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Abstract. The Cauchy Stress Theorem is proved for bodies which has finite

perimeter, without extra topological assumptions, and the notions of Cauchy

flux and Cauchy interaction are extended to this case. Also bodies with an

empty interior can be considered.

1. Introduction

The concept of subbody of a continuous body is, in the classical idealization, not
very different from the concept of the global body itself. For instance, it is very
common to regard every subbody as a whole body, the only difference being the
interpretation of the forces on its surface. The development of rational continuum
mechanics in this direction has tried to generalize the concept of subbody: a very
wide class of sets which can be used with this sense has been introduced and studied
by several authors in the last two decades [BF, Z, GWZ]. A remarkable result of
this approach was the proof of the Cauchy Stress Theorem under weak conditions,
provided that the density tensor field is bounded.

In the same period, the case of unbounded densities was considered in [Š1] and
generalized in [Š2, DMM], by means of a distributional approach (see also [MM2]
for an application to the thermodynamical context). In the latter papers the body
is treated under assumptions which are different from those required for subbodies:
in [Š2] the topological boundary of the body B is volume-negligible, while in [DMM]
only subbodies M which satisfy the condition clM ⊆ intB are considered. This
situation arises because the distributional interpretation of a balance law requires
that one deals with an open body.

When no topological assumptions on the whole body are made, one may wonder
if it is still possible to obtain the Cauchy Stress Theorem, i.e. the existence of the
stress density and its linear dependence on the normal.

In this note we answer this question in the positive. Of course, we do stipulate
some measure-theoretical conditions, in particular, that the body has finite perime-
ter: B cannot be, for instance, a fractal set in the broad sense. Our result applies
also when the body has an empty interior (see Section 4 for an example), a case
encountered in the theories of micro-structures and of mixtures. Notice that in
these situations the classical tetrahedron argument cannot even be set up.

Finally, we introduce in this framework the concept of Cauchy interaction and
prove, in the spirit of [MM1], a representation theorem also for Cauchy interactions
on such bodies.
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2. Notation

For n > 1, L n will denote n-dimensional outer Lebesgue measure, and H k

k-dimensional outer Hausdorff measure on Rn. Given a Borel subset E ⊆ Rn, we
denote by B (E) the collection of all Borel subsets of E. Moreover, E4F will
denote the set (E \ F ) ∪ (F \ E).

Consider a set M ⊆ Rn. The topological boundary, closure and interior of M
will be denoted by bdM , clM and intM , respectively. Denoting by Br(x) the open
ball with radius r centered at x, we introduce the measure-theoretic interior of M

M∗ =

{
x ∈ Rn : lim

r→0+

L n(Br(x) \M)

L n(Br(x))
= 0

}
,

the measure-theoretic boundary of M

∂∗M = Rn \
(
M∗ ∪ (Rn \M)∗

)

and the measure-theoretic closure of M

M∗ =M ∪ ∂∗M.

The following proposition is a standard matter of measure theory.

Proposition 2.1. Let M ⊆ Rn. Then the following properties hold:

(a) M∗,M
∗, ∂∗M ∈ B (Rn);

(b) intM ⊆M∗ ⊆M∗ ⊆ clM ;

(c) M is L n-measurable if and only if L n(M4M∗) = 0.

Definition 2.2. We say that M ⊆ Rn is normalized, if M∗ =M .

Let V be the linear space associated to Rn; we now introduce the concept of outer
normal to the measure-theoretic boundary of a set. Let M ⊆ Rn and x ∈ ∂∗M .
We denote by nM (x) ∈ V a unit vector such that, as r → 0+,

L
n
(
{ξ ∈ Br(x) ∩M : (ξ − x) · nM (x) > 0}

)/
rn −→ 0,

L
n
(
{ξ ∈ Br(x) \M : (ξ − x) · nM (x) < 0}

)/
rn −→ 0.

No more than one such vector can exist. f the limits do not both obtain, we set
nM (x) = 0. The bounded map nM : ∂∗M → V is called the unit outer normal to
M . It turns out that nM is a Borel map, that is, (nM )−1(A) ∈ B (∂∗M) for any
open subset A ⊆ V .

Definition 2.3. Let M ⊆ Rn. We say that M is a set with finite perimeter, if
H n−1(∂∗M) < +∞.

Now we turn to more specific definitions.

