
Stationary and evolutionary flows of nonsimple
second order fluids: existence and uniqueness

G. G. Giusteri, A. Marzocchi and A. Musesti

Abstract. In this paper we introduce a particular class of nonsimple fluids
of second order. Within the general framework of virtual powers, we deduce
the dynamical equation for linear isotropic incompressible fluids. Afterwards,
existence and uniqueness results are obtained for both the stationary flow and
the evolutionary one, with non homogeneous boundary conditions.

Mathematics Subject Classification (2000). 76D03, 74A30, 35Q35.

Keywords. Incompressible fluids, non-Newtonian fluids, nonsimple materials,
virtual powers.

1. Introduction

Nonsimple second order fluids (not to be confused with second-grade fluids, which
are simple fluids with a quadratic dependence of the stress tensor on the velocity
gradient) constitute a class of non-Newtonian fluids which has been introduced
quite recently. They are characterized by a dependence of the internal stress tensor
up to the second order spatial derivatives of the velocity. Even in the simplest
case of a linear isotropic incompressible fluid, the model gives rise to some new
parameters, which can incorporate a description of phenomena at different scales,
being associated with a characteristic length. Moreover, when dealing with higher
order continuous media, further boundary conditions have to be specified: as in the
paper of Fried and Gurtin [4], we are led to introduce an adherence length, which is
useful to encode turbulence effects in the small-scale interaction between the fluid
and the boundary. As another point of interest, the addition of second-gradient
terms in the flow equation is often employed in numerical analysis to stabilize
approximation methods.

Flow equations with higher order derivatives of the velocity have been widely
studied in the literature, for instance as a perturbation to the Navier-Stokes equa-
tion. However, to our knowledge, the remarkable paper [4] is the first attempt to
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deduce them from an axiomatic model in Continuum Mechanics; very recently, it
has become apparent that the virtual power approach used there can suggest a
classification of the continuous media, settled before the usual constitutive pre-
scriptions, by means of some dynamical prescriptions. We will adopt the terminol-
ogy of Podio-Guidugli [9], which proposed to call simple the media of first order
(that is, when the corresponding internal power depends only on the first gradient
of the velocity), and nonsimple all the others.

In the present paper, we face again the issue of setting our dynamical problem
by the method of virtual powers, which proved to be a powerful tool in Continuum
Mechanics. This method naturally allows to deduce the structure of the system of
forces in a nonsimple continuous medium. The balance laws are directly given in
the weak form requested by the modern functional methods one uses to prove well-
posedness results; moreover, the same functional framework allows to construct
finite element approximation schemes. As pointed out in [7], the method of virtual
powers also provides a relatively simple treatment of concentrated stresses and
external loads, and can be easily widened to the case of a manifold as continuous
body, since the virtual power is a scalar (stresses on a manifold are, on the contrary,
more complicated objects).

The main result of the paper is the existence and uniqueness of the three-
dimensional flow of a general linear isotropic fluid of second order, with non homo-
geneous boundary condition, both in the stationary and in the evolutionary case.
The uniqueness result for the stationary problem holds provided that a smallness
condition on the norm of the boundary datum and the external force is fulfilled.
We deduce the flow equations directly from the principle of virtual powers and
impose the boundary conditions in a quite general form. In addition, we study
the consequences of the free energy imbalance for a general isotropic second order
fluid, improving some results of [4].

The plan of the paper is the following: in Section 2 we introduce the princi-
ple of virtual powers, together with the general dynamical and thermodynamical
prescriptions needed to obtain the balance equations for second order continuous
media. In Section 3 we employ the constitutive prescriptions for the linear isotropic
incompressible fluids and study suitable boundary conditions and the consequences
of the thermodynamical constraint on the sign of the fluid parameters. Finally, in
Section 4 we introduce the functional setting and prove the main results.

2. Modelling nonsimple continuous media

A general way to set down a thermomechanical model for continuous media is
to apply the principle of virtual powers as an axiom. As pointed out by Podio-
Guidugli in [10] (to which we refer for an extended bibliography), local thermo-
mechanical balances and imbalances can be deduced from the balance of properly
defined internal and external powers. In this paper we will restrict our attention to
a pure mechanical theory; this choice will result in neglecting heat contributions to
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the free energy variation (see Section 2.2 below) and in interpreting test functions
as velocities in the definition of power.

To begin with, we introduce the main notions of continuous body and of
power of order k.

Definition 1. Let B ⊆ R
n be a bounded domain with Lipschitz boundary and let

M be a collection of sufficiently smooth subsets of B. We call M the system of

subbodies of the body B and the pair B = (B,M) is named continuous body.

The choice of B as bounded with Lipschitz boundary is essentially motivated
by the use of Sobolev’s theorem and Korn’s inequality we will make in the follow-
ing. Any choice of M should keep into account the possibility of giving a useful
definition of outer normal vector and the validity of the Gauss-Green formula
(see [1] and the references quoted therein). In a number of cases, a good choice
could be that of normalized Caccioppoli sets(1), but when dealing with nonsimple
materials some additional features are needed. For instance, in paper [2] the class
of sets with curvature measure has been proposed.

Definition 2. Given a continuous body B and a vector space V of test functions
v : B → R

N , we call power of order k a functional

P :





M× V → R

(M, v) 7→

k∑

j=0

∫

M

A(j)(x) · ∇jv(x) dLn(x)
(1)

where A(j)(x) belongs to the same linear space of ∇jv(x), namely A(0) : B → R
N ,

A(1) : B → Lin(Rn;RN ), and so on.

In order to give to the above definition a distributional meaning, it is customary
to choose a space V which contains C∞

0 (B;RN ).

Remark 1. The notion of virtual power, in its full generality, needs at least two
classes of “tests”, which we denoted by M and V . One can wonder if these tests
are somewhat redundant, in analogy with Classical Mechanics, where only the
elements of V come into the definition of the mechanical power. However, in this
general framework the tests of V alone are not sufficient to single out the tensor
fields A(j) in a unique way, unless for a power of order zero.

