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Abstract. We study a simplified version of a class of constitutive relations

used to describe large deformations of soft tissues, where the elastic energy
density involves an exponential term. The class was originally introduced by

Y.C. Fung as a model of many biological soft tissues in a series of papers during

the Seventies. We prove existence and uniqueness of the equilibrium solution
for a general measure-valued external load, under quite general boundary con-

ditions, and study the validity of the associated Euler–Lagrange equation in

the sense of distributions.

1. Introduction

Biological soft tissues are generally inelastic: these tissues, subjected to cyclic
loading and unloading, usually show hysteresis phenomena as well as viscoelastic
behavior. However, under a preconditioning process, it is possible to assume a
drastic simplification to reduce the viscoelastic nonlinear constitutive equation of
a biological tissue to a nonlinear hyperelastic one, obtaining the existence of a
potential. In fact, considering a preconditioned tissue subjected to cyclic loading
and unloading at constant strain rates, the stress–strain relationship becomes a
curve, so that we can treat this material as elastic with a pseudo-elastic potential
W .

In the seminal paper [6], Y.C. Fung proposed a one-dimensional exponential
relation between stress and strain, based on experimental uniaxial tensile data from
rabbit mesentery. Afterward, the same author proposed a similar model for biaxial
tensile data [7]. Moreover, it was verified that in cyclic loading and unloading
at constant strain rates the stress relationship is essentially independent of strain
rates, and that the mechanical properties are orthotropic.

Tong and Fung [10] obtained information for the formulation of the hyperelastic
potential for a loading process of the rabbit skin. In a state of plane stress, they
proposed the following form for the hyperelastic potential:

W =
1

2
f(α,E(u)) +

c

2
exp[F (a, γ,E(u))] (1)

where E(u) = (FTF − I)/2 = (∇u +∇uT +∇uT∇u)/2 is the Green strain tensor
(see [9]), u is the displacement, and

f(α,E(u)) = α1E
2
xx + α2E

2
yy + α3E

2
xy + 2α4ExxEyy (2)

F (a, γ,E(u)) = a1E
2
xx + a2E

2
yy + a3E

2
xy + 2a4ExxEyy

+ γ1E
3
x + γ2E

3
yy + γ4E

2
xxEyy + γ5ExxE

2
yy,

(3)
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αi, aj , γj being constant parameters. The most important term in the equation
above is the exponential one: it models the behavior of the material for large
deformations, which are typical of a soft tissue. The first term accounts for the
response of the material at a lower stress level.

A simplified version of the model, where all the third-order terms are dropped
(γi = 0), writes

W (u) =
1

2
LE(u) · E(u) +

c

2
exp(ME(u) · E(u)), (4)

where L and M are two constant fourth-order tensors and c > 0. Moreover, as
pointed out in [5], the two tensors L and M have to be positive definite in order to
have the convexity of W w.r.t. E(u). In components the energy density writes

W (u) =
1

2
LijhkE(u)ijE(u)hk +

c

2
exp(MijhkE(u)ijE(u)hk). (5)

As it is well-known, the problem of finding a static equilibrium configuration
under some external loads and boundary conditions can be tackled mathematically
by finding a critical point (in fact, a minimizer) of the total energy (see e.g. [2,
Chapter 7]). In our case, the mathematical problem has two main nontrivial issues:

• As a feature, the regularity of the model allows for measure-valued external
forces. For instance, the case of an external concentrated force, namely a
Dirac delta load applied on a single point, can be studied, even if applied
on the boundary.
• As a drawback, the Euler–Lagrange equation for the problem may have

no sense, since the exponential term may lead to inconsistencies in the
functional class where we seek the solution. Hence, a detailed mathematical
study has to be performed and some variational inequalities have to be
introduced.

As far as the second issue is concerned, it is well known (see e.g. [4, Theorem
3.37]) that under some growth conditions the minimizer of the energy functional
associated with a density W indeed does exist and satisfies the associated Euler–
Lagrange equation. For instance, it is sufficient to assume that |W (u)| ≤ |u|p for
some p > 1. However, in the model we are studying, the presence of an exponential
term prevents the energy to fulfill such a growth condition and the validity of the
Euler–Lagrange equation is questionable. We will be able to prove the equivalence
between the (weak) Euler–Lagrange equation and the existence of the minimizer
for a special geometric setting in Theorem 4.2.

