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Asymptotics of Solutions
for fully Nonlinear Elliptic Problems

at Nearly Critical Growth

A. Musesti and M. Squassina

Abstract. In this paper we deal with the study of limits of solutions of a class of fully
nonlinear elliptic problems at nearly critical growth. By means of P.L. Lions’ concentration-
compactness principle, we prove an alternative result for the existence of non-trivial solutions
of the limit problem.
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1. Introduction

Let Ω be a bounded domain of Rn, 1 < p < n and p∗ = np
n−p . In 1989 Guedda and

Veron [10] proved that the p−Laplacian problem at critical growth

−∆pu = up
∗−1

u > 0

u = 0

in Ω

in Ω

on ∂Ω

 (∗)

has no non-trivial solution u ∈ W 1,p
0 (Ω) if the domain Ω is star-shaped. As known,

this non-existence result is due to the failure of compactness for the critical Sobolev
embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω), which causes a loss of global Palais-Smale condition

for the functional associated with problem (∗). On the other hand, if for instance
one considers annular domains

Ωr1,r2 =
{
x ∈ Rn : 0 < r1 < |x| < r2

}
,

then the radial embedding

W 1,p
0,rad(Ωr1,r2) ↪→ Lq(Ωr1,r2)
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is compact for each q < +∞ and one can find a non-trivial radial solution of problem
(∗) (see [11]). In particular, the existence of non-trivial solutions of problem (∗)
depends also on the topology of the domain. In the case p = 2, the problem

−∆u = u(n+2)/(n−2)

u > 0

u = 0

in Ω

in Ω

on ∂Ω

 (∗∗)

has been deeply studied and existence results have been obtained provided that Ω
satisfies suitable assumptions. In the striking paper [3], Bahri and Coron have proved
that if Ω has a non-trivial topology, i.e. if Ω has a non-trivial homology in some
positive dimension, then problem (∗∗) always admits a non-trivial solution.

On the other hand, Dancer [8] constructed for each n ≥ 3 a contractible do-
main Ωn, homeomorphic to a ball, for which problem (∗∗) has a non-trivial solution.
Therefore, we see how the existence of non-trivial solutions of problem (∗∗) is related
to the shape of the domain and not just to the topology. See also [15] and references
therein for more recent existence and multiplicity results.

We remark that, to the authors’ knowledge, this kind of achievements are not
known when p 6= 2. In our opinion, one of the main difficulties is the fact that,
differently from the case p = 2, it is not proven that all positive smooth solutions of
the equation −∆pu = up

∗−1 in Rn are Talenti’s radial functions, which attain the
best Sobolev constant (see Proposition 3.1).

Now, there is a second approach in the study of problem (∗), which in general does
not require any geometrical or topological assumption on Ω, namely to investigate
the asymptotic behaviour of solutions uε of problems with nearly critical growth

−∆pu = |u|p
∗−2−εu

u = 0

in Ω

on ∂Ω

}
(∗ ∗ ∗)

as ε→ 0. If Ω is a ball and p = 2, Atkinson and Peletier [2] showed in 1987 the blow-
up of a sequence of radial solutions. The extension to the case p 6= 2 was achieved by
Knaap and Peletier [12] in 1989. On a general bounded domain, instead, the study
of limits of solutions of problem (∗ ∗ ∗) was performed by Garcia Azorero and Peral
Alonso [9] around 1992.

Let now ε > 0 and consider the general class of Euler-Lagrange equations with
nearly critical growth

−div (∇ξL(x, u,∇u)) +DsL(x, u,∇u) = |u|p
∗−2−εu

u = 0

in Ω

on ∂Ω

}
(Pε)

associated with the functional fε : W 1,p
0 (Ω)→ R given by

fε(u) =
∫

Ω

L(x, u,∇u) dx− 1
p∗−ε

∫
Ω

|u|p
∗−εdx. (1)
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As noted in [18], in general these functionals are not even locally Lipschitz under
natural growth assumptions. Nevertheless, via techniques of non-smooth critical
point theory (see [18] and references therein) it can be shown that for each ε > 0
problem (Pε) admits a non-trivial solution uε ∈W 1,p

0 (Ω).
Let uε be a solution of problem (Pε). The main goal of this paper is to prove that

if the weak limit of (|∇uε|p)ε>0 has no blow-up points in Ω, then the limit problem