Indeed, suppose for the sake of simplicity to have a first order power

P (B, v) =

∫

B

A · ∇v dLn , v ∈ V ,

(1)If M ⊆ R
n is measurable, we set

M∗ =

{

x ∈ R
n : lim

r→0+

Ln(M ∩Br(x))

Ln(Br(x))
= 1

}

,

∂∗M = R
n \ (M∗ ∪ (Rn \M)∗) ,

where Br(x) denotes the open ball of center x and radius r and Ln the Lebesgue measure in R
n.

The set M ⊆ R
n is normalized if M∗ = M ; it is a Caccioppoli set (or a finite perimeter set) if

Hn−1(∂∗M) < +∞, where Hn−1 denotes the surface Hausdorff measure.
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defined only on the whole body B. If Y : B → Lin(Rn;RN ) is one of the many
solutions of the problem {

divY = 0 in B

Yn = 0 on ∂B ,
(2)

then it is readily seen that, setting Â := A+ Y, one has

P (B, v) =

∫

B

A · ∇v dLn =

∫

B

Â · ∇v dLn ;

hence we could not distinguish between A and Â.
On the contrary, once the constitutive prescriptions are assumed, it may hap-

pen that such an arbitrariness is overcome and one can avoid to deal with the class
of subbodies M. For instance, if one assumes that Y is a gradient, then (2) has
only the trivial solution and the tests in V are enough to find a unique represen-
tative. As we shall see, this conclusion holds also for the constitutive prescriptions
we will assume in the sequel.

Since our aim is to apply the virtual powers framework to Fluid Mechanics,
we will take B ⊆ R

3 as the portion of space occupied by the fluid, and V will be
a space of virtual velocities, so that both n and N will be set equal to 3, while we
still have to comment on the order k of the power.

Definition 3. Given a power Pint(M, v) as in (1) with n = N = 3, we say that it is
an internal power if it satisfies the frame indifference condition, that is Pint(M, ·)
should be a scalar under the Galilean group on R

3. Notice that this requirement,
which is likely to be interpreted as physical significance, easily implies A(0) = 0

and A(1), usually denoted by T, symmetric.

2.1. Dynamical prescriptions

So far no assumptions have been made about the model to describe any particu-
lar material. Usually, the first step in this direction is to state some constitutive

prescriptions, which should specify the continuous medium whose mathematical
properties one wants to investigate. On the contrary, within the general framework
of virtual powers (even restricted to pure mechanical theories), we are forced to
state some dynamical prescriptions. The first of these ones is the choice of the
order of Pint: simple media correspond to first order powers (a requirement equiv-
alent to the classical Cauchy stress condition), while higher order powers enter the
definition of nonsimple media.

In this paper we will deal with second order media, that is we take k = 2 in
Definition 2. In such a case, for an internal power only two terms of (1) survive:

Pint(M, v) =

∫

M

T · ∇v +

∫

M

G · ∇∇v , T symmetric.

Further steps involve choices about what we call external power Pext. Ap-
plying D’Alembert’s principle in order to state evolution problems as equilibrium
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ones, we include in the external power the inertial term

−

∫

M

ρ u̇ · v := −

∫

M

ρ

(
∂u

∂t
+ (u · ∇)u

)
· v ,

which makes the problem a nonlinear one.
The second prescription follows from the virtual powers framework, which

forces the internal and the external power to be of the same order. We hence
assume the external power to be of the form

Pext(M, v) = −

∫

M

ρ u̇ · v +

∫

M

a · v +

∫

M

A · ∇v +

∫

M

A · ∇∇v . (3)

It is useful to separate (3) into a volume and a surface part. In order to do
this we need some notions about the differential geometry of surfaces. We define
the projection on the tangent plane to a surface S as

P := I− n⊗ n ,

where n is the unit outer normal to S; moreover, for any 1-tensor a and for any
2-tensor A, we set

∇S a = (∇a)P ,

divS a = tr(∇S a) = P · ∇a = div a− n · (∇a)n ,

(divS A)i = Aij,kPkj .

We also introduce the normal derivative, the curvature tensor and the mean cur-
vature of S :

∂a

∂n
= (∇a)n ,

K = −∇S n = −(∇n)P ,

K =
1

2
trK = −

1

2
divS n .

The following well-known identity, which holds under suitable assumptions on the
regularity of the fields and the surfaces, is a direct consequence of Stokes’ theorem
in Differential Geometry.

Theorem (Surface Divergence). Let τ be a tangent vector field to the surface S,
T a subsurface of S and ν the unit outer normal to its boundary ∂T ; then

∫

∂T

τ · ν =

∫

T

divS τ .

In particular, if X and v are regular 2- and 1-tensor fields, by choosing τ = PX⊤v

and T = S = ∂M , the following identity holds:
∫

∂M

X · ∇S v = −

∫

∂M

(divS X+ 2KXn) · v . (4)



6 G. G. Giusteri, A. Marzocchi and A. Musesti

We can now start manipulating expression (3). Integrating by parts and using
the usual Divergence theorem, one obtains

∫

M

A · ∇v = −

∫

M

divA · v+

∫

∂M

An · v ,

∫

M

A · ∇∇v = −

∫

M

divA · ∇v +

∫

∂M

An · ∇v =

=

∫

M

(div divA) · v +

∫

∂M

(
An · ∇S v + (An)n ·

∂v

∂n
− (divA)n · v

)
.

Applying identity (4) to the underlined term, we finally get

Pext(M, v) = −

∫

M

ρ u̇ · v +

∫

M

[ a− div (A− divA) ] · v +

∫

∂M

(An)n ·
∂v

∂n

+

∫

∂M

[An− (divA)n− divS (An)− 2K(An)n ] · v .