We will study the problem by means of the Direct Method in the Calculus of
Variations (see again [4] for a mathematical presentation and [2, Chapter 7] for
a typical application to the case of nonlinear elasticity). To this aim, we need a
crucial assumption, which is a sort of partial linearization of the model, namely

replace E(u) with e(u) := Sym(∇u), (6)

where Sym(∇u) denotes the symmetric component of ∇u. In such a way, the
measure of the strain is linear in the displacement and the problem becomes less
difficult. The elastic energy then writes

W (u) =
1

2
Le(u) · e(u) +

c

2
exp(Me(u) · e(u)). (7)
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The plan of the paper is the following: in Section 2 we state the mathematical
problem and prove the existence and uniqueness of the minimizer. In Section 3 we
give necessary conditions for the minimizer to be a solution of the corresponding
Euler–Lagrange equation. Finally, in Section 4 we study a particular case of a
domain lying between the graphs of two Lipschitz functions, finding necessary and
sufficient conditions for the minimizer to solve the Euler–Lagrange equation.

2. Existence and uniqueness of the solution

Given an n× n-matrix F, we denote with |F| its Frobenius norm, that is

|F| :=
( n∑
i,j=1

F 2
ij

)1/2

. (8)

2.1. Displacements and boundary conditions. Let Ω be a bounded connected
open subset of Rn, n ≥ 2, with Lipschitz boundary. Since the hyperelastic en-
ergy (7) contains an exponential term, it is natural to consider displacements u in
the Sobolev space W 1,p(Ω;Rn) with n < p <∞, endowed with the usual norm

‖u‖1,p =
(
‖u‖pp + ‖∇u‖pp

)1/p
. (9)

Since p > n, the so-called Sobolev imbedding Theorem [1, Theorem 5.4] implies
that the elements of W 1,p(Ω;Rn) admit a continuous representative on Ω, that is

W 1,p(Ω;Rn) ⊂ C0(Ω;Rn) (10)

(the representative is indeed Hölder-continuous). Moreover, the classic Korn in-
equality (see for instance [8, Sec. 5.6]) reads

‖u‖p1,p ≤ c1
(
‖u‖pp + ‖e(u)‖pp

)
(11)

where e(u) = (∇u+∇uT )/2.
We assume homogeneous Dirichlet boundary conditions only on a part of the

boundary: let Γ ⊂ ∂Ω be a closed subset of the boundary of Ω such that

{0} =
{
u ∈W 1,p(Ω;Rn) : u = 0 on Γ and e(u) = 0 on Ω

}
, (12)

namely, the identity is the only rigid displacement keeping all the points of Γ
fixed. For instance, Γ can consist of three non collinear points (remember that u
is continuous, so that it is defined on points). The domain of the energy functional
is the set

W 1,p
Γ :=

{
u ∈W 1,p(Ω;Rn) : u(x) = 0 for any x ∈ Γ

}
(13)

endowed with the norm ‖ · ‖1,p. Notice that W 1,p
Γ is a closed linear subspace of

W 1,p(Ω;Rn).
Now we prove a version of the Korn inequality which is adapted to our general

boundary conditions. Recall that a sequence uh weakly converges to u in Lp, uh ⇀
u, if ∫

[uh(x)− u(x)]v(x) dx→ 0 (14)

for every v ∈ Lp′ , where p′ = p/(p − 1) (see [3, Definition 1.15]). Analogously, in
the Sobolev space W 1,p the weak convergence uh ⇀ u means that uh ⇀ u and
∇uh ⇀ ∇u in Lp.
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Proposition 2.1 (Korn inequality). There exists c > 0 such that

∀u ∈W 1,p
Γ : ‖u‖1,p ≤ c‖e(u)‖p . (15)

