
Edge Contact Forces in Continuous Media

Marco Degiovanni1, Alfredo Marzocchi2 and Alessandro Musesti3

1 Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via
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1 Introduction and preliminaries

In this note we present some results contained in [2] concerning integral prop-
erties of second-order powers. More precisely, we introduce the power ex-
pended on a subbody by a virtual velocity field, in the spirit of Germain
[6, 7], but in an axiomatic way similar to that exploited for first-order powers
in [11], regarding the power as a function of the subbody and of the velocity
field.

As already shown by Dell’Isola and Seppecher [3] and Di Carlo and Tatone
[4], higher order powers can be used to describe edge effects, in a way that
seems to be simpler as using edge interactions (see Noll and Virga [12] and
Forte and Vianello [5]).

Here we want to investigate the above subject paying attention to the
regularity of the stress (or hyper-stress) fields, as well as of the subbodies on
which the stresses act. In doing this, we first obtain results for finite perimeter
subbodies and fields with divergence measure in order to represent a contact
power as a surface integral; secondly, since the power is of order two, a further
integration by parts is formally possible, leading to subsets of codimension 2,
i.e. edges. To this end, we introduce a subclass of the sets of finite perimeter,
called sets with curvature measure, where such integral representation can be
written. The result is that edge effects are seen as surface integrals involving
curvature and/or density which is singular with respect to the area.

Finally, we find that, as in previous papers [1, 10, 11], that powers are
uniquely determined by their properties on n-intervals.

For the proofs of all results cited below, the reader is referred to [2].

In the sequel, L n will denote the n-dimensional Lebesgue outer measure
and H k the k-dimensional Hausdorff outer measure on Rn. Given a Borel
subset Ω ⊆ Rn, we denote with B(Ω) the collection of all Borel subsets of Ω.
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The topological closure, interior and boundary of E ⊆ Rn will be denoted
as usual by clE, intE and bdE, respectively. Denoting with Br(x) the open
ball with radius r centered at x, we introduce the measure-theoretic interior
of E

E∗ =
{

x ∈ Rn : lim
r→0+

(
r−nL n(Br(x) \ E)

)
= 0
}

and the measure-theoretic boundary of E

∂∗E = Rn \
(
E∗ ∪ (Rn \ E)∗

)
,

which are both Borel subsets of Rn. We say that E ⊆ Rn is normalized, if
E∗ = E.

Let now Ω be a Borel subset of Rn. We denote by M(Ω) the set of Borel
measures µ : B(Ω) → [0,+∞] finite on compact subsets of Ω and by Lp

loc,+(Ω),
p ∈ [1,+∞], the set of Borel functions h : Ω → [0,+∞] such that∫

K

hp dL n < +∞ (p < +∞), ess sup
K

h < +∞ (p = +∞)

for every compact subset K ⊆ Ω.

Definition 1. A full grid G is an ordered triple

G =
(
x0, (e1, . . . , en), Ĝ

)
,

where x0 ∈ Rn, (e1, . . . , en) is a positively oriented orthonormal basis in Rn

and Ĝ is a Borel subset of R with L 1(R \ Ĝ) = 0.
If G1, G2 are two full grids, we write G1 ⊆ G2 if Ĝ1 ⊆ Ĝ2 and they share

the point x0 and the list (e1, . . . , en).

Definition 2. We denote by Sym2 the finite-dimensional linear space of all
symmetric bilinear forms on Rn.

Definition 3. We denote with R the class of open n-intervals I such that
cl I ⊆ Ω.

Definition 4. Let G =
(
x0, (e1, . . . , en), Ĝ

)
be a full grid. A subset M of Rn

is said to be a G-interval, if

M = {x ∈ Rn : aj < (x− x0) · ej < bj ∀j = 1, . . . , n}

for some a1, b1, . . . , an, bn ∈ Ĝ. We set

MG = {M ⊆ Rn : M is a G-interval with cl M ⊆ Ω} .