Defining the vector fields

ρ b :=a− div (A− divA) ,

t(n,K) :=An− (divA)n− divS (An)− 2K(An)n ,

m(n) :=(An)n ,

where n and K are related to ∂M , we introduce the volume and the surface part
of the external power:

Pvol(M, v) = −

∫

M

ρ u̇ · v +

∫

M

ρ b · v ,

Psurf(∂M, v) =

∫

∂M

t · v +

∫

∂M

m ·
∂v

∂n
.

Finally, the following fundamental principle provides the equation to be
solved in order to describe the dynamics of the system.

Principle of virtual powers. The body B is at equilibrium if and only if for every
M ∈ M and every virtual velocity v we have

Pint(M, v) = Pext(M, v) , (5)

for any instant in a time interval.

Obviously, we will also need constitutive prescriptions to single out a model
fitting a specific material; however, we again emphasize that the dynamical pre-
scriptions about the order of the power and the form of the inertial terms are
a matter of choice of the model, and do not enter the general assumptions of
Continuum Mechanics.
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2.2. Thermodynamical prescriptions

It is customary to introduce also thermodynamical assumptions which contribute
to select meaningful constitutive prescriptions among the possible ones. We call
ψ the free energy density (per unit mass). Every constitutive prescription has to
imply that the time increment of the free energy in any region M be less or equal
than the power Pext(M, v) expended on that region, which is equal to Pint(M, v)
by (5); this is the free energy imbalance

d

dt

∫

M

ρψ ≤ Pext(M, v) = Pint(M, v) .

Since we restrict our attention to a pure mechanical theory, we neglect any change
in the free energy, hence ψ̇ = 0. The free energy imbalance then reads

Pint(M, v) ≥ 0

for every M ∈ M and every virtual velocity v. By the arbitrariness of M , any
constitutive prescription for T and G shall imply the dissipation inequality

T · ∇v + G · ∇∇v ≥ 0 (6)

for every v.

2.3. Local balances

In this section we will deduce the local balances implied by the principle of virtual
powers, which, for second order media, reads

∫

M

T · ∇v +

∫

M

G · ∇∇v =

∫

M

ρ(b− u̇) · v +

∫

∂M

t · v +

∫

∂M

m ·
∂v

∂n
, (7)

for every M ∈ M and every virtual velocity v.

Splitting also the internal power into volume and surface contributions, equa-
tion (7) becomes

∫

M

[−div (T− divG)− ρ(b− u̇) ] · v +

∫

∂M

[(Gn)n−m] ·
∂v

∂n

+

∫

∂M

[Tn− (divG)n− divS (Gn)− 2K(Gn)n− t ] · v = 0 ;

by the arbitrariness of M and v we obtain the local balances

ρb− ρu̇ = − div (T− divG) , (8)

t(n,K) = Tn− (divG)n− divS (Gn)− 2K(Gn)n , (9)

m(n) = (Gn)n , (10)

the first of which corresponds to the linear momentum balance, while the second
and the third one hold locally for any possible n and K.
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3. Linear isotropic incompressible fluids

We now turn to the task of specifying a model by means of constitutive prescrip-
tions. We want to describe fluids, so that the state descriptor at any instant t in
the time interval [0, T ] ⊂ R is the Eulerian velocity field u(t, x), and the incom-
pressibility condition allows us to set the mass density ρ = 1 identically, giving
the first constraint on the velocity:

∀t ∈ [0, T ] : div u = 0 . (11)

Further prescriptions are related to internal and external power.

3.1. Constitutive prescriptions for the internal power

Linearity and isotropy (i.e. covariance under the full orthogonal group on R
3) of

the fluid are encoded in the dependence of the tensor fields T and G on u. In a
recent paper, Musesti [8] proved that the most general linear isotropic tensor fields,
endowed with the symmetries due to frame indifference and Schwarz’s theorem,
take the form

Tij = µ(ui,j + uj,i)− p δij ,

Gij =η1ui,jk + η2(uj,ki + uk,ij − ui,ssδjk)

+ η3(uj,ssδki + uk,ssδij − 4ui,ssδjk)− pkδij ,

where µ, η1, η2, η3 ∈ R. The fields p and p, respectively a scalar and a vector one,
enter the definition of the pressure

P := p− div p ,

whose rôle in incompressible theories reduces to that of a Lagrange multiplier of
the constraint (11).

Defining the symmetric part of an m-tensor X as

SymX :=
1

m!

∑

σ

Xσ(i1...im) ,

where σ runs over the group of permutations of m elements, the previous relations
can be written in intrinsic notation as

T = 2µ Sym∇u− p I ,

G =(η1 − η2)∇∇u+ 3η2 Sym∇∇u

− (η2 + 5η3)∆u⊗ I+ 3η3 Sym (∆u⊗ I)− I⊗ p .

Following these definitions and imposing also on the virtual velocities the
constraint (11), we can write the internal power for a linear isotropic incompressible
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fluid as

Pint(M, v) = 2µ

∫

M

Sym∇u · ∇v + (η1 − η2)

∫

M

∇∇u · ∇∇v

+ 3η2

∫

M

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫

M

∆u ·∆v .

3.2. Constitutive prescriptions for the external power

Constitutive prescriptions for the external power are usually given writing the
fields b, t and m in terms of some known (or measurable) external parameters and
also in terms of the unknowns of the problem.

As long as the field b is concerned, it is useful to single out a conservative

contribution, which will play the rôle of a pressure term in an incompressible
theory. Hence we write

b = d+∇f ,

where f is a scalar field and d includes all non conservative contributions to the
volume (i.e. long-distance) interactions of the medium.

In view of Remark 1, the formulation of our dynamical problem will make
use of the balance (7) only on the body B, hence we need a prescription of t and
m only on the boundary ∂B. This suggested us to discuss such prescriptions in
the next section.

3.3. Boundary conditions

We can divide the realm of boundary conditions into requests of kinematical ad-

missibility for the velocity field u and constitutive prescriptions for the fields t and
m on the boundary ∂B.