−div (∇ξL(x, u,∇u)) +DsL(x, u,∇u) = |u|p
∗−2u

u = 0

in Ω

on ∂Ω

}
(P0)

has a non-trivial solution (the weak limit of (uε)ε>0), provided that fε(uε)→ c with

p∗−p−γ
pp∗ (νS)

n
p < c < 2 p∗−p−γ

pp∗ (νS)
n
p (2)

where ν > 0 and γ ∈ (0, p∗ − p) will be introduced later on. In our framework, (2)
plays the role of a generalized second critical energy range (if γ = 0 and ν = 1, one
finds the usual range Sn/p

n < c < 2S
n/p

n for problem (∗ ∗ ∗)).
The plan of the paper is as follows:
In Section 2 we shall state our main results. Section 3 contains some preliminary

lemmas, namely the lower bounds of the non-vanishing Dirac masses and of the non-
trivial weak limits. In Section 4 we prove our main results. In Section 5 we see
that at the mountain pass levels the sequence (uε)ε>0 blows up. Finally, Section 6
contains a non-existence result.

2. The main results

Let Ω be any bounded domain of Rn. In the following, the space W 1,p
0 (Ω) will be

endowed with the standard norm ‖u‖p1,p =
∫

Ω
|∇u|pdx and ‖ ·‖p will denote the usual

norm of Lp(Ω).
Assume that L : Ω × R × Rn → R is measurable in x for all (s, ξ) ∈ R × Rn,

of class C1 in (s, ξ) a.e. in Ω, that L(x, s, ·) is strictly convex and L(x, s, 0) = 0.
Moreover, assume the following:

(A1) There exists b0 > 0 such that

L(x, s, ξ) ≤ b0|s|p + b0|ξ|p (3)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.
(A2) There exists b1 > 0 such that for each δ > 0 there exists aδ ∈ L1(Ω) with

|DsL(x, s, ξ)| ≤ aδ(x) + δ|s|p
∗

+ b1|ξ|p (4)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn. Moreover, there exist a1 ∈ Lp
′
(Ω)

and ν > 0 such that

|∇ξL(x, s, ξ)| ≤ a1(x) + b1|s|
p∗
p′ + b1|ξ|p−1, (5)
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∇ξL(x, s, ξ) · ξ ≥ ν|ξ|p (6)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.
(A3) For a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn,

DsL(x, s, ξ)s ≥ 0 (7)

and there exists γ ∈ (0, p∗ − p) such that

(γ + p)L(x, s, ξ)−∇ξL(x, s, ξ) · ξ −DsL(x, s, ξ)s ≥ 0 (8)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

Remark 2.1. The growth conditions of (A1) and (A2) and the assumptions in
(A3) are natural in the fully nonlinear setting and were considered in [18], and in a
stronger form in [1, 16] (see also Remark 6.2). Notice that when L is p−homogeneous
with respect to ξ, then condition (8) becomesDsL(x, s, ξ)s ≤ γL(x, s, ξ) for a.e. x ∈ Ω
and for all (s, ξ) ∈ R× Rn.

As an example, taking A ∈ C1(R) ∩ L∞(R) with A′ ∈ L∞(R), A(s) ≥ ν and
γA(s) ≥ A′(s)s ≥ 0 for each s ∈ R, the class of Lagrangians

L(x, s, ξ) =
1
p
A(s)|ξ|p

satisfies all the previous requirements. For instance (γ−1 + arctan(s2))|ξ|p/p belongs
to this class for each γ ∈ (0, p∗ − p).

Remark 2.2. We stress that although as noted in the introduction fε fails to
be differentiable, one may compute the derivatives along the L∞−directions, namely

f ′ε(u)(ϕ) =
∫

Ω

∇ξL(x, u,∇u) · ∇ϕdx+
∫

Ω

DsL(x, u,∇u)ϕdx−
∫

Ω

|u|p
∗−2−εuϕdx.

for all u ∈W 1,p
0 (Ω) and for all ϕ ∈W 1,p

0 ∩ L∞(Ω).

The following is a general property due to Brézis and Browder [5].

Proposition 2.3. Let u, v ∈W 1,p
0 (Ω) be such that DsL(x, u,∇u)v ≥ 0 and

〈w,ϕ〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇ϕdx+
∫

Ω

DsL(x, u,∇u)ϕdx (ϕ ∈ C∞c (Ω))

with w ∈ L1
loc(Ω) ∩W−1,p′(Ω). Then DsL(x, u,∇u)v ∈ L1(Ω) and

〈w, v〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

DsL(x, u,∇u)v dx.