Definition 5. Let A ⊆ R. We say that A contains almost all of R, if for
every x0 ∈ Rn and every positively oriented orthonormal basis (e1, . . . , en) in
Rn there exists a full grid

G =
(
x0, (e1, . . . , en), Ĝ

)
such that MG ⊆ A .
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2 Second-order powers

We give below our main definition.

Definition 6. Let A be a subset of R containing almost all of R. We say
that a function P : A×C∞(Ω) → R is a second-order power, if the following
properties hold:

(a) for every v ∈ C∞(Ω), P ( · , v) is countably ∗-additive, i.e.

P

((⋃
i∈N

Mi

)
∗

, v

)
=
∑
i∈N

P (Mi, v)

for every disjoint sequence (Mi) ∈ A such that
( ⋃

i∈N
Mi

)
∗
∈ A ;

(b) for every M ∈ A, P (M, · ) is linear;
(c) there exist µ0, µ1, µ2 ∈ M(Ω) such that for every M ∈ A, v ∈ C∞(Ω)

|P (M,v)| 6
∫

M

|v(x)| dµ0(x) +
∫

M

|∇v(x)| dµ1(x) +
∫

M

|∇∇v(x)| dµ2(x).

Definition 7. We will call first-order power a second-order power with µ2 =
0, and power with order 0 a first-order power with µ1 = 0.

Remark 1. Let M ∈ R; then it is easy to prove that for every full grid G there
exists a disjoint sequence (Mi) ⊆MG such that(⋃

i∈N
Mi

)
∗

= M.

Moreover, one could replace (a) by the following weaker assumption:

(a’) for every v ∈ C∞(Ω) and for every full grid G,

P

((⋃
i∈N

Mi

)
∗

, v

)
=
∑
i∈N

P (Mi, v)

whenever (Mi) ∈ A∩MG is a disjoint sequence such that
( ⋃

i∈N
Mi

)
∗
∈ A .

Remark 2. One can also consider powers P (M,v), where the v takes values
in RN , N > 1 and define the corresponding power by linearity.

Our first goal is to establish a representation formula for a second-order power.
This is not a matter of routine, since P (M,v) depends not only on v and hence
is not merely a linear functional on the velocity field.
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Theorem 1. Let P be a second-order power.
Then, there exist bounded Borel maps A0 : Ω → R, A1 : Ω → (Rn)∗,

A2 : Ω → Sym2 such that for every M ∈ A, v ∈ C∞(Ω)

P (M,v) =
∫

M

A0(x)v(x) dµ0(x)+
∫

M

〈A1(x),∇v(x)〉 dµ1(x)+
∫

M

〈A2(x),∇∇v(x)〉 dµ2(x).

(1)
Moreover, each Aj is uniquely determined µj-a.e.

The following is a form of converse of the previous theorem.

Proposition 1. Let µ0, µ1, µ2 ∈ M(Ω) and A0, A1, A2 as above be Borel and
bounded.

Then there exists a set A ⊆ R containing almost all of R such that the
function P : A× C∞(Ω) → R defined as

P (M,v) =
∫

M

〈A0(x), v(x)〉 dµ0(x)+
∫

M

〈A0(x),∇v(x)〉 dµ1(x)+
∫

M

〈A2(x),∇∇v(x)〉 dµ2(x)

is a second-order power.

Now we turn to a similar representation formula on Borel subsets of Ω.

Definition 8. Let η ∈ M(Ω). We set

Bη = {M ⊆ Rn : M = M∗ , cl M ⊆ Ω, η(∂∗M) = 0} .

Theorem 2. Let P be a second-order power. Let Aj (j = 0, 1, 2) as in Theo-
rem 1.

Then there exists η ∈ M(Ω) such that the function P̃ : Bη × C∞(Ω) → R
defined as

P̃ (M,v) =
∫

M

A0(x)v(x), dµ0(x)+
∫

M

〈A1(x),∇v(x)〉 dµ1(x)+
∫

M

〈A2(x),∇∇v(x)〉 dµ2(x)

is an extension of P which satisfies (a), (b) and (c) of Definition 6 on Bη.