From a kinematical point of view we can partition the boundary into four
(possibly empty) regions:

• on SD we fix the value of both u and its normal derivative ∂u
∂n

: this is called
a Dirichlet adherence condition;

• on SW we only fix the value of u, giving a weak adherence condition;
• on SN we do not fix anything, obtaining Neumann conditions;
• on SS we just set u · n = 0, which represents a slip condition with pure
geometrical constraints.

We will say that a velocity field u is kinematically admissible if it satisfies the
proper condition on each of the previous regions.

We choose t = −αu on SS , with α ∈ L∞(SS ;R
+), as a traction which opposes

the motion, with a strength proportional to the tangential velocity of the fluid. On
SN we set t = qn, where q ∈ L∞(SN ;R): this term represents the pressure along
SN , which can be used to drive the flow (we could consider for instance a portion
of pipe with pressure fixed at the ends).

In a similar way, on SW and SS we prescribe

m = −µ ℓ
∂u

∂n
,
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where the constitutive modulus ℓ ∈ L∞(SW ∪SS ;R
+) is called adherence length(2),

since it is a length parameter which measures a kind of slow down of the fluid due
to an interaction with the boundary. On SN we set m = 0.

Notice that prescriptions of m on SD and t on SD∪SW should be regarded as
compatibility constraints for equations (8)–(10), since their values can be computed
after solving the momentum balance equation; therefore we will not need such
prescriptions.

3.4. Thermodynamical constraint

The dissipation inequality (6) specialized for our model reads

2µ|Sym∇v|2 + (η1 − η2)|∇∇v|2 + 3η2|Sym∇∇v|2 − (η2 + 4η3)|∆v|2 ≥ 0

for every virtual velocity v.
Since the first and second order derivatives of v can be independently set

equal to zero, the dissipation inequality will be satisfied if and only if µ ≥ 0 and

Γ := ∇∇v ·G[∇∇v] = η1vi,jkvi,jk + η2(2vk,ijvi,jk − vi,rrvi,ss)− 4η3vi,rrvi,ss ≥ 0

for every virtual velocity v. This last requirement is equivalent to the following
conditions on the coefficients η1, η2 and η3.

Proposition 1. We have Γ ≥ 0 for every virtual velocity v if and only if

η1 + 2η2 ≥ 0 , η1 − η2 ≥ 0 , η1 − η2 − 6η3 − 2
√
η22 + 4η2η3 + 9η23 ≥ 0 .(3) (12)

Proof. Let us identify the 18 independent components of ∇∇v with an element
x ∈ R

18 according to the following table:

x1 = v1,11 x2 = v1,22 x3 = v1,33 x4 = v2,12 x5 = v3,13
x6 = v2,22 x7 = v2,33 x8 = v2,11 x9 = v3,23 x10 = v1,12
x11 = v3,33 x12 = v3,11 x13 = v3,22 x14 = v1,13 x15 = v2,23
x16 = v1,23 x17 = v2,13 x18 = v3,12 .

Then we can write

Γ = x · (η1A+ B)x , (13)

where A = diag(A5, A5, A5, A3), B = diag(B5, B5, B5, B3) and

A5 = diag(1, 1, 1, 2, 2), A3 = diag(2, 2, 2),

B5 =




η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 2η2 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 2η2

0 2η2 0 2η2 0
0 0 2η2 0 2η2



, B3 = η2



0 1 1
1 0 1
1 1 0


 .

(2)See [4, Sec. 8.2], where similar assumptions are made.
(3)With the choice η3 = 0 one finds η1 + 2η2 ≥ 0 and η1 − 3η2 ≥ 0. The reader should compare
such inequalities with [4, Eq. (75)], which are only sufficient conditions.
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The quadratic form (13) is positive definite if and only if its eigenvalues are all
positive. Since A is positive definite, this is tantamount to say that the eigenvalues
of η1I+ A−1B are positive definite.

We have A−1B = diag(A−1
5 B5, A

−1
5 B5, A

−1
5 B5, A

−1
3 B3), where

A−1
5 B5 =




η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 2η2 0
−η2 − 4η3 −η2 − 4η3 −η2 − 4η3 0 2η2

0 η2 0 η2 0
0 0 η2 0 η2



,

A−1
3 B3 = η2




0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


 .

A straightforward calculation shows that the eigenvalues of A−1B are

λ1,2 = −η2 − 6η3 ± 2
√
η22 + 4η2η3 + 9η23 , λ3,4 = ±η2 , λ5 = 2η2 , λ6 = −

η2
2
,

hence Γ ≥ 0 for every velocity field if and only if η1 + λmin ≥ 0, where λmin is the
minimal eigenvalue. Since





λmin = −η2 − 6η3 − 2
√
η22 + 4η2η3 + 9η23 if η2 + 4η3 ≥ 0

λmin = −η2 if η2 + 4η3 ≤ 0 and η2 ≥ 0

λmin = 2η2 if η2 + 4η3 ≤ 0 and η2 ≤ 0 ,

one has the global conditions (12). �

4. Existence and uniqueness

We now want to investigate existence and uniqueness of solutions for both the
stationary and the evolutionary motion of a second order incompressible fluid,
with boundary conditions as described in Section 3.3. In particular we will focus
our attention on the case H2(SD) = 0 and H2(SW ) > 0, since, within conditions
of an adherence kind, it seems more natural to fix only the value of the velocity
field on a part of the boundary; moreover, a Dirichlet adherence condition would
require minor changes in what follows.

We encode the kinematical admissibility together with the divergence-free
condition of the virtual velocities in a suitable linear space X , whose definition
will be given in the next section. We assume

u = g0 on SW

in the sense of traces in Sobolev spaces, with g0 ∈ H
3
2 (SW ;R3). Moreover, we

choose a ∈ H3(B) and set g = rot a in such a way that g = g0 on SW in the sense
of traces (we call g an interpolator for the boundary value).

We will now apply the principle of virtual powers in order to obtain a formu-
lation of the dynamical problem for the fluids introduced in the previous sections.
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As an application of the uniqueness results proved in the sequel, we are allowed
to assume the balance (7) only for M = B, since the arbitrariness mentioned in
Remark 1 vanishes and we can deduce the balances on subbodies by the choice of
suitable virtual velocities v.