From now on, by solution of problem (Pε) we shall always mean weak solution,
namely f ′ε(uε) = 0 in the sense of distributions. The next lemma is our starting
point.
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Lemma 2.4. For each ε > 0, (Pε) admits a non-trivial solution uε ∈W 1,p
0 (Ω).

Proof. See [18: Theorem 1.1]

We point out that, in our general framework, the technical aspects in the veri-
fication of the Palais-Smale condition for fε are, in our opinion, interesting and not
trivial.

Note that since L(x, s, 0) = 0, in view of (6) one obtains

L(x, s, ξ) ≥ ν
p |ξ|

p (9)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

Lemma 2.5. Let (uε)ε>0 ⊂W 1,p
0 (Ω) be a sequence of solutions of problem (Pε)

such that lim
ε→0

fε(uε) < +∞. Then (uε)ε>0 is bounded in W 1,p
0 (Ω).

Proof. For each ε > 0 we have f ′ε(uε)(ϕ) = 0 for each ϕ ∈ C∞c (Ω). On the
other hand, taking into account (7), by Proposition 2.3 one can also take ϕ = uε.
Therefore, in view of (8) and (9) one obtains

lim
ε→0

fε(uε) = lim
ε→0

(
fε(uε)− 1

p∗−εf
′
ε(uε)(uε)

)
= lim
ε→0

(∫
Ω

L(x, uε,∇uε) dx

− 1
p∗−ε

∫
Ω

∇ξL(x, uε,∇uε) · ∇uε dx

− 1
p∗−ε

∫
Ω

DsL(x, uε,∇uε)uεdx
)

≥ lim
ε→0

p∗−p−ε−γ
p∗−ε

∫
Ω

L(x, uε,∇uε) dx

≥ p∗−p−γ
pp∗ ν lim

ε→0

∫
Ω

|∇uε|pdx.

In particular, (uε)ε>0 is bounded in W 1,p
0 (Ω)

Let us now recall the classical P.L. Lions’ concentration-compactness principle

Lemma 2.6. Let (uε)ε>0 ⊂ W 1,p
0 (Ω) be bounded and let u be its weak limit.

Then there exist two bounded positive measures µ and σ such that

|∇uε|p ⇀ µ, |uε|p
∗
⇀ σ (in the sense of measures) (10)

µ ≥ |∇u|p +
∞∑
j=1

µjδxj (µj ≥ 0) (11)

σ = |u|p
∗

+
∞∑
j=1

σjδxj (σj ≥ 0) (12)

µj ≥ Sσ
p
p∗

j (13)

where δxj denotes the Dirac measure at xj ∈ Ω and S denotes the best Sobolev
constant for the embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω).

Proof. See e.g. [13, Lemma I.1] or [14]
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Under assumptions (A1)− (A3), the following is our main result.

Theorem 2.7. Assume that (uε)ε>0 ⊂ W 1,p
0 (Ω) is a sequence of solutions of

problem (Pε) such that fε(uε)→ c and

p∗−p−γ
pp∗ (νS)

n
p < c < 2 p∗−p−γ

pp∗ (νS)
n
p .

Then µj = 0 for j ≥ 2 and the following alternative holds:

(a) µ1 = 0 and u is a non-trivial solution of problem (P0).

(b) µ1 6= 0 and u = 0.

This result extends [9: Theorem 9] to a class of fully nonlinear elliptic problems.

Theorem 2.8. Let (uε)ε>0 be any sequence of solutions of problem (Pε) with

lim
ε→0

fε(uε) = p∗−p−γ
pp∗ (νS)

n
p .

Then u = 0.

As we shall see in Section 5, this is also the behaviour when one considers critical
levels of mountain-pass type.

3. The weak limit of (uε)ε>0

Let us briefly summarize the main properties of the best Sobolev constant [19].

Proposition 3.1. Let 1 < p < n and S be the best Sobolev constant, i.e.

S = inf
{∫

Ω

|∇u|pdx : u ∈W 1,p
0 (Ω) with

∫
Ω

|u|p
∗
dx = 1

}
. (14)

Then the following facts hold:

(a) S is independent on Ω ⊂ Rn.

(b) The infimum (14) is never achieved on bounded domains Ω ⊂ Rn.

(c) The infimum (14) is achieved if Ω = R
n by the family of functions on Rn

Tδ,x0(x) =
(
nδ
(
n−p
p−1

)p−1
)n−p

p2 (
δ + |x− x0|

p
p−1
)−n−pp (15)

with δ > 0 and x0 ∈ Rn. Moreover, Tδ,x0 is a solution of −∆pu = up
∗−1 on Rn.