3 Decomposition of powers

Up to here, the definitions and assumptions made imply that the power P
behaves as an integral on the subbodies, but they do not imply, for example,
that the power can be represented as a surface integral, as it is often the case
in Continuum Mechanics. Our next definition will precise these features.

Definition 9. A second-order power P is said to be weakly balanced, if there
exists ν ∈ M(Ω) such that

∀M ∈ A, ∀v ∈ C∞c (M) : |P (M,v)| 6
∫

M

|v| dν .
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In particular, P is said to be a contact power, if

∀M ∈ A, ∀v ∈ C∞c (M) : P (M,v) = 0 ,

namely if it is weakly balanced with ν = 0.
A power P of order 0 is said to be a body power.

Note that a body power is always weakly balanced, by choosing trivially ν =
µ0.

Theorem 3. Let P be a weakly balanced second-order power and let Aj, j =
0, 1, 2, be as in Theorem 1.

Then the following facts hold:

(a) there exists a bounded Borel function B : Ω → R such that for every
v ∈ C∞c (Ω)∫

M

〈A0(x), v(x)〉 dµ0(x)+
∫

M

〈A1(x),∇v(x)〉 dµ1(x)+
∫

M

〈A2(x),∇∇v(x)〉 dµ2(x) =
∫

Ω

B(x)v(x) dν(x) ;

moreover, B is uniquely determined ν-a.e.;
(b) taking Bη as in Theorem 2, we have

∀M ∈ Bη, ∀v ∈ C∞c (M) : P (M,v) =
∫

M

B(x)v(x) dν(x) .

Let now P be a weakly balanced second-order power, let µj , Aj , 0 6 j 6 k, be
as in Theorem 1 and let ν, B be as in Theorem 3. According to Proposition 1
we can define, for a suitable class A containing almost all of R, two powers
Pb, Pc : A× C∞(Ω) → R by

Pb(M,v) :=
∫

M

B(x)v(x) dν(x) ,

Pc(M,v) := P (M,v)−
∫

M

B(x)v(x) dν(x) .

It is readily seen that Pb is a body power and Pc a second-order contact power.
Of course, we have P = Pb + Pc.

Definition 10. Pb is said to be the body part of P and Pc the contact part
of P .

4 First-order contact powers

Let P be a first-order contact power such that (c) of Definition 6 holds with
µ1 absolutely continuous with respect to the Lebesgue outer measure. We set
η = µ0.



6 Marco Degiovanni, Alfredo Marzocchi and Alessandro Musesti

According to Theorems 1 and 3, there exist a bounded Borel function
a : Ω → R and T ∈ L1

loc(Ω; Rn) such that

∀M ∈ Bη,∀v ∈ C∞(Ω) : P (M,v) =
∫

M

av dη +
∫

M

T · ∇v dL n , (2)

∀v ∈ C∞c (Ω) :
∫

Ω

av dη +
∫

Ω

T · ∇v dL n = 0 . (3)

Moreover, a is uniquely determined η-a.e. and T is uniquely determined L n-
a.e.

We now briefly recall the concept of outer normal to the measure-theoretic
boundary of a set. Let M ⊆ Rn and x ∈ ∂∗M . We denote by nM (x) ∈ Rn a
unit vector such that

L n
(
{ξ ∈ Br(x) ∩M : (ξ − x) · nM (x) > 0}

)/
rn → 0,

L n
(
{ξ ∈ Br(x) \M : (ξ − x) · nM (x) < 0}

)/
rn → 0

as r → 0+. No more than one such vector can exist. Setting nM (x) = 0
elsewhere, we can consider the map nM : ∂∗M → Rn, which is called the unit
outer normal to M . It turns out that nM is Borel and bounded.

Whenever H n−1(∂∗M) < +∞, we say that M is a set with finite perime-
ter. In that case it is well known that nM (x) 6= 0 for H n−1-a.e. x ∈ ∂∗M and
the Gauss-Green theorem holds.

Now we define a suitable subclass of Bη which allows to give a represen-
tation formula for a first-order contact power involving only the measure-
theoretic boundary of the subbodies. We refer to [14, 1] for a discussion about
this class.