Proof. By contradiction, let (uh) be a sequence in W 1,p
Γ with ‖uh‖1,p = 1 and

‖e(uh)‖p < 1
h . Since (uh) is bounded in W 1,p, then there exists u ∈ W 1,p

Γ such
that

uh ⇀ u weakly in W 1,p (16)

up to a subsequence; in particular, e(u) = 0 and uh → u in Lp up to another
subsequence. By (12) one gets u = 0, hence uh → 0 in Lp. Then the classic Korn
inequality (11) yields

1 = ‖uh‖p1,p ≤ c1
(
‖uh‖pp + ‖e(uh)‖pp

)
→ 0 (17)

as h→∞, a contradiction. �

2.2. External loads. We denote with Ω the closure of the set Ω. Let µ be a
vector measure on Ω, that is, a vector-valued function defined on the Borel subsets
of Ω which is countably additive on pairwise disjoint sequences of subsets. We
recall that the total variation of µ is a positive measure defined by

|µ|(A) = sup

{ ∞∑
h=0

‖µ(Ah)‖ :

∞⋃
h=0

Ah = A, Ah Borel and pairwise disjoint

}
(18)

where ‖ · ‖ denotes the norm in the vector space. The external load F is assumed
to be a vector measure with bounded total variation on Ω. Notice that the ex-
ternal load can be very general: for instance, one can consider both internal and
boundary Dirac delta concentrated loads, as well as loads concentrated on curves,
discontinuous loads, and so on. As an example, consider a point x0 ∈ Ω and define

F (A) :=

{
e1 if x0 ∈ A
0 if x0 6∈ A;

(19)

hence F represents a Dirac delta measure supported at the point x0 with value the
vector e1, that is, F = δx0e1.

Since the elements of W 1,p(Ω;Rn) admit a continuous representative on Ω, then
the integral ∫

Ω

u · dF (20)

is well-defined. In the example above where F = δx0e1, one has∫
Ω

u · dF = u(x0) · e1. (21)

2.3. The energy functional. Let us denote by Sym(Rn) the set of symmetric
tensors on Rn. We consider an elastic energy density W : Sym(Rn) → [0,+∞)
such that:

• W is C1;
• W is strictly convex;
• W satisfies the growth condition

lim inf
|E|→∞

W (E)

|E|q
> 0 for some q > n/2 . (22)
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Notice that the constitutive equation (7) is smooth and satisfies the growth condi-
tion for any q > 1. Assuming that L and M are positive definite, it is also strictly
convex.

Choosing p = 2q > n, we will study the energy functional

J : W 1,p
Γ → (−∞,+∞]

J(u) :=

∫
Ω

W (e(u)) dx−
∫
Ω

u · dF ,
(23)

which is clearly convex.
Now, by the usual Direct Method in the Calculus of Variations, we want to prove

that the functional J attains its minimum. The two key ingredients are the weakly
lower semicontinuity and the coerciveness of the functional J (see e.g. [3, Chapter
3]), as we detail in the next two lemmata.

We recall that Sobolev imbedding Theorem [1, Theorem 5.4] implies the so-called
Morrey’s inequality, that is

∀u ∈W 1,p(Ω;Rn) : ‖u‖∞ ≤ K‖u‖1,p (24)

where ‖u‖∞ := sup
Ω

|u| and K > 0 does not depend on u.

Lemma 2.2. The functional J is weakly lower semicontinuous, that is

J(u) ≤ lim inf
h→∞

J(uh) for every sequence uh ⇀ u in W 1,p
Γ . (25)

Proof. Since W is convex, it is enough to prove that J is strongly lower semicon-
tinuous. Take a sequence uh → u in W 1,p

Γ ; then ∇uh → ∇u in Lp and, up to a
subsequence, ∇uh(x) → ∇u(x) for a.e. x ∈ Ω. Moreover e(uh) → e(u) in L1(Ω)
since Ω is bounded and p > 2.