The next result establishes uniform lower bounds for the Dirac masses.
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Lemma 3.2. If µj 6= 0, then σj ≥ ν
n
p S

n
p and µj ≥ ν

n
p∗ S

n
p .

Proof. Let xj ∈ Ω the point which supports the Dirac measure of coefficient σj .
Denoting with B(xj , δ) the open ball of center xj and radius δ > 0, we can consider
a function ψδ ∈ C∞c (Rn) such that 0 ≤ ψδ ≤ 1, |∇ψδ| ≤ 2

δ , ψδ(x) = 1 if x ∈ B(xj , δ)
and ψδ(x) = 0 if x 6∈ B(xj , 2δ). By Proposition 2.3 we have

0 = f ′ε(uε)(ψδuε)

=
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδ dx+
∫

Ω

ψδ∇ξL(x, uε,∇uε) · ∇uεdx

+
∫

Ω

ψδDsL(x, uε,∇uε)uεdx−
∫

Ω

|uε|p
∗−εψδdx.

(16)

Applying Hölder inequality and (5) to the first term of the decomposition and keeping
into account that (uε)ε>0 is bounded in W 1,p

0 (Ω), one finds constants c1, c2 > 0 such
that

lim
ε→0

∣∣∣∣∫
Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx
∣∣∣∣

≤

(∫
B(xj ,2δ)

|a1|
p
p−1 dx

) p−1
p
(∫

B(xj ,2δ)

|u|p
∗
dx

) 1
p∗ (∫

B(xj ,2δ)

|∇ψδ|ndx
) 1
n

+ b1

(∫
B(xj ,2δ)

|u|p
∗
dx

)n−1
n (∫

B(xj ,2δ)

|∇ψδ|n dx
) 1
n

(17)

+ b̃1

(∫
B(xj ,2δ)

|u|p
∗
dx

) 1
p∗ (∫

B(xj ,2δ)

|∇ψδ|ndx
) 1
n

≤ c1
(∫

B(xj ,2δ)

|u|p
∗
dx

) 1
p∗

+ c2

(∫
B(xj ,2δ)

|u|p
∗
dx

)n−1
n

= βδ

with βδ → 0 as δ → 0. Then, taking into account (6) and (7) one has

0 ≥ −βδ + lim
ε→0

ν

∫
Ω

|∇uε|pψδdx− lim
ε→0
Ln(Ω)

ε
p∗

(∫
Ω

|uε|p
∗
ψδdx

) p∗−ε
p∗

≥ −βδ + ν

∫
Ω

ψδdµ−
∫

Ω

ψδdσ.

Letting δ → 0, it results νµj ≤ σj . By means of (13) the proof is complete

In the next result we obtain uniform lower bounds for the non-zero weak limits.

Lemma 3.3. If u 6= 0, then
∫

Ω
|∇u|pdx > ν

n
p∗ S

n
p and

∫
Ω
|u|p∗dx > ν

n
p S

n
p .

Proof. By Lemma 3.2 we may assume that µ has at most r Dirac masses
µ1, . . . , µr at x1, . . . , xr, respectively. Let now 0 < δ < 1

4 min{|xi − xj | : i 6= j}
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and ψδ ∈ C∞c (Rn) be such that 0 ≤ ψδ ≤ 1, |∇ψδ| ≤ 2
δ , ψδ(x) = 1 if x ∈ B(xj , δ)

and ψδ(x) = 0 if x 6∈ B(xj , 2δ). Taking into account (7), for each ε, δ > 0 we have∫
Ω

DsL(x, uε,∇uε)uε(1− ψδ) dx ≥ 0.

Then, since one can choose (1− ψδ)uε as test, by (6) one obtains

0 = f ′ε(uε)((1− ψδ)uε)

=
∫

Ω

∇ξL(x, uε,∇uε) · ∇uε(1− ψδ) dx

−
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

+
∫

Ω

DsL(x, uε,∇uε)uε(1− ψδ) dx

−
∫

Ω

|uε|p
∗−ε(1− ψδ) dx (18)

≥ ν
∫

Ω

|∇uε|p(1− ψδ) dx

−
∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx

− Ln(Ω)
ε
p∗

(∫
Ω

|uε|p
∗
(1− ψδ) dx

) p∗−ε
p∗

.