Definition 2.4. We call body a set B ⊆ Rn which is bounded, normalized, with
finite perimeter. We denote by M(B) the family of normalized subsets of B with
finite perimeter. Moreover, we set

N (B) = {C ⊆ Rn : C ∈M(B) or (Rn \ C)∗ ∈M(B)} ,

D(B) = {(A,C) ∈M(B)×N (B) : A ∩ C = ∅} .
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Our choice of sets with finite perimeter is motivated by the fact that the unit
outer normal exists H n−1-a.e. on the measure-theoretic boundary and the Diver-
gence Theorem holds in a weak sense (see [F, Theorem 4.5.6]).

In order to define a flux as a set function, we need the concept ofmaterial surface.

Definition 2.5. A material surface in the body B is a pair S = (Ŝ,nS), where

Ŝ is a Borel subset of B and nS : Ŝ → V is a Borel map such that there exists

M ∈ M(B) with Ŝ ⊆ ∂∗M and nS = nM |Ŝ . In this case, we say that S is
subordinate to M . We denote by S(B) the collection of material surfaces in the
body B.

We call nS the normal to the surface S. Two material surfaces S and T are said
to be compatible, if they both are subordinate to the same M .

Let now Ω be a Borel subset of Rn. We denote by M (Ω) the collection of Borel
measures µ : B (Ω) → [0,+∞] with µ(Ω) < +∞ and by L1

+ (B) the set of Borel
functions h : Ω → [0,+∞] with

∫
Ω
h dL n < +∞. The following definition extends

the notion of “almost all” already introduced in [Š2] and [DMM].

Definition 2.6. Given h ∈ L1
+ (B) and ν ∈ M (B), we set

M(B)hν =

{
A ∈M(B) :

∫

B∩∂∗A

h dH n−1 < +∞, ν(B ∩ ∂∗A) = 0

}
,

N (B)hν = {C ∈ N (B) : C ∈M(B)hν or (Rn \ C)∗ ∈M(B)hν} ,

D(B)hν = D(B) ∩ (M(B)hν ×N (B)hν) ,

S(B)hν = {S ∈ S(B) : S is subordinate to some A ∈M(B)hν} .

We will say that a property π holds on almost all ofM(B), if there are h ∈ L1
+ (B)

and ν ∈ M (B) such that π holds on M(B)hν , and in a similar fashion for N (B),
D(B) and S(B).

Definition 2.7. Let X be a vector space and P ⊆M(B). We say that a function
F : P → X is additive, if for every M,N ∈ P with (M ∪N)∗ ∈ P and M ∩N = ∅
one has

F ((M ∪N)∗) = F (M) + F (N).

Let now P ⊆ D(B). A function F : P → X is biadditive, if the functions F ( · , C)
and F (A, · ) are additive.

Finally we come to the main definitions. For simplicity, we consider scalar-valued
fluxes and interactions; the extension to the vectorial case is trivial.

Definition 2.8. Let P be a set containing almost all of S(B) and consider a
function Q : P → R such that:

(a) if S, T are compatible and disjoint and S ∪ T ∈ P, then

Q(S ∪ T ) = Q(S) +Q(T );

(b) there exists h ∈ L1
+ (B) with

|Q(S)| 6

∫

S

h dH n−1

for almost every S ∈ S(B);
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(c) there exists ν ∈ M (B) with

|Q(B ∩ ∂∗A)| 6 ν(A)

for almost every A ∈M(B).

Then Q is said to be a balanced Cauchy flux on B.

Definition 2.9. Consider a set P ⊆ D(B) containing almost all of D(B) and a
function I : P → R such that:

(a) I is biadditive;
(b) there exist h ∈ L1

+ (B), η ∈M (B ×B) and ηe ∈M (B) with

|I(A,C)| 6





∫

B∩∂∗A∩∂∗C

h dH n−1 + η(A× C) if C ⊆ B,

∫

B∩∂∗A∩∂∗C

h dH n−1 + η(A× (C ∩B)) + ηe(A) otherwise,

on almost all of D(B);
(c) there exists ν ∈ M (B) with

∂∗A ⊆ ∂∗C ⇒ |I(A,C)| 6 ν(A)

on almost all of D(B).

Then I is said to be a balanced Cauchy interaction on B.