The convexity of W then yields

W (e(uh)) ≥W (0) +W ′(0) · e(uh) for every h ∈ N. (26)

Since the right-hand side converges in L1(Ω), we can apply Fatou’s Lemma to
W (e(uh)), obtaining∫

Ω

W (e(u)) dx ≤ lim inf
h→∞

∫
Ω

W (e(uh)) dx. (27)

Hence the first term of J is lower semicontinuous.
Moreover, the linear term of J is continuous by Morrey’s inequality (24):∣∣∣∣∫

Ω

u · dF
∣∣∣∣ ≤ ∫

Ω

|u| d|F | ≤ ‖u‖∞|F |(Ω) ≤ K‖u‖1,p|F |(Ω). (28)

Then the whole J is lower semicontinuous. �

Lemma 2.3. The sublevels {J ≤ c} of the functional J are bounded in W 1,p
Γ .

Proof. The growth condition (22) of the density W yields the existence of a > 0
and b ∈ R such that

∀E ∈ Sym(Rn) : W (E) ≥ a|E|p − b. (29)

Then for every u ∈W 1,p
Γ one has, by Morrey’s inequality,

J(u) =

∫
Ω

W (e(u)) dx−
∫
Ω

u · dF ≥ a‖e(u)‖pp − b|Ω| −K|F |(Ω)‖u‖1,p (30)
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where K does not depend on u. By Proposition 2.1 there exists c2 > 0 such that

∀u ∈W 1,p
Γ : J(u) ≥ c2‖u‖p1,p − b|Ω| −K|F |(Ω)‖u‖1,p . (31)

Now consider a sublevel {J ≤ c}, that is {u ∈ W 1,p
Γ : J(u) ≤ c}: by the previous

inequality one has

u ∈ {J ≤ c} ⇒ c2‖u‖p1,p − b|Ω| −K|F |(Ω)‖u‖1,p ≤ c. (32)

Since p > 1 and c2 > 0, the sublevel has to be bounded. �

Now the proof of the following theorem is straightforward.

Theorem 2.4. The functional J attains its minimum on W 1,p
Γ . Moreover, the

minimizer ū is unique and W (e(ū)) ∈ L1(Ω).

Proof. Let c > J(0). By the previous lemmas, {J ≤ c} is nonempty, convex, closed

and bounded in W 1,p
Γ , hence it is weakly compact in W 1,p

Γ . In particular, J has a

minimizer ū in {J ≤ c}, which is obviously a minimizer in W 1,p
Γ with J(ū) ≤ J(0),

hence W (e(ū)) ∈ L1.
Now let v be another minimizer. Then

inf J ≤ J
( ū+ v

2

)
≤ 1

2
J(ū) +

1

2
J(v) = inf J , (33)

hence the equality holds and∫
Ω

[
1

2
W (e(ū)) +

1

2
W (e(v))−W

(
e(ū) + e(v)

2

)]
dx = 0 . (34)

Since W is strictly convex, one has e(ū)(x) = e(v)(x) a.e. in Ω, hence ū = v by
assumption (12). �

3. The Euler–Lagrange equation

We now investigate some properties of the minimizer of J , focusing in particular
on the Euler–Lagrange equation. First of all, we characterize the unique minimizer
by means of a variational inequality.

Notice that, since the material is hyperelastic, W ′(e(u)) corresponds to the elas-
tic stress for the displacement u.

Theorem 3.1. Let ū ∈ W 1,p
Γ be such that W (e(ū)) ∈ L1(Ω). Then ū is the

minimizer of J if and only if

W ′(e(ū)) · (e(u)− e(ū)) ∈ L1(Ω) , (35)∫
Ω

W ′(e(ū)) · (e(u)− e(ū)) dx ≥
∫
Ω

(u− ū) · dF (36)

for every u ∈W 1,p
Γ such that W (e(u)) ∈ L1(Ω).

Proof. Let ū be the minimizer of J and let u ∈W 1,p
Γ be such thatW (e(u)) ∈ L1(Ω).

For any h ≥ 1 the convexity of W yields

h

[
W
(
e(ū) +

1

h
(e(u)− e(ū))

)
−W (e(ū))

]
≤W (e(u))−W (e(ū)) , (37)

and letting h→∞ one gets

W ′(e(ū)) · (e(u)− e(ū)) ≤W (e(u))−W (e(ū)) . (38)
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In particular [W ′(e(ū)) · (e(u)− e(ū))]+ ∈ L1(Ω), where the notation [f ]+ denotes
the positive part of a real-valued function f . Moreover, Fatou’s Lemma yields∫
Ω

W ′(e(ū))·(e(u)−e(ū)) dx ≥ lim sup
h

h

[
W
(
e(ū) +

1

h
(e(u)− e(ū))

)
−W (e(ū))

]
.

