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Balanced Powers in Continuum Mechanics
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Abstract. An approach to weak balance laws in Continuum Mechanics is presented, involving densities with only
divergence measure, which relies on the balance of power. An equivalence theorem between Cauchy powers and
Cauchy fluxes is proved. As an application of this method, the construction of the stress tensor when the body is
an orientable differential manifold is achieved under very general assumptions.
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1. Introduction

It is widely known that the balance of momentum in Continuum Mechanics leads to the notion
of Cauchy stress tensor field and to the formulation of a differential or an integral law. In this
framework, the stress is regarded as a primitive concept and the celebrated Cauchy stress
theorem holds, at least with continuous stress functions as in the original proof of Cauchy.

Because of its formal elegance, this approach has been followed in the axiomatization of
Continuum Mechanics made by Noll [15] and Truesdell [20] and, probably due to this influ-
ence, it has been subjected to several refinements, like in the papers of Gurtin and Martins [12]
who introduced the idea of Cauchy flux, of Šilhavý [18, 19] who considered possibly unbound-
ed flux densities, and of Degiovanni et al. [2] who generalized them to stress densities with
divergence measure. By introducing the notion of ‘almost every part’, Šilhavý also proved the
equivalence between fluxes of class Lp and densities with divergence in Lp. Parallel to this
development, the concept of subbody from the choice of Kellogg’s regions (see [7, Sections
8 and 9]) has been more and more generalized up to the use of sets with finite perimeter by
Ziemer [21] and the idea of normalized subsets of Šilhavý [19]. In [2, 13, 14] it has also been
shown [2] that the class of normalized sets with finite perimeter is a sort of minimal class, in
the sense that it suffices to state the balance law on very simple subbodies in order to have it
uniquely extended on almost every set with finite perimeter.

From the existence of the stress tensor field, it is then classical and customary to derive the
principle of virtual powers based on the concept of mechanical power. Also this concept has
been weakened by Antman and Osborn [1].

On the other hand, during the 1970s Germain [8–10] showed how the balance of mo-
mentum can be given assuming as a postulate the Principle of Virtual Power, thus recover-
ing the classical approach of d’Alembert. An interesting feature of this approach is that the
mechanical power has more resemblance to a distribution than a Cauchy flux, thus allowing
better a functional-analytic treatment, as already pointed out in Germain’s work. Finally, since
powers are applied to a velocity field, the principle of virtual power implies the balance of
stresses when constant velocity fields are chosen.
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This approach seems also to be more fruitful when dealing with stresses which are con-
centrated in low-dimensional parts of the body, as shown also by Dell’Isola and Seppecher
[3] and Di Carlo and Tatone [4]. In this case, a weakening of the theory based on stresses in
the spirit of Noll and Virga [16] raises some difficulties. Moreover, if the body is a differential
manifold which is not an open subset of R

n, and the interaction is of a vectorial kind, the
approach via the virtual powers seems to be mandatory.

In this paper we investigate Germain’s approach in two directions: first, we give it the
same degree of generality and ‘weakness’ as it appears in [2]; second, we find conditions
which connect the two formulations. More precisely, we introduce the notion of Cauchy
power as a function of a subbody and of a velocity field, and prove an equivalence the-
orem between Cauchy fluxes and Cauchy powers. In this way we are able to recover the
existence of the stress tensor field from the balance of mechanical power and to state these
results in the framework of n-intervals. Moreover, we give necessary and sufficient conditions
in order to have the symmetry of the tensor field or, equivalently, the balance of angular
momentum.

In the last section, we apply this theory to the case where the body is an orientable dif-
ferential manifold. The application is interesting in itself because mechanical bodies can be
curved surfaces, and also mathematically not trivial because the concept of constant vector
field cannot be given on a manifold. We are thus able to state and prove in this case the main
results obtained in R

n and recognize that the stress tensor field is a (0, n) tensor field. All
these results do not rely on a Riemannian structure. The counterpart based on stresses has
been treated in [17], but only for scalar fluxes and with the existence of a density given as an
assumption.

2. Cauchy Fluxes and Interactions

In this section we define the subbodies, a class of sets by which we state the balance law in an
integral form. We ask these sets to be normalized, which – roughly speaking – correspond to
take regularly open sets in a measure-theoretic sense; moreover, we consider sets with finite
perimeter, so that we can apply the Gauss–Green theorem. Finally, the sets will be taken with
closure in the interior of the body, because we want their measure-theoretic boundary not to
meet the boundary of the body.

For n� 1, Ln will denote the n-dimensional Lebesgue outer measure and H k the
k-dimensional Hausdorff outer measure on R

n. Given a Borel subset E ⊆ R
n, we denote

with B(E) the collection of all Borel subsets of E. Moreover, E�F will denote the set
(E\F) ∪ (F\E).

Consider a set M ⊆ R
n. The topological closure and interior of M will be denoted as usual

by cl M and int M, respectively. Denoting with Br(x) the open ball with radius r centered in x,
we introduce the measure-theoretic interior of M

M∗ =
{
x ∈ R

n: lim
r→0+

Ln(Br(x)\M)

Ln(Br(x))
= 0

}
,

the measure-theoretic boundary of M

∂∗M = R
n\(M∗ ∪ (Rn\M)∗)



Balanced Powers in Continuum Mechanics 371

and the measure-theoretic closure of M

M∗ = M ∪ ∂∗M.

They are all Borel subsets of R
n.

DEFINITION 1. We say that M ⊆ R
n is normalized, if M∗ = M.

DEFINITION 2. If for a subset M of R
n one has Hn−1(∂∗M) < +∞, then we say that M is

a set with finite perimeter, also said a Caccioppoli set.

A set with finite perimeter is in some sense regular (see [11] and Proposition 1 below); in
particular, it is Ln-measurable.

Now we introduce the concept of outer normal to the measure-theoretic boundary of a set.
Let M ⊆ R

n and x ∈ ∂∗M. We denote by nM(x) ∈ R
n a unitary vector such that

Ln({ξ ∈ Br(x) ∩M : (ξ − x) · nM(x) > 0})/rn → 0,

Ln({ξ ∈ Br(x)\M : (ξ − x) · nM(x) < 0})/rn → 0

as r → 0+. No more than one such vector can exist. Setting nM(x) = 0 in the other case, we
can consider the map nM : ∂∗M → R

n, which is called the unit outer normal to M. It turns
out that nM is Borel and bounded.