Problem 1. Find u ∈ X + g such that for every t ∈ [0, T ]

2µ

∫

B

Sym∇u · ∇v + (η1 − η2)

∫

B

∇∇u · ∇∇v

+ 3η2

∫

B

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫

B

∆u ·∆v

+

∫

SW∪SS

µ ℓ
∂u

∂n
·
∂v

∂n
+

∫

SS

α u · v+

∫

B

(
∂u

∂t
+ (u · ∇)u

)
· v =

∫

SN

(f + q)v · n+

∫

B

d · v , (14)

for every v ∈ X.

4.1. Virtual velocities and Hilbert spaces

The assumption of a balance principle in integral form leads directly to an in-
terpretation of the functions as defined up to negligible sets (with zero Lebesgue
measure). We will take the set of test functions (virtual velocities) as a linear space
with the useful topological structure of a Hilbert space, endowing the principle of
virtual powers with a natural interpretation as equality of linear forms.

First of all the virtual velocities should be regular enough and kinematically
admissible; we then consider the set

{
v ∈ C∞(B) : div v = 0 , v is kinematically admissible

}
;

but notice that this is not an R-linear space in general, since kinematical admis-
sibility can be lost by summation of functions or multiplication by scalars, unless
all the boundary values be set equal to the zero function.

We will then set, for any surface S and any ε > 0,

Bε(S) :=
{
x ∈ B : dist(x,S) < ε

}
,

and define the R-linear space

V :=





v ∈ C∞(B) :

div v = 0 ,

∃ε1 > 0 : ∀x ∈ Bε1(SW ) : v(x) = 0

∃ε2 > 0 : ∀x ∈ Bε2(SS) : (v · n)(x) = 0





,

which turns out to be an R-linear subspace of C∞(B).

We denote with H the completion of V in L2(B), with H1
V the completion

of V with respect to the H1(B) norm and set X := H1
V ∩ H2(B) endowed with
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the H2(B) norm

‖v‖
2
X :=

∫

B

|v|2 +

∫

B

|∇v|2 +

∫

B

|∇∇v|2 ,

that encodes the natural regularity requested by the problem.

Remark 2. The choice of a Hilbert space for the set of virtual velocities v forces
indeed a distinction between them and kinematically admissible fields, but the
solutions will meet all the kinematical constraints, since they will belong to the
coset X + g of X in H2(B).

It remains to specify the rôle of the time variable t, which clearly enters the
problem via the time derivative of u. As a first step we could take u ∈ L2([0, T ];X)
so that u(t, ·) ∈ X for almost every t ∈ [0, T ]; but we will see that, if u is a solution
of our problem, then

u ∈ L2([0, T ];X) ∩ C([0, T ];H) ∩H1([0, T ];X ′) .

4.2. Compactness of the Navier operator

In equation (14) the only nonlinearity is the convective term
∫

B

(u · ∇)u ;

clearly it is the source of the difficulties and also of the interest in solving our
problem. We will work it out via a topological method in which compactness is
the key tool; therefore we introduce some considerations about the compactness
properties of that term.

Consider the bilinear function

F :

{
H2 ×H2 → L2

(u, v) 7→ (u · ∇)v
;

by Hölder’s inequality, since H2(B) is compactly embedded in L∞(B), we have

‖F (u, v)‖L2 = ‖(u · ∇)v‖L2 ≤ ‖u‖L∞ ‖∇v‖L2 ≤ c0 ‖u‖H2 ‖v‖H2 < +∞ (15)

for any u, v ∈ H2(B); hence F is continuous.
For every g ∈ H2(B), we define the nonlinear Navier operator Kg as follows:

Kg :

{
X → L2

u 7→ F (u, u) + F (u, g) + F (g, u) + F (g, g) .

Theorem 1. The Navier operator Kg is compact from X to X ′.

Proof. Clearly, for fixed g ∈ H2(B), the sum

F (u, v) + F (u, g) + F (g, v) + F (g, g)

is continuous and so is Kg, by composition with the function { u 7→ (u, u) }. More-
over, by virtue of (15), it is bounded on bounded subsets of X .
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Since X ⊆ H2(B) is compactly embedded in L2(B), we can identify L2(B)
with its dual space and apply Schauder’s theorem to obtain L2(B) compactly
embedded in X ′. �

Remark 3. The operator Kg is also compact from any W ⊆ H1(B) to W ′; in fact
the immersion H1(B) → Lq(B) is compact for q ∈ [1, 6[ and such it is the dual

Lq′(B) → (H1(B))′. We can take q = 4, q′ = 4
3 , make the extension

F :

{
H1 ×H1 → L

4
3

(u, v) 7→ (u · ∇)v

and accordingly define Kg on W . We have

‖(u · ∇)v‖
L

4
3
≤ ‖u‖L4 ‖∇v‖L2 ≤ c̃ ‖∇u‖L2 ‖∇v‖L2 < +∞

for any u, v ∈W and, following the arguments of the previous theorem, we obtain
the compactness of Kg from W to W ′.

When considering the evolutionary problem we will need Kg to be a compact
operator from L2([0, T ];X) to L2([0, T ];X ′). We will use the following lemma
proved in [6, Chap. 1, Sec. 5.2].

Lemma 1. Given three Banach spaces B0 ⊂ B ⊂ B1 with B0 and B1 reflexive and

B0 compactly embedded in B, we set for T ∈ (0,+∞) and p0, p1 ∈ (1,+∞)

W :=

{
v : v ∈ Lp0([0, T ];B0) ,

∂v

∂t
∈ Lp1([0, T ];B1)

}
,

which turns out to be a Banach space contained in Lp0([0, T ];B).

Then W is compactly embedded in Lp0([0, T ];B).

Theorem 2. The Navier operator Kg is compact from the space

L2([0, T ];X) ∩ C([0, T ];H) ∩H1([0, T ];X ′)

into L2([0, T ];X ′).