(39)
Since Lebesgue’s Theorem entails

lim
h

1

h

∫
Ω

(u− ū) · dF = 0 , (40)

by the convexity of J it follows that∫
Ω

W ′(e(ū)) · (e(u)− e(ū)) dx−
∫
Ω

(u− ū) · dF

≥ lim sup
h

h
[
J
(
ū+

1

h
(u− ū)

)
− J(ū)

]
≥ 0 , (41)

whence (35) and (36).

On the other hand, let ū ∈W 1,p
Γ be such that (35) and (36) hold. Let u ∈W 1,p

Γ ;
if W (e(u)) 6∈ L1(Ω), then J(u) = +∞, hence J(u) ≥ J(ū). If W (e(u)) ∈ L1(Ω),
then we can rewrite (38) as

W (e(u)) ≥W (e(ū)) +W ′(e(ū)) · (e(u)− e(ū)) . (42)

Integrating on Ω and taking into account (36) we get∫
Ω

W (e(u)) dx ≥
∫
Ω

W (e(ū)) dx+

∫
Ω

W ′(e(ū)) · (e(u)− e(ū)) dx

≥
∫
Ω

W (e(ū)) dx+

∫
Ω

(u− ū) · dF ,

(43)

which implies that J(u) ≥ J(ū), hence ū is the minimizer. �

Remark 3.2. If ū is the minimizer of J , then it is easy to see that

W ′(e(ū)) · e(ū) ∈ L1(Ω) and

∫
Ω

W ′(e(ū)) · e(ū) dx ≤
∫
Ω

ū · dF . (44)

Indeed, 0 ∈W 1,p
Γ and W (0) ∈ L1(Ω), hence one can apply the previous theorem.

Finally we prove that the minimizer ū satisfies the Euler–Lagrange equation in
a distributional sense. We would like to prove also the converse, that is, the Euler–
Lagrange equation is a characterization of the minimizer; at the moment, we are
able to prove it only for particular domains (see Section 4).

Let us denote by C∞Γ (Ω;Rn) the family of vector fields w ∈ C∞(Ω;Rn) such
that Γ ∩ suptw = ∅.

Theorem 3.3. Let ū ∈W 1,p
Γ be the minimizer of J and let w ∈ C∞Γ (Ω;Rn). Then

W ′(e(ū)) · e(w) ∈ L1(Ω) and∫
Ω

W ′(e(ū)) · e(w) dx =

∫
Ω

w · dF . (45)

In particular, −div(W ′(e(ū))) = F in the sense of distributions on Ω.
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Λ
Rn−1

α

β

R
Ω

Γ

Figure 1. A domain satisfying assumption (50).

Proof. Let w ∈ C∞Γ (Ω;Rn) and t > 0. Since tw ∈ C∞Γ (Ω;Rn), then te(w) ∈
L∞(Ω) and W (te(w)) ∈ L1(Ω). Hence we can apply Theorem 3.1:∫

Ω

W ′(e(ū)) · (te(w)− e(ū)) dx ≥
∫
Ω

(tw − ū) · dF . (46)

In particular, dividing by t one has∫
Ω

W ′(e(ū)) · e(w) dx− 1

t

∫
Ω

W ′(e(ū)) · e(ū) dx ≥
∫
Ω

w · dF − 1

t

∫
Ω

ū · dF (47)

an letting t→ +∞ (taking into account Remark 3.2)

∀w ∈ C∞Γ (Ω;Rn) :

∫
Ω

W ′(e(ū)) · e(w) dx ≥
∫
Ω

w · dF . (48)

Now, changing w with −w gives the opposite inequality, hence∫
Ω

W ′(e(ū)) · e(w) dx =

∫
Ω

w · dF . (49)
�

4. Necessary and sufficient conditions for a particular Lipschitz
domain

We would like to prove the converse of Theorem 3.3. We are able to do this
only in the case when Ω is a domain lying between the graphs of two functions, as
specified below, with Γ one of the two graphs.