The following propositions state the main features of sets with finite perimeter which we
are interested in.

PROPOSITION 1. If M ⊆ R
n is a set with finite perimeter, then |nM(x)| = 1 for Hn−1-a.e.

x ∈ ∂∗M and the Gauss–Green theorem∫
M

v · ∇f dLn =
∫
∂∗M

f v · nM dHn−1 −
∫
M

f div v dLn

holds whenever f : R
n → R and v : R

n → R
n are Lipschitz continuous with compact

support.

PROPOSITION 2. Let M, N be two normalized subsets of R
n with finite perimeter and let

E = {x ∈ ∂∗M ∩ ∂∗N : nM(x) �= 0,nN(x) �= 0,nM(x) �= −nN(x)},
F = {x ∈ ∂∗M ∩ ∂∗N : nM(x) �= 0,nN(x) �= 0,nM(x) �= nN(x)}.

Then there exist Rk ⊆ ∂∗M ∩ ∂∗N , k = 1, 2, 3, with Hn−1(Rk) = 0 and

∂∗(M ∪N) = (∂∗M\N∗) ∪ (∂∗N\M∗) ∪ E ∪ R1, (1)

∂∗(M ∩N) = (M ∩ ∂∗N) ∪ (N ∩ ∂∗M) ∪ E ∪ R2, (2)

∂∗(M\N) = (∂∗M\N∗) ∪ (M ∩ ∂∗N) ∪ F ∪ R3, (3)

where the unions are disjoint.

PROPOSITION 3. Let M1, M2, M3 be three mutually disjoint subsets of R
n with finite perim-

eter. Then

Hn−1(∂∗M1 ∩ ∂∗M2 ∩ ∂∗M3) = 0.
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For a proof of the first, we refer to [6, Theorem 4.5.6] or [22, Theorem 5.8.2], while the second
can be found in [13, Proposition 2.2] and the last is an easy consequence of the properties of
the unit outer normal.

Let now � be an open subset of R
n. We denote by M(�) the set of Borel measures

µ : B(�) → [0,+∞] finite on compact subsets of � and by L1
loc,+(�;µ) the set of Borel

functions h : � → [0,+∞] with
∫
K
h dµ < +∞ for every compact subset K ⊆ �. When

µ = Ln, we will write simply L1
loc,+(�). For a finite-dimensional normed space X, we denote

by L1
loc(�;X) the set of Borel maps v : � → X with

∫
K
‖v‖ dLn < +∞ for any compact

subset K of �.
Throughout the remainder of this work, B will denote a bounded normalized subset with

R
n with finite perimeter, which we call a body.

DEFINITION 3. We denote with M◦ the collection of all normalized subsets M of B of finite
perimeter such that clM ⊆ intB. We call such sets the subbodies.

If h ∈ L1
loc,+(intB) and ν ∈ M(intB), we set

M◦
hν =

{
M ∈ M◦ :

∫
∂∗M

h dHn−1 < +∞, ν(∂∗M) = 0

}
.

Remark. If M, N ∈ M◦
hν , by Proposition 2 it follows that (M ∪ N)∗, M ∩ N , (M\N)∗ ∈

M◦
hν .

The notion we are going to define has been introduced in [19] and revised in [2].

DEFINITION 4. We say that P ⊆ M◦ contains almost all of M◦, if M◦
hν ⊆ P for some

h ∈ L1
loc,+(intB) and ν ∈ M(intB).

A property π holds on almost all of M◦, if the set

{M ∈ M◦ : π(M) is defined and π(M) holds}
contains almost all of M◦.

The following proposition states an interesting feature of the notion above: given a count-
able set of properties such that each of them holds on almost all of M◦, they simultaneously
hold on almost all of M◦.

PROPOSITION 4. If (hm), (νm) are sequences in L1
loc,+(intB) and M(intB), respectively,

then there exist h ∈ L1
loc,+(intB) and ν ∈ M(intB) such that

M◦
hν ⊆

⋂
m∈N

M◦
hmνm

.

Proof. Let (Km) be an increasing sequence of compact subsets of int B such that intB =⋃
m∈N

intKm. Setting

∀x ∈ intB : h(x) =
∑
m∈N

hm(x)

2m+1
(
1+ ∫

Km
hm dLn

) ,

∀E ∈ B(intB) : ν(E) =
∑
m∈N

νm(E)

2m+1(1+ νm(Km))
,

one can prove that h and ν have the required properties. �
To define a flux as a set function, we need the concept of material surface.
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DEFINITION 5. We call material surface in the body B a pair S = (Ŝ,nS), where Ŝ is a Borel
subset of R

n and nS : Ŝ → R
n is a Borel map such that there exists M ∈ M◦ with Ŝ ⊆ ∂∗M

and nS = nM |Ŝ . In this case, we say that S is subordinated to M. We denote by S◦ the collection
of the material surfaces in the body B.

We call nS the normal to the surface S. If also (Ŝ,−nS) is a material surface, we denote
it with −S. Let S, T be two material surfaces. We shall write S ⊆ T if Ŝ ⊆ T̂ and nT

extends nS . S and T are said to be disjoint if Ŝ ∩ T̂ = ∅. They are said to be compatible if
both are subordinated to the same M. In this case, we denote by S ∪ T the material surface
(Ŝ ∪ T̂ ,nS∪T ), where

nS∪T (x) =
{

nS(x) if x ∈ Ŝ,

nT (x) if x ∈ T̂ .

In the following, we shall sometimes identify Ŝ with S, provided that the reference to nS is
clear.

DEFINITION 6. For every h ∈ L1
loc,+(int B) and ν ∈ M(int B) we set

S◦hν = {S ∈ S◦: S is subordinated to some M ∈ M◦
hν}.

Given a set R ⊆ S◦, we say that R contains almost all of S◦, if S◦hν ⊆ R for some h ∈
L1

loc,+(int B) and ν ∈ M(int B); we say that a property π holds on almost all of S◦, if the set

{S ∈ S◦: π(S) is defined and π(S) holds}
contains almost all of S◦.

It is readily seen that if S ∈ S◦hν and T is a material surface with T ⊆ S, then T ∈ S◦hν .
Moreover, when S1, S2 ∈ S◦hν are compatible, then S1 ∪ S2 ∈ S◦hν . Finally, by Proposition 4
we find that the intersection of a countable family of sets containing almost all of S◦ contains
itself almost all of S◦.