Proof. Since X is compactly embedded in L3(B) and so is L
3
2 (B) into X ′, we can

apply Lemma 1 with X ⊂ L3(B) ⊂ X ′ and p0 = p1 = 2. It remains to show

that Kg, as an operator with range in L2([0, T ];L
3
2 (B)), is bounded on bounded

subsets of its domain. The estimate
∫ T

0

‖F (u, v)‖
2

L
3
2
dt ≤

∫ T

0

‖∇v‖
2
L6 ‖u‖

2
L2 ≤ c20

∫ T

0

‖v‖
2
H2 ‖u‖

2
L2

gives the needed property since u belongs to L∞([0, T ];H). �
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4.3. The stationary problem

We will first solve the stationary version of Problem 1, in which there is no depen-
dence on time of the Eulerian velocity field and of any other term in equation (14).
Stationary solutions represent an important class in Fluid Mechanics for many ap-
plications; moreover, as we will see later, the solution of the evolutionary problem
goes along the same way as the stationary one.

Let us define the bilinear form a : X ×X → R as

a(u, v) := 2µ

∫

B

Sym∇u · ∇v + (η1 − η2)

∫

B

∇∇u · ∇∇v

+ 3η2

∫

B

Sym∇∇u · ∇∇v − (η2 + 4η3)

∫

B

∆u ·∆v

+

∫

SW∪SS

µ ℓ
∂u

∂n
·
∂v

∂n
+

∫

SS

α u · v .

In view of the thermodynamical constraint and Proposition 1, we will assume a
slightly stronger hypothesis on the sign of the coefficients.

Proposition 2. Provided that

µ > 0 , η1 + 2η2 > 0 , η1 − η2 > 0 , η1 − η2 − 6η3 − 2
√
η22 + 4η2η3 + 9η23 > 0 ,

the bilinear form a(u, v) is continuous and coercive on X.

Proof. The continuity of a is apparent. On the other hand, with the notation of
Proposition 1 we have

a(u, u) = 2µ

∫

B

|Sym∇u|2 +

∫

B

Γ +

∫

SW∪SS

µ ℓ

∣∣∣∣
∂u

∂n

∣∣∣∣
2

+

∫

SS

α |u|2 ≥

≥ 2µ

∫

B

|Sym∇u|2 +

∫

B

Γ ≥ 2µ ‖Sym∇u‖
2
L2 + (η1 + λmin) ‖∇∇u‖

2
L2 ;

by an application of Korn’s inequality there exists κ > 0 such that

a(u, u) ≥ κ(‖u‖
2
L2 + ‖∇u‖

2
L2) + (η1 + λmin) ‖∇∇u‖

2
L2 .

Setting

ν := min {κ , η1 + λmin } > 0 ,

we have a(u, u) ≥ ν ‖u‖2X . �

Consider now the trilinear form b : H2 ×H2 ×H2 → R given by

b(u, v,w) :=

∫

B

F (u, v) · w =

∫

B

(u · ∇)v · w ,

which is indeed continuous since

|b(u, v,w)| ≤ ‖F (u, v)‖L2 ‖w‖L2 ≤ c0 ‖u‖H2 ‖v‖H2 ‖w‖H2

for every u, v,w ∈ H2(B).
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Given the interpolator g for the boundary value, we define the set

Yg :=
{
h ∈ H2(B) : div h = 0 , h− g ∈ H1

0 (B)
}
.

Lemma 2. For every u ∈ X and h ∈ Yg we have

b(u, u, u) = 0 and b(h, u, u) = 0 .

Proof. By standard formulae in tensor calculus we get the assertion for u ∈ V and
we can extend it by a density argument. �

Lemma 3. For every β > 0 there exists h ∈ Yg such that

|b(u, h, u)| ≤ β ‖u‖
2
X .

Proof. See J. L. Lions [6, Chap. 1, Sec. 7.2]. �

We can now prove an existence result for solutions of the non homogeneous
stationary problem related to the datum g.

Theorem 3. There exists u ∈ X such that, for every v ∈ X,

a(u, v) + b(u+ g, u+ g, v) = 〈ϕ, v 〉 , (16)

where ϕ ∈ X ′ is the linear form defined by

〈ϕ, v 〉 =

∫

SN

(f + q)v · n+

∫

B

d · v − a(g, v) .

Proof. By the Lax-Milgram theorem, the function L : X → X ′ defined by

∀v ∈ X : 〈L(u), v 〉 = a(u, v)

is a homeomorphism. We have

L(u) +Kg(u) = ϕ (17)

in X ′, and then
u = L−1 (ϕ−Kg(u)) =: Φ(u) .

Our aim is to apply the following result [3, Corollary 8.1].

Theorem (Fixed Point). Let X be a Banach space and Φ : X → X a compact

operator. Then either Φ(u) = u has a solution, or the set

S =
{
u ∈ X : Φ(u) = λu for some λ > 1

}

is unbounded.

Assume that u ∈ X is a solution of (17); it means that for every v ∈ X

〈L(u), v 〉+ 〈Kg(u), v 〉 = 〈ϕ, v 〉 .

Taking v = u and applying Lemmas 2 and 3, there exists h ∈ Yg such that

ν ‖u‖
2
X ≤ a(u, u) ≤ |b(u, h, u)|+ |b(h, h, u)|+ |〈ϕ, u 〉|

≤
ν

2
‖u‖

2
X +

(
c1 ‖h‖

2
X + ‖ϕ‖X′

)
‖u‖X ;
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from which we have the a priori estimate

‖u‖X ≤
2

ν
c1 ‖h‖

2
X +

2

ν
‖ϕ‖X′ =: R < +∞ . (18)

Take now λ > 1 and assume that Φ(u) = λu; it means that

〈L(λu), u 〉+ 〈Kh(u), u 〉 = 〈ϕ, u 〉

and, following the argument leading to (18), we obtain

‖u‖X ≤ (2λ− 1)−1R < R .