In [DMM] and [MM1], a subbody was defined to be a set M ∈M(B) such that
clM ⊆ intB. Clearly, in this way the topological boundary of a subbody cannot
meet ∂∗B. In the present work, we set

M◦(B) = {M ∈M(B) : clM ⊆ intB} ;

analogous definitions yield N ◦(B), D◦(B) and S◦(B). In the above papers, the
concept of almost all was restricted to the above classes by introducing M◦(B)hν ,
D◦(B)hν , S

◦(B)hν ; corresponding notions of Cauchy flux and Cauchy interaction
were given. We refer here to those notions as inner Cauchy flux and inner Cauchy

interaction, respectively. Two important results about inner Cauchy fluxes and
interactions are the integral representation theorems [DMM, Theorem 7.1] and
[MM1, Theorem 7.4].

Another useful notion is the class of almost all n-intervals in the interior of B, a
notion made precise by the following definition.

Definition 2.10. A grid G is an ordered triple

G =
(
x0, (e1, . . . , en), Ĝ

)
,

where x0 ∈ Rn, (e1, . . . , en) is a positively oriented orthonormal basis in Rn and

Ĝ is a Borel subset of R. If G1, G2 are two grids, we write G1 ⊆ G2 if Ĝ1 ⊆ Ĝ2

and they share the point x0 and the list (e1, . . . , en). A grid G is said to be full, if

L 1(R \ Ĝ) = 0.
Let G be a grid; a set I ⊆ Rn is said to be a G-interval, if

I =
{
x ∈ Rn : a(j) < (x− x0) · ej < b(j) ∀j = 1, . . . , n

}

for some a(1), b(1), . . . , a(n), b(n) ∈ Ĝ. We set

J ◦(B)G = {I : I is a G-interval with cl I ⊆ intB} .
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We also denote by S◦(B)G the family of all the oriented surfaces S = (Ŝ,nS) such

that cl Ŝ ⊆ intB and, for some 1 6 j 6 n,

Ŝ =
{
x ∈ Rn : (x− x0) · ej = s, a(i) < (x− x0) · ei < b(i) ∀i 6= j

}
, nS = ej ,

where s, a(1), b(1), . . . , a(j−1), b(j−1), a(j+1), b(j+1), . . . , a(n), b(n) ∈ Ĝ. This means
that the elements of S◦(B)G are open sides of G-intervals, equipped with the in-
duced normal.

The next proposition, together with [DMM, Theorem 7.1], says that there exists
an integral representation of an inner Cauchy flux on S◦(B)G for some full grid G.

Proposition 2.11. Let (e1, . . . , en) be a positively oriented orthonormal basis in

Rn and x0 ∈ Rn. Then for every h ∈ L1
+ (intB) and ν ∈ M (intB) there exists a

full grid G =
(
x0, (e1, . . . , en), Ĝ

)
such that S◦(B)G ⊆ S

◦(B)hν .

Proof. See [DMM, Proposition 4.5]. ¤

3. The stress theorem

Let us first prove a useful “localization” property of the density of an inner
Cauchy flux: if it happens that the flux concentrates around a subbody M , i.e.
only the parts which meet M can have a non-zero contribution, then the density
vanishes almost everywhere outside M .

Lemma 3.1. Let Q◦ be an inner Cauchy flux on B such that there is an M ∈
M◦(B) with

(3.1) Q◦(S) = Q◦(S ∩M)

on almost all of S◦(B). Let q ∈ L1(B;V ) be the density associated with Q◦, in

accordance with [DMM, Theorem 7.1]. Then q(x) = 0 for a.e. x ∈ B \M .

Proof. Let G =
(
x0, (e1 . . . , en), Ĝ

)
be a full grid such that the integral representa-

tion of Q◦ holds on S◦(B)G. For any

I =
{
x ∈ Rn : a(i) < (x− x0) · ei < b(i) ∀i = 1, . . . , n

}
∈ J ◦

G

and any j = 1, . . . , n, by (3.1) and Fubini’s Theorem one has
∫

I\M

q(j) dL n =

∫ b(j)

a(j)

[∫

σj,s(I)\M

q(x) · ej dH
n−1(x)

]
dL 1(s)

=

∫ b(j)

a(j)

Q◦(σj,s(I) \M) dH n−1(x) = 0,

where
σj,s(I) = {x ∈ I : (x− x0) · ej = s} .

Take now x 6∈ M such that x is a Lebesgue point for the functions q and χMq,
where χM denotes the characteristic function of M . Consider a sequence of cubes
(Jk) ⊆ J

◦
G with x ∈ Jk and diam Jk → 0 as k → +∞. It follows that

q(x) = lim
k→+∞

∫
Jk

q dL n

L n(Jk)
= lim

k→+∞

∫
Jk∩M

q dL n

L n(Jk)
= χM (x)q(x) = 0

and the proof is complete. ¤
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Now we state our main results.