We define now a particularly simple class of subbodies and material surfaces.

DEFINITION 7. A full grid G is an ordered triple

G = (x0, (e1, . . . , en), Ĝ),

where x0 ∈ R
n, (e1, . . . , en) is a positively oriented orthonormal basis in R

n and Ĝ is a Borel
subset of R with L1(R\Ĝ) = 0. If G1, G2 are two full grids, we write G1 ⊆ G2 if the first
two components coincide and Ĝ1 ⊆ Ĝ2.

DEFINITION 8. Let G = (x0, (e1, . . . , en), Ĝ) be a full grid; a subset I of R
n is called a

G-interval, if

I = {x ∈ R
n: aj < (x − x0) · ej < bj ∀j = 1, . . . , n}

for some a1, b1, . . . , an, bn ∈ Ĝ. We set

I◦G = {I : I is a G-interval with cl I ⊆ intB}.
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For 1 � j �n, we denote by S◦G,j the family of all the material surfaces (Ŝ,nS) such that

nS = ej and cl Ŝ ⊆ intB, where

Ŝ = {x ∈ R
n: (x − x0) · ej = s, ai < (x − x0) · ei < bi ∀i �= j}

for some a1, b1, . . . , s, . . . , an, bn ∈ Ĝ. We set also

S◦G =
n⋃

j=1

S◦G,j .

Finally we recall a property of the above class of subbodies and material surfaces.

PROPOSITION 5. Let x0 ∈ R
n and (e1, . . . , en) be a positively oriented orthonormal

basis in R
n. Then for every h ∈ L1

loc,+(int B) and ν ∈ M(int B) there exists a full grid

G = (x0, (e1, . . . , en), Ĝ) such that I◦G ⊆ M◦
hν and S◦G ⊆ S◦hν .

For a proof, we refer the reader to [2, Proposition 4.5].

3. The Cauchy Power

In the classical framework, the existence of the stress density t(x, n) is assumed and one can
define the contact power of the stress of a subbody M on a vector field v setting

P(M, v) =
∫
∂M

t(x,nM) · v dHn−1.

In particular, it is clear that P is linear in v and the inequality

|P(M, v)|�
∫
∂M

|v|h dHn−1

holds with h = |t|. Moreover, the Cauchy stress theorem proves the existence of a tensor field
T such that t(x,n) = T(x)n. Supposing T, v and ∂M smooth, one can apply the Gauss–Green
theorem, obtaining

P(M, v) =
∫
M

[(div T) · v+ T · ∇v] dLn,

from which one deduces that P is additive in the first argument and

|P(M, v)|� ‖v‖∞η(M)+ ‖∇v‖∞
∫
M

ĥ dLn,

exactly with dη = |div T| dLn and ĥ = |T|.
In the spirit of [2], we aim to generalize this to the case where the stress tensor field T

can have as divergence a measure not necessarily absolutely continuous with respect to the
Lebesgue measure. We consider the last inequalities as assumptions for some fixed η, h, ĥ and
deduce the existence of the stress tensor field, in the sense specified below. These assumptions
do not imply the symmetry of the tensor field T; to deduce it, the more restrictive inequality

|P(M, v)|� ‖v‖∞η(M)+ ‖D[v]‖∞
∫
M

ĥ dLn,

where D[v] = 1
2 [∇v+ (∇v)′], is needed. We postpone this development to Theorem 8.
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In this very general framework, we suppose the velocity field having values in R
N , while

the dimension of the body is n.

DEFINITION 9. Let X be a vector space and D ⊆ M◦. We say that a function F : D → X is
additive, if for every M, N ∈ D with (M ∪N)∗ ∈ D and M ∩N = ∅ one has

F((M ∪N)∗) = F(M)+ F(N).

DEFINITION 10. A Cauchy power on B is a function

P : D× C∞
c (intB;RN)→ R,

where D contains almost all of M◦ and the following properties hold:

(a) P(·, v) is additive for every v ∈ C∞
c (int B; R

N );
(b) P(M, ·) is linear for every M ∈ D;
(c) there exists h ∈ L1

loc,+(int B) such that

|P(M, v)|�
∫
∂∗M

|v|h dHn−1

for every v ∈ C∞
c (int B; R

N ) and every M ∈ D.

Remark. Taking into account property (c), it is easy to see that P(M, v) depends only on
the values of v on the measure-theoretic boundary of M, that is, if v1(x) = v2(x) for Hn−1-a.e.
x ∈ ∂∗M, then P(M, v1) = P(M, v2).

DEFINITION 11. Let R ⊆ S◦ be a set containing almost all of S◦ and consider Q : R → R
N .

We say that Q is a Cauchy flux on B, if the following properties hold:

(a) if S, T ∈ R are compatible and disjoint with S ∪ T ∈ R, then
Q(S ∪ T ) = Q(S)+Q(T );

(b) there exists h ∈ L1
loc,+(int B) such that the inequality

|Q(S)|�
∫
S

h dHn−1

holds on almost all of S◦.

Let us prove a first representation theorem about general Cauchy fluxes.

THEOREM 1. Let Q be a Cauchy flux. Then for almost every M ∈ M◦ there exists a unique
(up to Hn−1-negligible sets) Borel map tQ,M : ∂∗M → R

N such that

Q(S) =
∫
S

tQ,M dHn−1

for every material surface S subordinated to M. Moreover, if h is a function satisfying (b) of
Definition 11, then |tQ,M |� h.

Proof. Let h and ν be such that Q is defined on M◦
hν , and (a) and (b) of Definition 11 hold.

Let M ∈ M◦
hν ; then Q is additive on B(∂∗M) and for any material surface S ⊆ ∂∗M we have

|Q(S)|�
∫
S

h dHn−1 �
∫
∂∗M

h dHn−1 = cM,
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hence Q is a finite vector measure on ∂∗M with Q(S) = 0 whenever Hn−1(S) = 0. By the
Radon–Nikodym theorem there exists a function tQ,M : ∂∗M → R

N such that |tQ,M |� h and
Q(S) = ∫

S
tQ,M dHn−1. �

Now we introduce a further assumption on Cauchy fluxes, which connects them with
Cauchy powers, as we will see in Theorems 2 and 3.