Hence the set S introduced in the Fixed Point theorem is bounded and there exists
a fixed point u ∈ X for Φ. We can then conclude that u+h is a stationary solution
for Problem 1. �

We can also prove the following uniqueness result when the data h and ϕ are
“small” compared to the coercivity constant ν.

Theorem 4. Assume that

4c21 ‖h‖
2
X + 4c1 ‖ϕ‖X′ < ν2

where ϕ, h and the constant c1 are taken as in the proof of Theorem 3.
Then there exists a unique solution u ∈ X of equation (16).

Proof. Let u1 and u2 be two solutions of (16) and set w := u1− u2. Clearly w ∈ X
and we can take the difference of

〈L(u1),w 〉+ 〈Kh(u1),w 〉 = 〈ϕ,w 〉 ,

〈L(u2),w 〉+ 〈Kh(u2),w 〉 = 〈ϕ,w 〉 ,

obtaining

〈L(u1 − u2),w 〉+ 〈Kh(u1)−Kh(u2),w 〉 = 0 ,

that is

a(w,w) + b(u1, u1,w)− b(u2, u2,w) + b(w, h,w) + b(h,w,w) = 0 .

It is easy to check that

b(u1, u1,w)− b(u2, u2,w) = b(w,w,w) + b(w, u2,w) + b(u2,w,w)

and then, by Lemma 2,

a(w,w) + b(w, u2,w) + b(w, h,w) = 0 .

Applying again Lemma 3, we have

ν ‖w‖
2
X ≤ a(w,w) ≤ |b(w, u2,w)|+

ν

2
‖w‖

2
X ≤

(ν
2
+ c1 ‖u2‖X

)
‖w‖

2
X

and, since ‖u2‖X ≤ R by the bound (18), we get

ν ‖w‖
2
X ≤

(
ν

2
+

2c21
ν

‖h‖
2
X +

2c1
ν

‖ϕ‖X′

)
‖w‖

2
X ,
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and hence (
2c21
ν

‖h‖
2
X +

2c1
ν

‖ϕ‖X′ −
ν

2

)
‖w‖

2
X ≥ 0 .

It is now clear that, when

4c21 ‖h‖
2
X + 4c1 ‖ϕ‖X′ < ν2 ,

we necessarily have ‖w‖
2
X = 0 and then u1 = u2. �

4.4. The evolutionary problem

We now come to analyze the evolutionary problem. Take u ∈ L2([0, T ];X), whose
norm is

‖u‖
2
L2([0,T ];X) :=

∫ T

0

‖u(s)‖
2
X ds ,

the divergence-free datum g ∈ L2([0, T ];H2(B)) and ϕ ∈ L2([0, T ];X ′).
With the notations of the previous section we can state our main result.

Theorem 5. There exists u ∈ L2([0, T ];X) such that

u(0) = u0 , (19)
∫

B

∂u

∂t
· v + a(u, v) + b(u+ g, u+ g, v) = 〈ϕ, v 〉 , (20)

for every v ∈ L2([0, T ];X).

Remark 4. Notice that the time derivative of u has to be interpreted as a linear
form in L2([0, T ];X ′), whose representation enters equation (20), and thus we will
take u ∈ H1([0, T ];X ′). A key rôle in the evolutionary problem is played by the
initial datum u0 which belongs to H . At first the initial condition (19) should be
understood in X ′, but we will see that it actually takes place in H , as u belongs
to C([0, T ];H).

Proof. In order to proceed we need some estimates; first we set v = u in (20) and
apply Lemma 2 obtaining

∫

B

∂u

∂t
· u+ a(u, u) + b(u, g, u) + b(g, g, u) = 〈ϕ, u 〉 .

Integrating in time and defining 〈 ϕ̃, u 〉 = 〈ϕ, u 〉 − b(g, g, u), we get

1

2

∫ t

0

d

ds
‖u(s)‖

2
L2 ds+

∫ t

0

a(u, u) ds = −

∫ t

0

b(u, g, u) ds+

∫ t

0

〈 ϕ̃, u 〉 ds ,

hence

1

2
‖u(t)‖

2
L2 + ν

∫ t

0

‖u‖
2
X ds ≤

1

2
‖u(0)‖

2
L2 +

∫ t

0

|b(u, g, u)|ds+

∫ t

0

‖ϕ̃‖X′ ‖u‖X ds.

By Lemma 3 and Young’s inequality,

1

2
‖u(t)‖

2
L2 + ν

∫ t

0

‖u‖
2
X ds ≤

1

2
‖u0‖

2
L2 +

ν

2

∫ t

0

‖u‖
2
X ds+ c2

∫ t

0

‖ϕ̃‖
2
X′ ds ,
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that gives the first estimate for a.e. t ∈ [0, T ]:

‖u(t)‖
2
L2 + ν

∫ t

0

‖u‖
2
X ds ≤ ‖u0‖

2
L2 + 2c2

∫ t

0

‖ϕ̃‖
2
X′ ds =:M .

This a priori bound tells us that any solution u of our problem belongs to a
bounded subset of L2([0, T ];X) ∩ L∞([0, T ];H). We now introduce the following
theorem whose proof is given in [5, Chap. 3, Sec. 4.4].

Theorem (J. L. Lions). Let X and H be two Hilbert spaces, with X dense and

continuously embedded in H; identify H with its dual in such a way that X ⊂ H ⊂
X ′ and fix T > 0. Consider a bilinear form at(u, v) : X ×X → R such that:

i) the function t 7→ at(u, v) is measurable for every u, v ∈ X;

ii) |at(u, v)| ≤ C1 ‖u‖X ‖v‖X for a.e. t ∈ [0, T ], for every u, v ∈ X;

iii) at(v, v) ≥ α ‖v‖
2
X − C2 ‖v‖

2
H for a.e. t ∈ [0, T ], for every v ∈ X;

where α > 0, C1 and C2 are constant.