Precisely, we assume (see Fig. 1) that there exist a bounded open set Λ ⊂ Rn−1
and two Lipschitz functions α, β : Λ → R such that α(y) < β(y) for every y ∈ Λ,
α(y) = β(y) for every y ∈ ∂Λ and

Ω = {(y, xn) ∈ Λ× R : α(y) < xn < β(y)},
Γ = {(y, xn) ∈ Λ× R : xn = β(y)}.

(50)
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Lemma 4.1. Let Y denote the set of vector fields w ∈ W 1,p
Γ with w = 0 in a

neighborhood of Γ and such that there exist a neighborhood Ω̃ of Ω and an extension

w̃ ∈W 1,p(Ω̃;Rn) of w with ∫
Ω̃

W (e(w̃)) dx < +∞ . (51)

Assume that Ω and Γ fulfil (50). Then

inf
W 1,p
Γ

J = inf
Y
J . (52)

Proof. Clearly we have to prove the inequality

inf
Y
J ≤ inf

W 1,p
Γ

J . (53)

Let w ∈W 1,p
Γ and consider the extension

w̃(x) =

{
w(x) for x ∈ Ω
0 for x ∈ H+ \Ω

(54)

where H+ = {(y, xn) ∈ Rn−1 × R : xn > 0} is the upper half-space. Then

w̃ ∈ W 1,p(Ω ∪H+;Rn). For h ≥ 1 consider the set Ω̃h = (Ω ∪H+)− 1
hen, which

is a neighborhood of Ω, and define the function w̃h : Ω̃h → Rn as

w̃h(x) = w̃

(
y, xn +

1

h

)
where x = (y, xn). (55)

Then w̃h ∈ Y and w̃h → w in W 1,p(Ω;Rn) as h→ +∞. Moreover, the positivity
of W yields∫

Ω

W (e(w̃h)) dx =

∫
Ω∩(Ω− 1

hen)
W (e(w̃h)) dx

=

∫
(Ω+ 1

hen)∩Ω
W (e(w)) dx ≤

∫
Ω

W (e(w)) dx .

(56)

Keeping into account the continuity of the linear term of J , one concludes the
proof. �

Finally, we can state and prove the main theorem, where we are able to charac-
terize the minimizer by means of a variational inequality and the Euler–Lagrange
equation in the sense of distributions.

Theorem 4.2. Let Ω satisfy (50). Then ū ∈ W 1,p
Γ is the minimizer of J if and

only if the following properties hold:

(i) W (e(ū)) ∈ L1(Ω);
(ii) W ′(e(ū)) ∈ L1(K;Rn) for every compact set K ⊆ Ω with K ∩ Γ = ∅;

(iii) W ′(e(ū)) · e(ū) ∈ L1(Ω) and∫
Ω

W ′(e(ū)) · e(ū) dx ≤
∫
Ω

ū · dF ; (57)

(iv) the Euler–Lagrange equation

−div(W ′(e(ū))) = F (58)
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holds in the sense of distributions on Ω, that is,

∀w ∈ C∞Γ (Ω;Rn) :

∫
Ω

W ′(e(ū)) · e(w) dx =

∫
Ω

w · dF . (59)

Proof. Let ū ∈ W 1,p
Γ be the minimizer of J . Then (i) follows from Theorem 2.4,

(iii) from Remark 3.2 and (iv) from Theorem 3.3. We prove (ii): by combining (35)
with Remark 3.2 one has

W ′(e(ū)) · e(u) ∈ L1(Ω) (60)

for every u ∈W 1,p
Γ such that W (e(u)) ∈ L1(Ω). Given a compact set K ⊆ Ω with

K ∩ Γ = ∅, there exists a Lipschitz map θ : Rn → [0, 1] such that θ = 1 on K and
θ vanishes on Γ . For every M ∈ Sym(Rn), we consider the function

u(x) := θ(x)Mx (61)

Since u ∈ W 1,p
Γ and W (e(u)) ∈ L1(Ω), by (60) it follows that W ′(e(ū)) · e(u) ∈

L1(K). It is easy to see that e(u) = M on K, hence

∀M ∈ Sym(Rn) : W ′(e(ū)) ·M ∈ L1(K) (62)

which gives (ii).