DEFINITION 12. Let Q be a Cauchy flux on B. We say that Q is equilibrated, if the
condition

Q(−S) = −Q(S)

holds on almost all of S◦.

DEFINITION 13. We say that an equilibrated Cauchy flux Q and a Cauchy power P are
associated, if for almost every M ∈ M◦ the formula

P(M, v) =
∫
∂∗M

v · tQ,M dHn−1

holds for every v ∈ C∞
c (int B; R

N ).

In the following theorems, we prove the one-to-one relation between Cauchy powers and
equilibrated Cauchy fluxes.

LEMMA 1. Let Q be an equilibrated Cauchy flux. Then for almost every M,N ∈ M◦ with
M ∩N = ∅ one has

∫
∂∗M∩∂∗N

v · tQ,M dHn−1 = −
∫
∂∗M∩∂∗N

v · tQ,N dHn−1,

∫
∂∗M\∂∗N

v · tQ,M dHn−1 =
∫
∂∗M\∂∗N

v · tQ,(M∪N)∗ dHn−1

for every v ∈ C∞
c (int B; R

N ).
Proof. We drop the subscript Q from t. Let h and ν be such that Q is defined and Theorem 1

holds on M◦
hν . Let v ∈ C∞

c (int B; R
N ); then for every i = 1, . . . , N there exist two sequences

(Ei,h), (Fi,h) of Borel subsets of int B such that

ei · v(x) =
∞∑
h=1

1

h
χEi,h

−
∞∑
h=1

1

h
χFi,h

(see [5, Section 1.1]), where (e1, . . . , en) is an orthonormal basis in R
n. Given M, N in M◦

hν

with M ∩N = ∅, by Proposition 3 one has

Hn−1(∂∗M ∩ ∂∗N ∩ ∂∗(M ∪N)) = 0.
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Moreover, by (1) it follows that nM(x) = −nN(x) for Hn−1-a.e. x ∈ ∂∗M ∩ ∂∗N . Denoting
by vi and ti,M the components along ei of v and tM , respectively, we have

∫
∂∗M∩∂∗N

viti,M dHn−1

=
∞∑
h=1

1

h

[∫
∂∗M∩∂∗N∩Ei,h

ti,M dHn−1 −
∫
∂∗M∩∂∗N∩Fi,h

ti,M dHn−1

]

=
∞∑
h=1

1

h
[Q(∂∗M ∩ ∂∗N ∩ Ei,h,nM)−Q(∂∗M ∩ ∂∗N ∩ Fi,h,nM)] · ei

= −
∞∑
h=1

1

h
[Q(∂∗M ∩ ∂∗N ∩Ei,h,nN)−Q(∂∗M ∩ ∂∗N ∩ Fi,h,nN)] · ei

= −
∫
∂∗M∩∂∗N

viti,N dHn−1

and the first formula is proved.
Now take Ŝ ⊆ ∂∗M\∂∗N ; we have that the material surface (Ŝ,nM) is subordinated to M,

hence it is in the domain of Q. Moreover, taking into account (2) and that M, N are disjoint, it
follows that Ŝ is subordinated also to (M ∪N)∗ up to a set of zero Hn−1-measure, thus

∫
Ŝ

tM dHn−1 =
∫
Ŝ

t(M∪N)∗ dHn−1.

Then we can prove the other formula using the same technique as above. �
THEOREM 2. For every equilibrated Cauchy flux Q, there exists a Cauchy power P associ-
ated with Q. Moreover, if P̌ is another Cauchy power associated with Q, then for almost every
M ∈ M◦ one has P̌ (M, v) = P(M, v) for every v ∈ C∞

c (int B; R
N ).

Proof. Let h ∈ L1
loc,+(int B) and ν ∈ M(int B) be such that Definition 12 holds and tQ,M

exists for every M ∈ M◦
hν . We show that the function

P(M, v) =
∫
∂∗M

v · tQ,M dHn−1

defined on M◦
hν × C∞

c (int B; R
N ) is a Cauchy power. Linearity on the second argument is

obvious as well as the inequality

|P(M, v)|�
∫
∂∗M

|v|h dHn−1.

To prove the additivity of P, take two disjoint subsets M,N ∈ M◦
hν and v ∈ C∞

c (int B; R
N ).

Keeping into account (1), one has ∂∗(M∪N) = ∂∗M�∂∗N up to a set of zero Hn−1-measure,
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Hence, by Lemma 1

P((M ∪N)∗, v) =
∫
∂∗(M∪N)

v · tQ,(M∪N)∗ dHn−1

=
∫
∂∗M\∂∗N

v · tQ,M dHn−1 +
∫
∂∗N\∂∗M

v · tQ,N dHn−1

=
∫
∂∗M

v · tQ,M dHn−1 +
∫
∂∗N

v · tQ,N dHn−1

= P(M, v)+ P(N, v)

and P is a Cauchy power. It is clear that P is associated with Q.
Finally, if P̌ is another Cauchy power associated with Q, then for almost every M ∈ M◦

and every v ∈ C∞
c (int B; R

N ) we have

P̌ (M, v) =
∫
∂∗M

v · tQ,M dHn−1 = P(M, v),

which concludes the proof. �
THEOREM 3. For every Cauchy power P there exists an equilibrated Cauchy flux Q asso-
ciated with P. Moreover, if Q̌ is another equilibrated Cauchy flux associated with P, then
Q̌ = Q on almost all of S◦.

Proof. Let h ∈ L1
loc,+(int B) and ν ∈ M(int B) be such that P is defined and Definition 10

holds on M◦
hν . Let us fix M ∈ M◦

hν ; the function P(M, ·) : C∞
c (int B; R

n)→ R is linear and

|P(M, v)|� ‖v‖∞
∫
∂∗M

h dHn−1,

hence P(M, ·) is a vector distribution of order zero. By the Riesz representation theorem, there
exist a unique µ ∈ M(int B) and a µ-essentially unique Borel function cM : intB → R

N such
that |cM | = 1, µ-almost everywhere in intB and

P(M, v) =
∫

intB
cM · v dµ.

Moreover, since

|P(M, v)|�
∫
∂∗M

|v|h dHn−1,

we have that µ is absolutely continuous with respect to Hn−1 ∂∗M, hence

P(M, v) =
∫
∂∗M

bM · v dHn−1

for an Hn−1-essentially unique Borel function bM : ∂∗M → R
N with |bM |� h.