Then for every f ∈ L2([0, T ];X ′) and for every u0 ∈ H there exists only one

u such that

u ∈ L2([0, T ];X)∩ C([0, T ];H) ∩H1([0, T ];X ′) =: X

u(0) = u0

〈
du

dt
(t), v 〉+ at(u(t), v) = 〈 f(t), v 〉 for a.e. t ∈ [0, T ], for every v ∈ X .

It is easy to see that the spaces X , H as earlier defined and the bilinear form
at(u, v) := a(u(t), v(t)) fulfill the hypotheses of the previous theorem; then the
function

L :





X → H × L2([0, T ];X ′)

u 7→

(
u(0) ,

du

dt
(t) + a(u(t), · )

)

is a homeomorphism.
We can now write equations (19)–(20) in H × L2([0, T ];X ′) as

L(u) + ( 0 , Kg(u) ) = ( u0 , ϕ ) ,

from which
u = L−1( u0 , ϕ−Kg(u) ) =: Φ(u) .

By Theorem 2 and composition arguments, Φ turns out to be a compact operator,
and we can then apply the Fixed Point theorem in the Banach space X. Arguing
as in the previous section we take λ > 1 and assume Φ(u) = λu; in particular
u0 = λu(0) and

λ

2

∫ t

0

d

ds
‖u(s)‖

2
L2 ds+ λ

∫ t

0

a(u, u) ds = −

∫ t

0

b(u, g, u) ds+

∫ t

0

〈 ϕ̃, u 〉 ds .

We then obtain

λ

2
‖u(t)‖

2
L2 + λν

∫ t

0

‖u‖
2
X ds ≤

λ

2
‖u(0)‖

2
L2 +

∫ t

0

|b(u, g, u)|ds+

∫ t

0

‖ϕ̃‖X′ ‖u‖X ds,



20 G. G. Giusteri, A. Marzocchi and A. Musesti

and, by Lemma 3 and Young’s inequality,

λ

2
‖u(t)‖2L2 + λν

∫ t

0

‖u‖2X ds ≤
λ

2

∥∥λ−1u0
∥∥2
L2 +

ν

2

∫ t

0

‖u‖2X ds+ c2

∫ t

0

‖ϕ̃‖2X′ ds,

that gives

λ ‖u(t)‖
2
L2 + (2λ− 1)ν

∫ t

0

‖u‖
2
X ds ≤ λ−1 ‖u0‖

2
L2 + 2c2

∫ t

0

‖ϕ̃‖
2
X′ ds < M .

Since 2λ− 1 > λ we obtain

‖u(t)‖
2
L2 + ν

∫ t

0

‖u‖
2
X ds < λ−1M

and the set S introduced in the Fixed Point theorem is bounded in L2([0, T ];X)∩
L∞([0, T ];H). In order to complete the proof it remains to show that S is bounded
also in H1([0, T ];X ′). If there exists λ > 1 such that Φ(u) = λu, then we have

∂u

∂t
= −a(u, · )−

1

λ
Kg(u) +

1

λ
ϕ

in L2([0, T ];X ′) and
∥∥∥∥
∂u

∂t

∥∥∥∥
X′

≤ ‖a(u, · )‖X′ +
1

λ
‖Kg(u)‖X′ +

1

λ
‖ϕ‖X′ .

By the continuity of a and the embeddings mentioned in the proof of Theorem 2
we can write

∥∥∥∥
∂u

∂t

∥∥∥∥
X′

≤ c3 ‖u‖X +
c4
λ

‖Kg(u)‖
L

3
2
+

1

λ
‖ϕ‖X′ .

We know that u belongs to a bounded subset of L2([0, T ];X) and ϕ ∈ L2([0, T ];X ′);
again by the proof of Theorem 2 we deduce that

∫ T

0

∥∥∥∥
∂u

∂t

∥∥∥∥
2

X′

≤ c5 +
1

λ

∫ T

0

‖Kg(u)‖
L

3
2
< N

for a fixed N > 0, since Kg maps bounded subsets of L2([0, T ];X)∩L∞([0, T ];H)

in bounded subsets of L2([0, T ];L
3
2 (B)).

The last bound shows that ∂u
∂t

belongs to a bounded subset of L2([0, T ];X ′)
and implies that S is bounded in X. Hence there exists a fixed point u ∈ X for Φ
and this is a solution for the Cauchy problem (19)–(20). �

Thanks to theH2-regularity of the solution we have found, which in particular
guarantees the L∞-regularity in three dimensions, we can prove an important
uniqueness result.

Theorem 6. There exists a unique solution u ∈ L2([0, T ];X) of the Cauchy prob-

lem (19)–(20).
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Proof. Let u1 and u2 be solutions of equation (20) with the same initial datum
and set w := u1 − u2. We easily obtain, by equations (19)–(20) and Lemma 2,

w(0) = 0 ,
∫

B

∂w

∂t
· w+ a(w,w) + b(w, u2,w) + b(w, h,w) = 0 ,

from which, integrating in time and applying Lemma 3 and the coercivity of a, we
can deduce

1

2
‖w(t)‖

2
L2 + ν

∫ t

0

‖w‖
2
X ds ≤

ν

2

∫ t

0

‖w‖
2
X ds+

∫ t

0

|(w · ∇)u2 · w| ds ,

and then, using also Young’s inequality,

‖w(t)‖
2
L2 + ν

∫ t

0

‖w‖
2
X ds ≤ 2

∫ t

0

‖w‖L∞ ‖∇u2‖L2 ‖w‖L2 ds

≤ c6

∫ t

0

‖w‖X ‖u2‖X ‖w‖L2 ds ≤ ν

∫ t

0

‖w‖
2
X ds+ c7

∫ t

0

‖u2‖
2
X ‖w‖

2
L2 ds;

finally we have

‖w(t)‖2L2 ≤ c7

∫ t

0

‖u2(s)‖
2
X ‖w(s)‖2L2 ds

and by Gronwall’s lemma we conclude that ‖w(t)‖2L2 = 0 for every t ∈ [0, T ], that
is u1 = u2. �
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