Cvi,jjrr

+Dvi,jjkk + Evr,ijjr + 2Fvj,ijkk .

Setting ξ1 = 2A+ 2B + E + F and ξ2 = C +D, it follows that

(18) div div G = − grad divπ + ξ1 grad div ∆v + ξ2∆∆v .

Since in the compressible case the Cauchy–Poisson relation (6) for the first-gradient
term gives rise to the classical block

− grad p+ (λ+ µ) grad div v + µ∆v ,

by (18) and the local balance (15) we obtain the flow equation for second-grade
compressible fluids

ρa = f − gradP + (λ+ µ) grad div v + µ∆v − ξ1 grad div ∆v − ξ2∆∆v ,

where P = p− divπ.

5. The flow equation for third-grade fluids

We are also able to extend the above theory to a more general class of nonsimple
materials, the so-called third-grade fluids, where one takes into account a depen-
dence on the third-order gradient of the velocity. Without changing the notation,
we assume the internal power to be of the form

Wint(R,v) =
∫

R

(T · gradv + G · grad gradv + H · grad grad gradv) dx ,

where H is a fourth-order tensor which depends linearly and isotropically on the
third-order gradient of the velocity. Using the divergence theorem as in Section 3,
the Principle of Virtual Power yields the balance equation

(19) −div T + div div G− div div div H = b

apart from the surface conditions. Setting

H0
ijhk = Hijhk + δijΠhk ,
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with Π a tensor-valued pressure, we now study the tensor H0. We introduce an
eighth-order isotropic linear function F such that

H0 = F grad grad gradv , H0
ijhk = Fijhklmnpvl,mnp

The isotropy assumption drops to 7!! = 105 the number of free components of
F. Moreover, in analogy with (9), the symmetry of grad grad gradv yield

(20) H0
ijhk = H0

ijkh = H0
ihjk , vl,mnp = vl,mpn = vl,nmp ,

In this case there remain eight free coefficients:(2)

H0
ijhk = A

(
δij(vh,krr + vk,hrr) + δih(vj,krr + vk,jrr) + δik(vh,jrr + vj,hrr)

)
+B(δijδhk + δihδjk + δikδjh)vl,lrr

+ C(δijvr,rhk + δihvr,rjk + δikvr,rjh) +D(δjhvi,krr + δjkvi,hrr + δhkvi,jrr)

+ Evi,jhk + F (δhkvj,irr + δjhvk,irr + δjkvh,irr)

+G(vj,ihk + vh,ijk + vk,ijh) +H(δhkvr,irj + δjkvr,irh + δjhvr,irk) .

Now we are able to compute the divergences of H:

Hijhk,khj = −δijΠhk,khj

+A
(
(vh,krrkhi + vk,hrrkhi) + (vj,krrkij + vk,jrrkij) + (vh,jrrihj + vj,hrrihj)

)
+B(vl,lrrhhi + vl,lrrjij + vl,lrrijj)

+ C(vr,rhkkhi + vr,rjkkij + vr,rjhihj)

+D(vi,krrkjj + vi,hrrjhj + vi,jrrhhj)

+ Evi,jhkkhj + F (vj,irrhhj + vk,irrkjj + vh,irrjhj)

+G(vj,ihkkhj + vh,ijkkhj + vk,ijhkhj)

+H(vr,irjhhj + vr,irhjhj + vr,irkkjj) .

Collecting the terms we obtain

Hijhk,khj = −δijΠhk,khj + γ1vj,jhhkki + γ2vi,jjhhkk ,

where γ1 = 3(2A+B + C + F +G+H) and γ2 = 3D + E. In intrinsic notation,

div div div H = − grad div div Π + γ1 grad div ∆∆v + γ2∆∆∆v .

Then the balance (19) yields the flow equation for third-grade (compressible) fluids

(21)
ρa = f − gradP + (λ+ µ) grad div v + µ∆v

− ξ1 grad div ∆v − ξ2∆∆v + γ1 grad div ∆∆v + γ2∆∆∆v ,

where P = p− divπ + div div Π.