Let now S be a material surface in S◦hν subordinated to M,N ∈ M◦
hν ; then clearly Ŝ ⊆

∂∗M ∩ ∂∗N and nM = nN on Ŝ. Moreover, by (2) and (3), the sets Ŝ\∂∗(M ∩ N) and Ŝ ∩
∂∗(M\N) are Hn−1-negligible. Suppose the set Ŝ to be compact and fix an element a of
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R
N . Then there exists a sequence (vh) in C∞

c (int B; R
n) such that |vh|� |a| and vh → χŜa

pointwise. Since P is additive, it follows

∫
∂∗M

vh · bM dHn−1 =
∫
∂∗(M\N)

vh · bM\N dHn−1 +
∫
∂∗(M∩N)

vh · bM∩N dHn−1,

and by the dominated convergence theorem

a ·
∫
Ŝ

bM dHn−1 = a ·
∫
Ŝ

bM∩N dHn−1.

Exchanging M with N, by the arbitrariness of a one has

∫
Ŝ

bM dHn−1 =
∫
Ŝ

bN dHn−1.

If Ŝ is not compact, we can find a sequence (Sh) in S◦hν such that

Ŝ =
⋃
h∈N

Ŝh ∪N with Hn−1(N) = 0,

then
∫
Ŝ

bM dHn−1 = lim
h

∫
Ŝh

bM dHn−1 = lim
h

∫
Ŝh

bN dHn−1 =
∫
Ŝ

bN dHn−1.

Hence we can define a function Q : S◦hν → R
N setting

Q(S) =
∫
Ŝ

bM dHn−1,

where S is subordinated to M. It is clear that Q is a Cauchy flux; we want to prove that it is
equilibrated. Let S be a material surface and take two disjoint sets M,N ∈ M◦

hν such that
S,−S are subordinated to M,N , respectively. By Proposition 3 it follows that Ŝ ∩ ∂∗(M ∪N)

is Hn−1-negligible. Let a ∈ R
N ; if Ŝ is compact, there exists a sequence (vh) in C∞

c (int B;
R
n) such that vh → χŜa pointwise. Since P is additive, we have

∫
∂∗(M∪N)

vh · b(M∪N)∗ dHn−1 =
∫
∂∗M

vh · bM dHn−1 +
∫
∂∗N

vh · bN dHn−1,

hence Q(−S) = −Q(S) by the dominated convergence theorem. If Ŝ is not compact, we can
apply the same technique as above, which yields that Q is equilibrated. Moreover, we readily
have bM = tQ,M , hence Q is associated with P.

Finally, if Q̌ is another equilibrated Cauchy flux associated with P, for almost every M ∈
M◦ it follows that

∫
∂∗M

v · tQ,M dHn−1 = P(M, v) =
∫
∂∗M

v · tQ̌,M dHn−1
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for every v ∈ C∞
c (int B; R

N ), hence tQ,M(x) = tQ̌,M(x) for Hn−1-a.e. x ∈ ∂∗M. Then

Q(S) = Q̌(S) for every S ⊆ ∂∗M and the proof is complete. �
We now add a crucial assumption to Cauchy powers and Cauchy fluxes in order to obtain

a global integral representation for both.

DEFINITION 14. We say that a Cauchy power P is balanced, if there exist η ∈ M(int B) and
h ∈ L1

loc,+(int B) such that, for almost every M ∈ M◦,

|P(M, v)|� ‖v‖∞η(M)+ ‖∇v‖∞
∫
M

h dLn

for every v ∈ C∞
c (int B; R

n).

DEFINITION 15. We say that a Cauchy flux Q is balanced, if there exists η ∈ M(int B) such
that the inequality

|Q(∂∗M)|� η(M)

holds on almost all of M◦.

We first recall the definition of tensor field with divergence measure.

DEFINITION 16. Let T ∈ L1
loc(int B; Lin(Rn; R

N )). We say that T is a tensor field on int B
with divergence measure, if div T is a vector distribution on int B of order 0. This means that
for every compact set K ⊆ intB there exists cK � 0 with

∣∣∣∣
∫

intB
T∇f dLn

∣∣∣∣ � cK max
K
|f |

whenever f ∈ C∞
0 (int B) and supt f ⊆ K.

In such a case, there exist a uniquely determined µ ∈ M(int B) and a uniquely determined
µ-almost everywhere Borel map u : intB → R

N such that |u(x)| = 1 for µ-a.e. x ∈ intB
and

−
∫

intB
T∇f dLn =

∫
intB

f u dµ

for any Lipschitz function f : intB → R with compact support. We set

∫
M

v · div T =
∫
M

v · u dµ

for any v ∈ C∞
0 (int B; R

N ). Moreover, we put |div T| = µ.

The following are the two main features of balanced Cauchy fluxes proved in [2]. The
first states the existence of a flux density and an integral representation; the second gives an
extension theorem starting from (n− 1)-rectangles.
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THEOREM 4. Let Q be a balanced Cauchy flux on B. Then there exists a tensor field T ∈
L1

loc(int B; Lin(Rn; R
N )) with divergence measure such that

Q(S) =
∫
S

TnS dHn−1

on almost all of S◦. Moreover, T is uniquely determined Ln-almost everywhere and |div T|� η,
where η is as in Definition 15.

In particular, a balanced Cauchy flux is equilibrated.

THEOREM 5. Let G0 = (x0, (e1, . . . , en), Ĝ0) be a full grid and Q0 : S◦G0
→ R

n be a
function satisfying the following properties:

(i) Q0(S) = Q0(S1)+Q0(S2) whenever S, S1, S2 ∈ S◦G0
, S1∩S2 = ∅ and cl S = cl S1∪cl S2;

(ii) there exists h ∈ L1
loc,+(int B) such that

|Q0(S)|�
∫
S

h dHn−1

for any S ∈ S◦G0
;

(iii) there exists η ∈ M(int B) such that∣∣∣∣
n∑

j=1

(Q0(I
+
j )−Q0(I

−
j ))

∣∣∣∣ � η(I )

whenever
I = {x ∈ R

n: aj < (x − x0) · ej < bj ∀j = 1, . . . , n} ∈ I◦G0
,

I+j = {x ∈ R
n: (x − x0) · ej = bj , ai < (x − x0) · ei < bi ∀i �= j},

I−j = {x ∈ R
n: (x − x0) · ej = aj , ai < (x − x0) · ei < bi ∀i �= j}.