On the other hand, arguing as for (17), one obtains

lim
ε→0

∣∣∣∣∫
Ω

uε∇ξL(x, uε,∇uε) · ∇ψδdx
∣∣∣∣ ≤ βδ (19)

for each δ > 0. Now, it results

lim
ε→0

∫
Ω

|∇uε|p(1− ψδ) dx =
∫

Ω

(1− ψδ) dµ

≥
∫

Ω

|∇u|p(1− ψδ) dx+
r∑
j=1

µj(1− ψδ(xj))

=
∫

Ω

|∇u|pdx+ o(1)

(20)

as δ → 0 and

lim
ε→0

∫
Ω

|uε|p
∗
(1− ψδ) dx =

∫
Ω

(1− ψδ) dσ

=
∫

Ω

|u|p
∗
(1− ψδ) dx+

r∑
j=1

σj(1− ψδ(xj))

=
∫

Ω

|u|p
∗
dx+ o(1)

(21)



Problems with Nearly Critical Growth 193

as δ → 0. Therefore, in view of (19) - (21), by letting δ → 0 and ε → 0 in (18) one
concludes that

ν

∫
Ω

|∇u|pdx ≤
∫

Ω

|u|p
∗
dx. (22)

As Ω is bounded, by Proposition 3.1/(b) one has
∫

Ω
|∇u|pdx > S

(∫
Ω
|u|p∗dx

) p
p∗

which combined with (22) yields the assertion

Lemma 3.4. Let (uε)ε>0 ⊂W 1,p
0 (Ω) be a sequence of solutions of problem (Pε)

and let u be its weak limit. Then u is a solution of problem (P0).

Proof. For each ε > 0 and ϕ ∈ C∞c (Ω),∫
Ω

∇ξL(x, uε,∇uε) · ∇ϕdx+
∫

Ω

DsL(x, uε,∇uε)ϕdx =
∫

Ω

|uε|p
∗−2−εuεϕdx. (23)

Since (uε)ε>0 is bounded in W 1,p
0 (Ω), up to a subsequence, u satisfies

∇uε ⇀ ∇u
uε → u

uε(x)→ u(x)

in Lp(Ω)

in Lp(Ω)

for a.e. x ∈ Ω


as ε → 0. Moreover, by [7: Theorem 1], up to a further subsequence, we have
∇uε(x)→ ∇u(x) for a.e. x ∈ Ω. Therefore, in view of (5) one deduces that

∇ξL(x, uε,∇uε) ⇀ ∇ξL(x, u,∇u) in Lp
′
(Ω,Rn). (24)

By (4) - (6) one finds a constant M > 0 such that for each δ > 0

|DsL(x, s, ξ)| ≤M∇ξL(x, s, ξ) · ξ + aδ(x) + δ|s|p
∗

(25)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R×Rn. If we test equation (23) with the functions

ϕε = ϕ exp{−Mu+
ε } (ε > 0)

where 0 ≤ ϕ ∈W 1,p
0 ∩ L∞(Ω), we obtain∫

Ω

∇ξL(x, uε,∇uε) · ∇ϕ exp{−Mu+
ε }dx

−
∫

Ω

|uε|p
∗−2−εuεϕ exp{−Mu+

ε }dx

+
∫

Ω

[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε) · ∇u+

ε

]
ϕ exp{−Mu+

ε }dx = 0.

Since by inequalities (7) and (25) for each ε > 0 and δ > 0 we have[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε) · ∇u+

ε

]
ϕ exp{−Mu+

ε } − δ|uε|p
∗
≤ aδ(x),
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arguing as in [18: Theorem 3.4] one obtains

lim sup
ε→0

∫
Ω

[
DsL(x, uε,∇uε)−M∇ξL(x, uε,∇uε) · ∇u+

ε

]
ϕ exp{−Mu+

ε }dx

≤
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕ exp{−Mu+}dx.