Finally, if the fluid is assumed to be incompressible, the tensor H0 becomes

H0
ijhk = A(δij(vh,krr + vk,hrr) + δih(vj,krr + vk,jrr) + δik(vh,jrr + vj,hrr))

+D(δjhvi,krr + δjkvi,hrr + δhkvi,jrr)

+ Evi,jhk + F (δhkvj,irr + δjhvk,irr + δjkvh,irr)

+G(vj,ihk + vh,ijk + vk,ijh)

(2)See Appendix B.
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and it follows that

div div div H = − grad div div Π + γ∆∆∆v ,

where γ := 3D + E. As in the case of a second-grade fluid, a dissipation principle
imposes that

H · grad grad gradv ≥ 0

for any virtual velocity v. Choosing v = c
6x

3
1e2, where c is a coefficient with

dimensions of (length)−2(time)−1, one gets γ ≥ 0. Then we get the flow equation
for third-grade incompressible fluids:

(22) ρa = f − gradP + µ∆v − ξ∆∆v + γ∆∆∆v ,

where P = p− divπ + div div Π, µ ≥ 0, ξ ≥ 0, γ ≥ 0.
A discussion about boundary conditions for third-order fluids, which goes beyond

the goal of the present paper, would be desirable.

Appendix A. Free coefficients of an isotropic tensor

By Weyl’s Theorem, the number Dn of free coefficients of an isotropic (2n)-tensor
is a general combination of (products of) Kronecker symbols δi1i2 . . . δi2n−1i2n

.
Hence the number of free components of an isotropic linear function of order 2n can
be computed as the number of partitions of a set with 2n elements into sets with
two elements. Such a number can be computed in many ways: for instance, we can
take the number of permutations of the indices, (2n)!, and divide it by n!, since
we do not have to take into consideration the order of the sets with 2 elements.
Moreover, we divide again by 2n, since we do no want to account for the order of
the elements in a set. Hence we have

Dn =
(2n)!
n!2n

=
(2n)!

2 · 4 · · · · · (2n− 2) · (2n)
= (2n− 1)!! .

Appendix B. Free coefficients of a symmetric isotropic tensor

We prove that an isotropic (2n)-tensor Fij1...jn−1lm1...mn−1 which is symmetric
in j1 . . . jn−1 and m1 . . .mn−1 has a number En of free coefficients, where

(23) En =

{
5n−4

2 if n is even,
5n−3

2 if n is odd.

Such a number can be easily written as

En =
[

5n− 3
2

]
,

where [a] denotes the largest integer less than or equal to a.
Let us assume that n ≥ 2 and consider a symmetric isotropic tensor of order 2n,

Fij1...jn−1lm1...mn−1 . The tensor F is a combinations of Kronecker symbols. Focusing
the attention on the indices i, l, we split the products of Kronecker symbols into
five disjoint families, according as they contain a term of the type δijδlj , δijδlm,
δimδlj , δimδlm, δil. Then we count the elements of each family, by computing how
many terms of the type δmn they contain, since the other possible terms are of type
δmm and δnn.
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Suppose that n is even. In the first case, δijδlj , there remain n − 3 of j’s and
n − 1 of m’s. Since n − 3 and n − 1 are odd numbers, the term δjm can appear
1, 3, . . . , n− 3 times, so we have n

2 − 1 different possibilities.
In the second case, δijδlm, there remain n− 2 of j’s and n− 2 of m’s, which are

even numbers, then the term δjm can appear 0, 2, . . . , n − 2 times and we have n
2

different possibilities. In the same way, there are n
2 possibilities for the case δimδlj

and n
2 − 1 possibilities for the case δimδlm. The last case, δil, leaves n − 1 of j’s

and n− 1 of m’s, which are odd numbers, giving again n
2 possibilities.

All in all, we have

2
(n

2
− 1 +

n

2

)
+
n

2
=

5n− 4
2

.

The case n odd can be managed in the same way.
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