Then there exist a balanced Cauchy flux Q on B and a full grid G ⊆ G0 such that the
domain of Q contains S◦G and

∀S ∈ S◦G : Q(S) = Q0(S).

Moreover, if Q̌ also satisfies the property for some full grid Ǧ ⊆ G0, then Q̌ = Q on
almost all of S◦.

Now we show that balanced Cauchy fluxes and powers are intimately related; this will
immediately produce an integral representation theorem and an extension property also for
balanced Cauchy powers.

PROPOSITION 6. A Cauchy power is balanced if and only if the associated Cauchy flux is
balanced.

Proof. Suppose that a Cauchy power P is balanced and consider the Cauchy flux Q asso-
ciated with P; then for every a ∈ R

N we have

|Q(∂∗M) · a| =
∣∣∣∣
∫
∂∗M

a · tQ,M dHn−1

∣∣∣∣ = |P(M, a)|� ‖a‖η(M)

on almost all of M◦, hence in particular Q is balanced.
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On the other hand, supposing that Q is balanced, by Theorem 4 one deduces that there
exists a tensor field T ∈ L1

loc(int B; Lin(Rn; R
N )) with divergence measure such that |div T|� η

and tQ,M = TnM on almost all of M◦. Denoting with P the Cauchy power associated with Q
and setting h(x) = |T(x)|, we have that

|P(M, v)| =
∣∣∣∣
∫
∂∗M

TnM · v dHn−1

∣∣∣∣ =
∣∣∣∣
∫
M

v · div T+
∫
M

T · ∇v dLn

∣∣∣∣
� ‖v‖∞η(M)+ ‖∇v‖∞

∫
M

h dLn

on almost all of M◦, hence P is balanced. �
THEOREM 6. Let P be a balanced Cauchy power and let η be as in Definition 14. Then
there exists T ∈ L1

loc(int B; Lin(Rn; R
N )) with divergence measure such that |div T|� η and,

for almost every M ∈ M◦,

P(M, v) =
∫
∂∗M

TnM · v dHn−1

for every v ∈ C∞
c (int B; R

N ). Moreover, T is uniquely determined Ln-almost everywhere.
Proof. The balanced Cauchy power P is associated with a Cauchy flux that is balanced by

Proposition 6. The conclusion follows from Theorem 4. �
Finally, we give an extension formula for balanced Cauchy powers, which states that the

behavior of a Cauchy power on almost all n-intervals extends it to almost all of M◦.

THEOREM 7. Let G0 be a full grid and P0 : I◦G0
× C∞

c (int B;RN) → R a function which
satisfies the following assumptions:

(a) for every finite disjoint family {Ik: k ∈ 1} ⊆ I◦G0
and v ∈ C∞

c (int B;RN ) the following
holds:( ⋃

k∈1
Ik

)
∗
∈ I◦G0

=⇒ P0

(( ⋃
k∈1

Ik

)
∗
, v

)
=

∑
k∈1

P0(Ik, v);
(b) P0(I, ·) is linear for every I ∈ I◦G0

;

(c) there exists h ∈ L1
loc,+(int B) such that

|P0(I, v)|�
∫
∂I

|v|h dHn−1

for every v ∈ C∞
c (int B; R

N ) and I ∈ I◦G0
;

(d) there exist η ∈ M(int B) and h̃ ∈ L1
loc,+(int B) such that

|P0(I, v)|� ‖v‖∞η(I )+ ‖∇v‖∞
∫
I

h̃ dLn

for every v ∈ C∞
c (int B; R

N ) and I ∈ I◦G0
.

Then there exist a full grid G ⊆ G0 and a balanced Cauchy power P such that the domain
of P contains I◦G and P(I) = P0(I ) for every I ∈ I◦G. Moreover, if P̌ has the same property
of P for some full grid G ⊆ G0, then for almost every M ∈ M◦ one has P̌ (M, v) = P(M, v)
for every v ∈ C∞

c (int B; R
N ).
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Proof. Let S ∈ S◦G0
and I ∈ I◦G0

be such that S is subordinated to I. Given a ∈ R
N , there

exists a sequence (vk) in C∞
c (int B; R

N ) such that |vk|� a and vk → χSa pointwise. Define
the component of Q0 : S◦G0

→ R
N with respect to a as

a ·Q0(S) = lim
k

P0(I, vk).

Then we have:

1. Q0 does not depend on the choice of the sequence vk , since∣∣∣∣ lim
k

P0(I, vk − ṽk)
∣∣∣∣ � lim

k

∫
∂∗I
|vk − ṽk|h dHn−1 = 0.

2. If Hn−1(S�T ) = 0, then it is easy to check that Q0(S) = Q0(T ).
3. Q0(S) does not depend on the set I. Indeed, if S is subordinated to I1, I2, then

lim
k
P0(I1, vk) = lim

k
P0(I1 ∩ I2, vk) = lim

k
P0(I2, vk)

since Hn−1(S ∩ (I1�I2)) = 0 and P0 is additive.
4. Q0(−S) = −Q0(S) by additivity of P0.

Now we prove that Q0 satisfies (i), (ii) and (iii) of Theorem 5.

(i) Let S, S1, S2 ∈ S◦G0
with S1 ∩S2 = ∅ and cl S = cl S1 ∪ cl S2. Then there exist I1, I2 ∈ I◦G0

such that I1 ∩ I2 = ∅, (I1 ∪ I2)∗ ∈ I ◦G0
and Sj is subordinated to Ij , S is subordinated to

(I1 ∪ I2)∗. Given a ∈ R
N , let v(j)k → χSj a; then we have that v(1)k + v(2)k → χS1∪S2a. Since

Hn−1(S�(S1 ∪ S2)) = 0, it follows that
a ·Q0(S) = lim

k
P0(I, v(1)k + v(2)k )

= lim
k
(P0(I, v(1)k )+ P0(I, v(2)k )) = a ·Q0(S1)+ a ·Q0(S2).