Therefore, taking into account (24) and since as ε→ 0∫
Ω

|uε|p
∗−2−εuεϕdx→

∫
Ω

|u|p
∗−2uϕdx

for each 0 ≤ ϕ ∈W 1,p
0 ∩ L∞(Ω), one may conclude that∫

Ω

∇ξL(x, u,∇u) · ∇ϕ exp{−Mu+}dx

−
∫

Ω

|u|p
∗−2uϕ exp{−Mu+}dx

+
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕ exp{−Mu+}dx ≥ 0

(26)

for each 0 ≤ ϕ ∈W 1,p
0 ∩L∞(Ω). Testing now (26) with ϕk = ϕϑ

(
u
k

)
exp{Mu+} where

0 ≤ ϕ ∈ C∞c (Ω) and ϑ is smooth, ϑ = 1 in
[
− 1

2 ,
1
2

]
and ϑ = 0 in (−∞,−1]∪ [1,+∞),

it follows that ∫
Ω

∇ξL(x, u,∇u) · ∇ϕk exp{−Mu+}dx

−
∫

Ω

|u|p
∗−2uϕϑ

(
u
k

)
dx

+
∫

Ω

[
DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇u+

]
ϕϑ
(
u
k

)
dx ≥ 0

which, arguing again as in [18: Theorem 3.4], yields as k → +∞∫
Ω

∇ξL(x, u,∇u) · ∇ϕdx+
∫

Ω

DsL(x, u,∇u)ϕdx ≥
∫

Ω

|u|p
∗−2uϕdx

for each 0 ≤ ϕ ∈ C∞c (Ω). Analogously, testing with ϕε = ϕ exp{−Mu−ε }, one obtains
the opposite inequality, i.e. u is a solution of problem (P0)
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4. Proofs of the main results

Let now (uε)ε>0 be a sequence of solutions of problem (Pε) with fε(uε)→ c and

p∗−p−γ
pp∗ (νS)

n
p < c < 2p

∗−p−γ
pp∗ (νS)

n
p . (27)

Then there exist a subsequence of (uε)ε>0 and two bounded positive measures µ and
σ verifying (10) - (13).

Proof of Theorem 2.7. Let us first show that there exists at most one j such
that µj 6= 0. Suppose that µj 6= 0 for j = 1, . . . , r; in view of Lemma 3.2 one has
µj ≥ ν

n
p∗ S

n
p . Following the proof of Lemma 2.5, we obtain

c = lim
ε→0

fε(uε)

≥ p∗ − p− γ
pp∗

ν lim
ε→0

∫
Ω

|∇uε|pdx

≥ p∗ − p− γ
pp∗

ν

∫
Ω

dµ

≥ p∗ − p− γ
pp∗

ν
r∑
j=1

µj

≥ r p
∗ − p− γ
pp∗

(νS)
n
p .

Taking into account (27) one has

2 p∗−p−γ
pp∗ (νS)

n
p > c ≥ r p

∗−p−γ
pp∗ (νS)

n
p ,

hence r ≤ 1. Now, arguing again as in Lemma 2.5 one obtains

2 p∗−p−γ
pp∗ (νS)

n
p > c = lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗ ν lim

ε→0

∫
Ω

|∇uε|pdx

≥ p∗−p−γ
pp∗

(
ν

∫
Ω

|∇u|pdx+ νµ1

)
.

If both summands were non-zero, by Lemmas 3.2 and 3.3 we would obtain

ν

∫
Ω

|∇u|pdx > (νS)
n
p ,

νµ1 ≥ (νS)
n
p

and thus a contradiction. Vice versa, let us assume that u = 0 and µ1 = 0. Let
0 ≤ ψ ∈ C1

c (Ω). By testing our equation with ψuε and using Hölder inequality, one
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gets ∫
Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx

+
∫

Ω

ψ∇ξL(x, uε,∇uε) · ∇uεdx

+
∫

Ω

DsL(x, uε,∇uε)ψuεdx =
∫

Ω

|uε|p
∗−εψdx

≤
(∫

Ω

|uε|p
∗
ψ dx

) p∗−ε
p∗

Ln(Ω)
ε
p∗

(28)

Since (uε)ε>0 is bounded in W 1,p
0 (Ω), by (5) there exists a constant C > 0 such that∣∣∣∣∫

Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx
∣∣∣∣ ≤ C ‖uε‖p

which by uε → 0 in Lp(Ω) yields

lim
ε→0

∫
Ω

uε∇ξL(x, uε,∇uε) · ∇ψ dx = 0.