Conversely, suppose that (i)–(iv) hold for some ū ∈ W 1,p
Γ . By Lemma 4.1 it is

enough to prove that J(ū) ≤ J(w) for every w ∈ Y . Given a mollifier ρ, define

wh(x) := ρh ∗w =

∫
Ωh

ρh(x− y)w(y) dy (63)

where Ωh = {x ∈ Rn : dist(x,Ω) < 1/h} is the set of points with distance less than

1/h from Ω and ρh(x) := 1
hρ(hx) is such that supt(ρh ∗w) ⊂ Ω̃ for h sufficiently

large. Then wh ∈ C∞Γ (Ω;Rn) and

e(wh)(x) =

∫
Ωh

ρh(x− y)e(w)(y) dy. (64)

By the convexity of W and Jensen’s inequality one gets

W
(
e(wh)(x)

)
≤
∫
Ωh

ρh(x− y)W
(
e(w)(y)

)
dy (65)

and, integrating on Ω and applying Fubini’s Theorem,∫
Ω

W
(
e(wh)(x)

)
dx ≤

∫
Ωh

W
(
e(w)(y)

) ∫
Ω

ρh(x− y) dx dy

≤
∫
Ωh

W
(
e(w)(y)

)
dy,

(66)

where we used the fact that W ≥ 0. By Fatou’s Lemma we get

lim sup
h

∫
Ω

W
(
e(wh)(x)

)
dx ≤

∫
Ω

W
(
e(w)(x)

)
dx, (67)

hence

inf
Y
J = inf

C∞
Γ (Ω;Rn)

J. (68)

Applying Lemma 4.1 it follows that

inf
W 1,p
Γ

J = inf
C∞
Γ (Ω;Rn)

J. (69)



MEASURE-VALUED LOADS FOR SOFT TISSUES 11

Since by combining (iii) and (iv) we get the variational inequality∫
Ω

W ′(e(ū)) · (e(w)− e(ū)) dx ≥
∫
Ω

(w − ū) · dF (70)

for every w ∈ C∞Γ (Ω;Rn), by using the same argument as in the proof of Theo-

rem 3.1 one can prove that ū is the minimizer of J on W 1,p
Γ . �

5. Conclusion

Due to the peculiar behavior of the stress-strain relation at large deformations,
many soft tissues are modeled by using an exponential term in the constitutive
equation, as pointed out by Fung [7]. In this paper we studied the mathematical
problem of finding equilibrium solutions in the case of hyperelastic materials whose
energy density satisfies the growth condition (22), so that the energy has to rapidly
increase for large deformations.

After a severe simplification of the model, that is, replacing the Green strain
tensor E with e(u), the symmetric part of the gradient of displacement, we studied
the connection between the minimizer of the elastic energy and the solution of the
associated Euler–Lagrange equation. We were able to prove, under very general
boundary conditions and external data, that the minimizer has to satisfy the dis-
tributional version of the Euler–Lagrange equation. With an additional assumption
on the shape of the elastic body and the boundary conditions (Section 4), we proved
that the solution of the Euler–Lagrange equation, together with some boundedness
assumptions, is the unique minimizer of the energy.

Hence, the two typical approaches to the elastic equilibrium problem, that is,
solving the steady elastic differential equation or finding a minimum for the elastic
energy, are equivalent, at least under suitable assumptions.

Our results could be improved in many ways. From the mathematical viewpoint,
we would like to avoid the assumption (50), which is merely technical, in the proof
of Theorem 4.2. From a modeler’s viewpoint, a major achievement would be to
prove our results for an elastic energy involving the Green strain tensor E and not
the symmetrized gradient e(u), that is, to bypass (6). Finally, the incompressibility
constraint, which is quite customary in Biomechanics, could be taken into account,
as well as some viscoelastic and other inelastic effects.
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