(ii) It is obvious.
(iii) Let I ∈ I◦G0

; using the notation of Theorem 5, we start showing that

a ·
N∑
j=1

(Q0(I
+
j )−Q0(I

−
j )) = P0(I, a)

for every a ∈ R
N . The surfaces I+j and −I−j are subordinated to I, hence we can take

two sequences (v(j)+k ), (v(j)−k ) as in the definition of Q0 relative to I+j , −I−j , respectively.
Since

N∑
j=1

(v(j)+k + v(j)−k )→ χ∂∗Ia,

it follows that

a ·
N∑
j=1

(Q0(I
+
j )+Q0(−I−j )) = lim

k
P0

(
I,

N∑
j=1

(v(j)+k + v(j)−k )

)
= P0(I, a).

Then for every a ∈ R
N with |a|� 1 we have that∣∣∣∣a ·

N∑
j=1

(Q0(I
+
j ))−Q(I−j ))

∣∣∣∣ = |P0(I, a)|� η(I )

and (iii) is proved. Finally, we apply Theorem 5. �
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Let us finally consider n = N . We recall that a vector field w ∈ C∞
0 (int B; R

n) is an
infinitesimal rigid displacement, if∇w(x) is skew for any x ∈ intB, D[w] = 0. The following
theorem gives the necessary and sufficient assumptions in order to have the symmetry of T.

THEOREM 8. Let T ∈ L1
loc(int B; Lin(Rn; R

n)) be a tensor field with divergence measure.
Then the following conditions are equivalent:

(a) there exist η ∈ M(int B) and h ∈ L1
loc,+(int B) such that, for almost every M ∈ M◦,∣∣∣∣

∫
∂∗M

TnM · v dHn−1

∣∣∣∣�
∫
M

|v| dη + ‖D[v]‖∞
∫
M

ĥ dLn

for every v ∈ C∞
c (int B; R

N );
(b) there exists η ∈ M(intB) such that, for almost every M ∈ M◦,∣∣∣∣

∫
∂∗M

TnM · w dHn−1

∣∣∣∣�
∫
M

|w| dη
for every infinitesimal rigid displacement w ∈ C∞

0 (int B; R
n);

(c) T(x) is symmetric for Ln-a.e. x ∈ intB.

Proof.
(a)⇒ (b). It is obvious, since D[w] = 0.
(b)⇒ (c). Consider the infinitesimal rigid displacement w(x) = W(x − x0), where W is

a skew n × n-matrix. Define for a, b ∈ R
n the matrix a ∧ b = a ⊗ b − b ⊗ a. Then, since

(a ∧ b) ·W = −2b ·Wa for every skew matrix W, it is easy to deduce
∣∣∣∣1

2
W ·

∫
∂∗M

(x − x0) ∧ TnM dHn−1

∣∣∣∣ � |W |
∫
M

|x − x0| dη.

Since (x − x0) ∧ T is also skew, then the arbitrariness of W allows us to apply [2, Theorem
8.3].

(c)⇒ (a). Keeping into account that T ·∇v = T ·D[v] since T is symmetric, by the formula
∫
∂∗M

TnM · v dHn−1 =
∫
M

v · div T+
∫
M

T · ∇v dLn,

(a) easily follows. �
4. The Case B Manifold

Let us suppose now that B is an n-dimensional orientable differential manifold (second count-
able, Hausdorff, paracompact). We will denote by {Ui, ϕi} an atlas for the manifold. It is
known that every such manifold can be endowed with a Riemannian structure. The beginning
of this section is devoted to introduce some topics which are related with the Riemannian
structure but are independent of it. We recall a simple lemma of prime importance.

LEMMA 2. If g1, g2 are two Riemannian metrics on B, then there exist two strictly positive
continuous functions C1, C2 on B such that

∀x ∈ B, ∀v ∈ TxB : C1(x)〈g2(x)v, v〉� 〈g1(x)v, v〉�C2(x)〈g2(x)v, v〉. (4)
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DEFINITION 17. If M ⊆ B and x ∈ B, we say that x is a point of density for M in B if,
given a chart (U, ϕ) around x, one has that ϕ(x) ∈ (ϕ(U ∩M))∗ in R

n.

The following lemma, which holds in R
N , proves that this definition is independent of the

chosen chart.

LEMMA 3. If A, B are two open subsets of R
n, ϕ : A→ B is a diffeomorphism and K ⊆ A

is compact, then there exist c1, c2 > 0 such that for every M ⊆ K:

(a) c1 diamM � diam ϕ(M)� c2 diamM;
(b) c1H

k(M)� H k(ϕ(M))� c2H
k(M) for every k = 0, . . . , n;

(c) if x ∈ M∗, then ϕ(x) ∈ (ϕ(M))∗.

Proof. Since ϕ is bilipschitz, (a) is obvious, while (b) can be found, for instance, in
[5, Section 2.4.1]. In particular, for k = n one has

c1L
n(M)� Ln(ϕ(M))� c2L

n(M).

In order to prove (c), we recall that in the definition of x ∈ M∗ (see Section 2), one can replace
the balls Br(x) with sets Ir such that x ∈ cl Ir , diam Ir → 0 as r → 0 and there is a constant
L > 0 with

lim sup
r→0

(diam Ir)
n

Ln(Ir)
�L.

Let us choose Ir = ϕ(Br(x)); then they have the required properties and if x ∈ M∗ one has

lim
r→0

Ln(Ir\ϕ(M))

Ln(Ir)
= lim

r→0

Ln(ϕ(Br(x)\M))

Ln(Ir)

� lim
r→0

c2

c1ωn

Ln(Br(x)\M)

rn
= 0,

where ωn denotes the volume of the unit ball. Hence ϕ(x) ∈ (ϕ(M))∗. �
DEFINITION 18. Let M ⊆ B. We denote by M∗ the set of all points of density for M in B.
If M = M∗, we shall say that M is normalized.

Note that the whole manifold B is normalized, because it is open in itself.

DEFINITION 19. We define the measure-theoretic boundary of M as

∂∗M = B\(M∗ ∪ (B\M)∗).

Fix now a Riemannian structure g on B; then we can introduce on B the (n− 1)-Hausdorff
measure Hn−1

g .