Definition 11. For h ∈ L1
loc,+(Ω) we set

Mhη =
{

M ∈ Bη : H n−1(∂∗M) < +∞,

∫
∂∗M

h dH n−1 < +∞
}

.

We are now in position to state the boundary representation formula for first-
order contact power. We refer to it as the Cauchy’s Stress Theorem, since it
states the linearity of the stress with respect to the normal.

Theorem 4 (Cauchy’s Stress Theorem). There exists h ∈ L1
loc,+(Ω) such

that

∀M ∈Mhη,∀v ∈ C∞(Ω) : P (M,v) =
∫

∂∗M

v T · nM dH n−1.

5 Second-order contact powers

Now we want to study in more detail second-order contact powers and the
possibility of representing them as surface integrals.
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Throughout this section, we assume that P is a second-order contact power
such that (c) of Definition 6 holds with µ1 and µ2 absolutely continuous with
respect to the Lebesgue outer measure. We set η = µ0.

According to Theorems 1 and 3, there exist a bounded Borel function
a : Ω → R, B ∈ L1

loc(Ω; Rn) and C ∈ L1
loc(Ω; Sym2) such that

∀M ∈ Bη,∀v ∈ C∞(Ω) : P (M,v) =
∫

M

av dη +
∫

M

B · ∇v dL n +
∫

M

C · ∇∇v dL n ,

(4)

∀v ∈ C∞c (Ω) :
∫

Ω

av dη +
∫

Ω

B · ∇v dL n +
∫

Ω

C · ∇∇v dL n = 0 . (5)

Moreover, a is uniquely determined η-a.e. and B,C are uniquely determined
L n-a.e. When the distribution div C is a function, we have a representation
of P (M,v) as a surface integral.

Theorem 5. Assume that div C ∈ L1
loc(Ω, Rn). Then there exists h ∈ L1

loc,+(Ω)
such that

P (M,v) =
∫

∂∗M

[v(B − div C) · nM +∇v · CnM ] dH n−1 (6)

for every v ∈ C∞(Ω) and M ∈Mhη .

A very remarkable feature of our approach is that the condition div C ∈
L1

loc(Ω, Rn), mentioned in the above theorem, has a counterpart in terms of
the power P , as we will show in Theorem 6 below.

This is quite interesting, since assumptions made on P are in general more
‘physical’ than those made on its densities.

To state this, we need a definition and a proposition.

Definition 12. Let G =
(
x0, (e1, . . . , en), Ĝ

)
be a full grid and M ∈ MG of

the form

M = {x ∈ Rn : aj < (x− x0) · ej < bj , j = 1, . . . , n} , (7)

where a1, b1, . . . , an, bn ∈ Ĝ . Whenever 1 6 j 6 n and aj 6 α < β 6 bj , we
set

M
(j)
α,β = {x ∈ Rn : α < (x− x0) · ej < β, ai < (x− x0) · ei < bi ∀i 6= j} .

We simply write M
(j)
β in the case α = aj.

Proposition 2. Let MG ⊆ A, M ∈ MG be represented as in (7), v ∈
C∞c (M) and 1 6 j 6 n. Then M

(j)
β ∈ MG for L 1-a.e. β ∈ (aj , bj ] and

the map {
β 7→ P (M (j)

β , v)
}

belongs to L∞(aj , bj) for every v ∈ C∞c (Ω).
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At this point we have

Theorem 6. We have that div C ∈ L1
loc(Ω, Rn) if and only if there exist h ∈

L1
loc,+(Ω) such that ∣∣∣∣∣

∫ bj

aj

P (M (j)
β , v) dβ

∣∣∣∣∣ 6
∫

M

|v|h dL n (8)

for every MG ⊆ A, M ∈MG, v ∈ C∞c (M) and j = 1, . . . , n. In this case, we
have |B − 2 div C| 6 h on L n-a.a. of Ω.