Theorem 3.2. Let Q be a balanced Cauchy flux on B. Then there exists an es-

sentially unique function q ∈ L1(Rn;V ) with divergence measure such that q = 0

a.e. in Rn \B, the total variation of div q is bounded on Rn, and

Q(S) =

∫

S

q · nS dH
n−1

on almost all of S(B).

Proof. Let h and ν be such that the domain of Q contains S(B)hν and Definition 2.8
holds on S(B)hν . Given R > 0 such that clB ⊆ BR(0), we set BR = BR(0)
and consider the families M◦(BR), N

◦(BR), D◦(BR) and S
◦(BR). Then consider

the function ĥ ∈ L1
+ (BR) which extends h to zero outside B and the measure

ν̂ ∈ M (BR) defined by ν̂(E) = ν(E ∩ B). It can be verified that the function
Q◦ : S◦(BR)ĥν̂ → R defined by

Q◦(S) = Q(S ∩B)

is an inner Cauchy flux on BR. Then one can apply [DMM, Theorem 7.1], finding
a vector field q̂ ∈ L1(BR;V ) with divergence measure such that

Q◦(S) =

∫

S

q̂ · nS dH
n−1

on almost all of S◦(BR). In particular, one has

Q(S) =

∫

S

q̂ · nS dH
n−1

for almost every S ∈ S(B). Moreover, taking into account Lemma 3.1, one has
that q̂ = 0 for a.e. x ∈ BR \B. If q is the extension of q̂ to Rn with value 0 outside
BR, then q ∈ L1(Rn;V ), q has divergence measure, the total variation of div q is
bounded on Rn and q = 0 a.e. in Rn \ B. Finally, such a q is unique L n-a.e. by
[DMM, Corollary 5.7]. ¤

Theorem 3.3. Let I be a balanced Cauchy interaction. Then there exist µ ∈
M (B ×B), µe ∈ M (B), two Borel functions b : B × B → R, be : B → R and a

field q ∈ L1(Rn;V ) with divergence measure, such that q = 0 a.e. in Rn \ B, the
total variation of div q is bounded on Rn and the formula

I(A,C) =





∫

A×C

b dµ+

∫

∂∗A∩∂∗C

q · nA dH n−1 if C ⊆ B,

∫

A×(C∩B)

b dµ+

∫

A

be dµe +

∫

∂∗A∩∂∗C

q · nA dH n−1 otherwise,

holds almost everywhere in D(B).

Proof. Following the ideas in the proof of the previous theorem, we define a function
I◦ : D◦(BR)ĥν̂ → R as

I◦(A,C) =

{
I(A ∩B,C ∩B) if C ⊆ BR,

I(A ∩B,C ∩B) + I(A ∩B, (Rn \B)∗) otherwise.

It can be verified that I◦ is an inner Cauchy interaction on BR. Then it is enough
to apply [MM1, Theorem 7.4], which gives the integral representation for I◦. ¤
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Figure 1. The construction of B.

4. An example

In this section we construct a set B ⊆ Rn which is bounded, normalized, with
finite perimeter, and such that intB = ∅ and L n(B) > α > 0.

Take x ∈ Rn and r > 0 and consider the set C = {y ∈ Rn : |x − y| 6 r}. Let
{xk : k ∈ N} ⊆ C an enumeration of all points in C with rational components. Put
ωn = L n(B1(0)) and consider, for 0 < α < ωnr

n, the decreasing sequence

rk = n

√
ωnrn − α

2ωn
2−k/n

Now set

D = C \
⋃

k∈N

Brk
(xk) , B = D∗.

Then:

(a) B is obviously bounded and normalized.
(b) intB = ∅: the set D does not contain any rational point, hence intD = ∅;

moreover, D is a closed subset of Rn, thus B ⊆ D by virtue of (b) of
Proposition 2.1.

(c) L n(B) > α, since, by (c) of Proposition 2.1, L n(B) = L n(D) and

L
n(D) > L

n(C)−L
n

(
⋃

k∈N

Brk
(xk)

)
> ωnr

n − ωn
∑

k∈N

rnk = α.

(d) B has finite perimeter; indeed ∂∗B = ∂∗D and

H
n−1(∂∗D) 6 H

n−1(bdC) +
∑

k∈N

H
n−1(bdBrk

(xk))

=

(
rn−1 +

(
ωnr

n − α

2ωn

)(n−1)/n∑

k∈N

2−k(n−1)/n

)
H

n−1(bdB1(0)).
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