LEMMA 4. Let g1, g2 be two Riemannian structures on B and 0 � s � n. Then

(a) for every M ⊆ B with compact closure, there exist c1,M , c2,M such that
c1,MH s

g2
(M)� H s

g1
(M)� c2,MH s

g2
(M);

(b) for every M ⊆ B we have H s
g1
(M) = 0 if and only if H s

g2
(M) = 0.
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Proof. (a) It follows immediately by Lemma 2.
(b) Let H s

g2
(M) = 0 and let {Vj : j ∈ J } be an open cover of M such that each Vj has

compact closure in some coordinate neighborhood. Since B is second countable, by Lindelöf’s
Theorem we can extract a countable subcover {Vjk : k ∈ N}. We have H s

g2
(M∩Vjk) = 0, hence

H s
g1
(M ∩ Vjk) = 0 by (a). It follows H s

g1
(M) = 0. �

Hence, the fact that
∫
M
h dH s or H s(M) vanish is independent of the Riemannian struc-

ture. In the same way, when M has compact closure in B the fact that
∫
M
h dH s or H s(M) is

finite is independent of the Riemannian structure.

DEFINITION 20. Let M ⊆ B be a set with compact closure. We say that M has finite
perimeter, if Hn−1(∂∗M) < +∞.

Note that this makes sense, ∂∗M having compact closure in B. Since the definitions of
L1

loc,+(B, Hn), M◦,M◦
hν and ‘almost all’ are given in terms of sets with compact closure, they

extend naturally to the case of the manifold B.
Now we are ready to give the main definition of this section. We denote by Xc(B) the set

of all smooth vector fields on B with compact support.

DEFINITION 21. Let D ⊆ M◦ be a set containing almost all of M◦ and take a function
P : D×Xc(B)→ R. We say that P is a Cauchy power on B, if the following properties hold:

(a) P(·, v) is additive for every v ∈ Xc(B);
(b) P(M, ·) is linear for every M ∈ D;
(c) there exists h ∈ L1

loc,+(B; Hn) such that

|P(M, v)|�
∫
∂∗M

|v|h dHn−1

for every v ∈ Xc(B) and every M ∈ D.

It is clear that the existence of such an h as in (c) is independent of the Riemannian
structure.

DEFINITION 22. A Cauchy power P is said to be balanced if, given a Riemannian structure
on B, there exist h ∈ L1

loc,+(B; Hn) and η ∈ M(B) such that, for almost every M ∈ M◦,

|P(M, v)|� ‖v‖∞η(M)+ Lip(v)
∫
M

h dHn

for every v ∈ Xc(B), where Lip(v) denotes the Lipschitz constant of v in the Riemannian
structure induced on TB.

Again, the balance of P does not depend on the Riemannian structure.
Now we recall some notations. Let a be an m-vector and Q a p-form with p > m; we define

a (p −m)-form a�Q by

〈a�Q, ξ 〉 = 〈Q, ξ ∧ a〉
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for every (p − m)-vector ξ . In the same way, if Q is a p-differential form and v an m-vector
field, we define a (p −m)-differential form v�Q by

(v�Q)(x) = v(x)�Q(x)

for every x ∈ B (see [6, p. 351]).

DEFINITION 23. Let 0 � k� n. A (0, k)-tensor field Q is said to be of class L1
loc, if its

representation in a chart is of class L1
loc.

Remark.
1. For 1 � k� n, if Q is a (0, k)-tensor field of class L1

loc and v ∈ Xc, then Qv is a (0,
k − 1)-tensor field of class L1

loc.
2. If ω is an (n − 1)-differential form of class L1

loc, then
∫
∂∗M ω is well defined for almost

every m ∈ M◦.
3. If f ∈ C∞

0 (B) and ω is an (n − 1)-differential form of class L1
loc, then (df ) ∧ ω is an

n-differential form of class L1
loc.

DEFINITION 24. Let ω be an (n − 1)-differential form of class L1
loc. We say that dω is a

measure, if for every compact set K ⊆ B there exists cK � 0 such that∣∣∣∣
∫
B

(df ) ∧ ω

∣∣∣∣� cK‖f ‖∞

for every f ∈ C∞
0 (B) with supt f ⊆ K.

The following theorem states the representation formula for a balanced Cauchy power on
a manifold.

THEOREM 9. Let P be a balanced Cauchy power on B. Then there exists a (0, n)-tensor
field Q on B of class L1

loc such that:

(a) Qv is an (n− 1)-differential form for every v ∈ Xc(B), that is, for a.e. x ∈ B the map
{(w1, . . . , wn−1) $→ Q(v(x),w1, . . . , wn−1)}

is (n− 1)-alternating;
(b) d(Qv) is a measure for every v ∈ Xc(B);
(c) for almost every M ∈ M◦, the formula

P(M, v) =
∫
∂∗M

Qv (5)

holds for every v ∈ Xc(B).

Proof. Let x ∈ B and (U, ϕ) be a chart with ϕ(U) = Br(ϕ(x)) for a suitable r > 0. Then
U is a normalized set with finite perimeter. We define a function R : D × C∞

c (ϕ(U);Rn)→
R
n, where D contains almost all of M◦(ϕ(U)), setting

R(A, v) = P(ϕ−1(A), (dϕ)−1v).

Such a function is well defined, since (dϕ)−1v ∈ Xc(B) (up to an extension by zero outside
U) and ϕ−1(A) ∈ M◦. We claim that R is a balanced Cauchy power on ϕ(U). Additivity on
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the first argument and linearity on the second are obvious, while (c) of Definition 10 follows
by the estimate

|R(A, v)|�
∫
∂∗(ϕ−1(A))

|(dϕ)−1v|h dHn−1 �
∫
∂∗A

h̃|v| dHn−1,

which holds on almost all of M◦(ϕ(U)) for every v ∈ C∞
c (ϕ(U);Rn). Moreover, considering

that P is balanced, one can prove that R is balanced. By applying Theorem 6 to R with n = N ,
we get an essentially unique function TU in L1

loc(ϕ(U);Lin(Rn;Rn)) with divergence measure
such that, on almost all of M◦(ϕ(U)),

R(A, v) =
∫
∂∗A

TUnA · v dHn−1

for every v ∈ C∞
c (ϕ(U);Rn). It is not hard to prove that if U ∩ V �= ∅, then TU = TV on

ϕ(U) ∩ ϕ(V ). Denoting with dLn the volume form of R
n, the function

{(v1, . . . , vn) $→ ((TUv1)�dLn)(v2, . . . , vn)}
is a (0, n)-tensor field on ϕ(U). Pulling it back on B, one obtains the tensor field Q which
satisfies (5). Moreover, since TU has divergence measure in R

n, d(Qv) is a measure for every
v ∈ Xc(B). �
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