6 Boundary representation with edges

Now we come to the most interesting application of second-order powers,
namely, the possibility of having a representation formula on edges, or simply
sets with non-smooth normal. Roughly speaking, this is made possible by the
gradient term in eq. (6), which allows a further integration by parts.

To do this, we need to introduce a new class of sets.

Definition 13. Let M be a normalized set with finite perimeter. We say
that M is a set with curvature measure, if there exist λM ∈ M(∂∗M) with
λ(∂∗M) < +∞ and a Borel tensor field U : ∂∗M → Sym2 with |U(x)| = 1 for
λM -a.e. x ∈ ∂∗M , such that

−
∫

∂∗M

[−(div C) · nM + ((∇C)nMnM ) · nM ] dH n−1 =
∫

∂∗M

C · U dλM

for every C ∈ C∞c (Rn; Sym2). It turns out that λM is uniquely determined
and U is uniquely determined λM -a.e.

For h ∈ L1
loc,+(Ω) we set

Chη =
{

M ∈Mhη : M has curvature measure and
∫

∂∗M

h dλM < +∞
}

.

Remark 3. One can prove that the elements of R are sets with curvature
measure. Indeed, since on each face the term [−(div C) ·nM + ((∇C)nMnM ) ·
nM ] is a surface divergence, it turns out that λM is the Hausdorff measure
H n−2 restricted to the edges, and U = nM ⊗N + N ⊗ nM , where N is the
normal to the edge in the hyperplane of the surface.

We are now ready to perform the last integration by parts. In doing this,
however, we notice that the normal derivative of v cannot be dropped, since
it corresponds to a field of doublets assigned on the boundary.

We also want to let line integrals appear as surface integrals, with respect
to a singular measure.

Since the formal integration by parts puts into account the symmetric
gradient of a tensor, let us briefly recall its definition.
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Definition 14. Let C ∈ L1
loc(Ω,Sym2). We define the symmetric gradient of

C by setting (∇sC)uvw on Ω as

〈(∇sC)uvw, ϕ〉 =
1
3

∫
Ω

[(Cv · w)(∇ϕ · u) + (Cu · w)(∇ϕ · v) + (Cu · v)(∇ϕ · w)] dL n

for every ϕ ∈ C∞c (Ω). The function
{
(u, v, w) 7→ (∇sC)uvw

}
is 3-linear and

symmetric; moreover, it holds ((∇C)uu) · u = (∇sC)uuu for every u ∈ Rn.

The following theorem gives us our final goal, provided div C ∈ L1
loc(Ω, Rn) and

∇sC ∈ L1
loc(Ω,Sym3), that is, the corresponding distributions are represented

by locally integrable functions.

Theorem 7. Let P be a contact power of order 2 such that (c) of Definition 6
holds with µ1 � L n and µ2 � L n and let η = µ0. Assume moreover that
div C ∈ L1

loc(Ω, Rn) and ∇sC ∈ L1
loc(Ω,Sym3).

Then there exists h ∈ L1
loc,+(Ω) such that

P (M,v) =
∫

∂∗M

v
[
(B − 2 div C) · nM + (∇sC)nMnMnM

]
dH n−1

+
∫

∂∗M

∂v

∂n
(CnM · nM ) dH n−1 +

∫
∂∗M

v C · U dλM (9)

for every M ∈ Chη and v ∈ C∞(Ω).

In the same spirit as above, we show that the condition ∇sC ∈ L1
loc(Ω,Sym3)

has a counterpart in terms of P .

Theorem 8. We have that ∇sC ∈ L1
loc(Ω,Sym3) if and only if there exists

h ∈ L1
loc,+(Ω) such that∣∣∣∣∣

∫ β

α

P (M (j)
s , v) ds

∣∣∣∣∣ 6
∫

M
(j)
α,β

(
|v|+

∣∣∣∣ ∂v

∂ej

∣∣∣∣)h dL n (10)

for every MG ⊆ A, M ∈ MG, v ∈ C∞c (M), j = 1, . . . , n and aj < α < β <
bj . In this case, we have |∇sC| 6 3

2 (h + |B − 2 div C|) on L n-a.a. of Ω.
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