Moreover, since by (7) we get∫
Ω

DsL(x, uε,∇uε)ψuεdx ≥ 0,

taking into account (6) and passing to the limit in (28) we get

∀ ψ ∈ Cc(Ω) : ψ ≥ 0 =⇒ ν

∫
Ω

ψ dµ ≤
∫

Ω

ψ dσ. (29)

On the other hand, µ1 = 0 and u = 0 imply σ = 0. Then, since µ ≥ 0, by (29) we
get µ = 0. In particular, by (3), (6) and (7) one gets

c = lim
ε→0

fε(uε)

= lim
ε→0

[ ∫
Ω

L(x, uε,∇uε) dx

− 1
p∗−ε

∫
Ω

∇ξL(x, uε,∇uε) · ∇uεdx

− 1
p∗−ε

∫
Ω

DsL(x, uε,∇uε)uεdx
]

≤ b0 lim
ε→0

(∫
Ω

|uε|pdx+
∫

Ω

|∇uε|pdx
)

= b0

∫
Ω

dµ

= 0,

which is not possible. Therefore, either µ1 = 0 and u 6= 0, or µ1 6= 0 and u = 0
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Remark 4.1. If (27) is replaced by the (k + 1)-th critical energy range

k p∗−p−γ
pp∗ (νS)

n
p < c < (k + 1) p

∗−p−γ
pp∗ (νS)

n
p

for k ∈ N, in a similar way one proves that µj = 0 for any j ≥ k+ 1 and there holds:

(a) If µj = 0 for every j ≥ 1, then u is a non-trivial solution of problem (P0).
(b) If µj 6= 0 for every 1 ≤ j ≤ k, then u = 0.

Remark 4.2. Let f0 : W 1,p
0 (Ω)→ R be the functional associated with problem

(P0) and let 0 6= u ∈W 1,p
0 (Ω) be a solution of problem (P0) (obtained as weak limit

of (uε)ε>0). Then
f0(u) > p∗−p−γ

pp∗ (νS)
n
p . (30)

Indeed,
f0(u) = f0(u)− 1

p∗ f
′
0(u)(u)

≥ p∗−p−γ
p∗

∫
Ω

L(x, u,∇u) dx

≥ p∗−p−γ
pp∗ ν

∫
Ω

|∇u|pdx

which yields (30) in view of Lemma 3.3. This, in some sense, explains why one
chooses c greater than p∗−p−γ

pp∗ (νS)
n
p in Theorem 2.7.

Let now (uε)ε>0 be a sequence of solutions of problem (Pε) with fε(uε)→ c and

lim
ε→0

fε(uε) = p∗−p−γ
pp∗ (νS)

n
p .

Proof of Theorem 2.8. Let us first note that

f0(u) ≤ lim
ε→0

fε(uε) + 1
p∗

∞∑
j=1

σj . (31)

Indeed, taking into account that by [6: Theorem 3.4]∫
Ω

L(x, u,∇u) dx ≤ lim
ε→0

∫
Ω

L(x, uε,∇uε) dx,

(31) follows by combining Hölder inequality with (12).
Now assume by contradiction that u 6= 0. Then there exists j0 ∈ N such that

µj0 6= 0 and σj0 6= 0, otherwise by Remark 4.2 and (31) we would get
p∗−p−γ
pp∗ (νS)

n
p < f0(u) ≤ lim

ε→0
fε(uε) = p∗−p−γ

pp∗ (νS)
n
p .

Arguing as in Lemma 2.5 and applying Lemma 3.2, we obtain
p∗−p−γ
pp∗ (νS)

n
p = lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗

(
ν

∫
Ω

|∇u|pdx+ νµj0

)
≥ p∗−p−γ

pp∗ ν

∫
Ω

|∇u|pdx+ p∗−p−γ
pp∗ (νS)

n
p

which implies u = 0 – a contradiction
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5. Mountain-pass critical values

In this section, we shall investigate the asymptotics of (uε) in the case of critical
levels of min-max type. We assume that L is p-homogeneous with respect to ξ and
satisfies a stronger assumption, i.e.

L(x, s, ξ) ≤ 1
p |ξ|

p (32)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R×Rn. In particular, it results that ν ≤ 1. Let uε
be a critical point of fε associated with the mountain pass level

cε = inf
η∈Cε

max
t∈[0,1]

fε(η(t)) (33)

where
Cε =

{
η ∈ C

(
[0, 1],W 1,p

0 (Ω)
)

: η(0) = 0 and η(1) = wε

}
and wε ∈W 1,p

0 (Ω) is chosen in such a way that fε(wε) < 0.

Lemma 5.1. The inequality lim
ε→0

fε(uε) ≤ 1
nS

n
p holds.

Proof. Let x0 ∈ Ω and δ > 0, and consider the functions Tδ,x0 as in (15). By
Proposition 3.1/(c) one has

‖∇Tδ,x0‖
p
p,Rn = ‖Tδ,x0‖

p∗

p∗,Rn = S
n
p .

Moreover, taking a function φ ∈ C∞c (Ω) with 0 ≤ φ ≤ 1 and φ = 1 in a neighbourhood
of x0 and setting vδ = φTδ,x0 , it results

‖∇vδ‖pp = S
n
p + o(1)

‖vδ‖p
∗

p∗ = S
n
p + o(1)

}
(δ → 0) (34)

(see [10: Lemma 3.2]).
We want to prove that, for any t ≥ 0,

lim
ε→0

fε(tvδ) ≤ 1
nS

n
p + o(1) (δ → 0).

By (32) one has

lim
ε→0

fε(tvδ) = tp
∫

Ω

L(x, tvδ,∇vδ) dx− lim
ε→0

tp
∗−ε

p∗−ε

∫
Ω

|vδ|p
∗−εdx

≤ tp

p

∫
Ω

|∇vδ|pdx− tp
∗

p∗

∫
Ω

|vδ|p
∗
dx.

Keeping into account (34) and the fact that tp

p −
tp
∗

p∗ ≤
1
n for every t ≥ 0, one gets

lim
ε→0

fε(tvδ) ≤ tp

p S
n
p − tp

∗

p∗ S
n
p + o(1) ≤ 1

nS
n
p + o(1) (δ → 0).

Now choose t0 > 0 such that fε(t0vδ) < 0; by (33) we have

lim
ε→0

fε(uε) ≤ lim
ε→0

max
s∈[0,1]

fε(st0vδ) ≤ 1
nS

n
p + o(1)

and this, by letting δ → 0, ends up the proof
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Theorem 5.2. Suppose that the number of non-zero Dirac masses is[
pp∗

(p∗ − p− γ)nν
n
p

]
where [x] denotes the integer part of x. Then u = 0.

Proof. Keeping into account the previous lemma and arguing as in Lemma 2.5,

1
nS

n
p ≥ lim

ε→0
fε(uε)

≥ p∗−p−γ
pp∗ ν

(∫
Ω

|∇u|pdx+
r∑
j=1

µj

)
≥ p∗−p−γ

pp∗ ν

∫
Ω

|∇u|pdx+ r p
∗−p−γ
pp∗ ν

n
p S

n
p

where r denotes the number of non-vanishing masses. Hence it must be

0 ≤ r ≤
[

pp∗

(p∗ − p− γ)nν
n
p

]
.

In particular, if r is maximum and u 6= 0, by virtue of Lemma 3.3 one obtains

p∗−p−γ
pp∗ ν

n
p S

n
p > p∗−p−γ

pp∗ ν

∫
Ω

|∇u|pdx > p∗−p−γ
pp∗ ν

n
p S

n
p

which is a contradiction

6. Final remarks

Assume that L(x, s, ξ) is of class C1 in Ω×R×Rn and, additionally, that the vector-
valued function

∇ξL(x, s, ξ) =
(
∂L
∂ξ1

(x, s, ξ), . . . ,
∂L
∂ξn

(x, s, ξ)
)

is of class C1 in Ω× R× Rn.

Theorem 6.1. Let Ω be star-shaped with respect to the origin and assume that

p∗∇xL(x, s, ξ) · x− nDsL(x, s, ξ)s ≥ 0

for (x, s, ξ) ∈ Ω×R×Rn. Then (P0) has no non-trivial solution u in C2(Ω)∩C1(Ω).

Proof. Let L̂ : Ω× R× Rn → R by defined by setting

L̂(x, s, ξ) = L(x, s, ξ)− 1
p∗ |s|

p∗

for all (x, s, ξ) ∈ Ω× R× Rn. Then apply the Pucci-Serrin inequality [17]

nL̂+∇xL̂ · x− aDsL̂s− (a+ 1)∇ξL̂ · ξ ≥ 0

with the choice a = n−p
p
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Remark 6.2. If Ω is star-shaped and L does not depend on x, then problem
(P0) admits no non-trivial solution in C2(Ω) ∩C1(Ω) when DsL(s, ξ)s ≤ 0, which is
the opposite of (7). In particular, (7) seems to be a natural assumption.

Remark 6.3. As noted in the introduction, if Ω is star-shaped and L(ξ) = |ξ|p/p,
in [10] it is proven that problem (P0) has no non-trivial solution in W 1,p

0 (Ω). In
particular, by Theorem 2.7 one has µ1 6= 0.

Acknowledgement. The authors wish to thank M. Degiovanni for providing
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