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Abstract
Lymph Nodes (LNs) are crucial to the immune and lymphatic systems, filtering harmful substances and regulating lymph 
transport. LNs consist of a lymphoid compartment (LC) that forms a porous bulk region, and a subcapsular sinus (SCS), 
which is a free-fluid region. Mathematical and mechanical challenges arise in understanding lymph flow dynamics. The 
highly vascularized lymph node connects the lymphatic and blood systems, emphasizing its essential role in maintaining the 
fluid balance in the body. In this work, we describe a mathematical model in a steady setting to describe the lymph transport 
in a lymph node. We couple the fluid flow in the SCS governed by an incompressible Stokes equation with the fluid flow in 
LC, described by a model obtained by means of asymptotic homogenisation technique, taking into account the multiscale 
nature of the node and the fluid exchange with the blood vessels inside it. We solve this model using numerical simulations 
and we analyze the lymph transport inside the node to elucidate its regulatory mechanisms and significance. Our results 
highlight the crucial role of the microstructure of the lymph node in regularising its fluid balance. These results can pave 
the way to a better understanding of the mechanisms underlying the lymph node’s multiscale functionalities which can be 
significantly affected by specific physiological and pathological conditions, such as those characterising malignant tissues.
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1 Introduction

Lymph Nodes (LNs) are essential components of the lym-
phatic system, acting as filters that eliminate harmful sub-
stances like bacteria, viruses, and waste products. The lymph 
node plays a crucial role in both the immune and lymphatic 
systems, serving as a vital component in safeguarding the 

body against infections and diseases and regulating lymph 
transport. The main immunological function of the lymph 
node is achieved by hosting lymphocytes, such as B and T 
cells, which travel through the bloodstream and reside in the 
nodes. B cells generate antibodies that specifically attach to 
antigens, triggering an immune response. When activated, 
B cells can differentiate into plasma cells that release anti-
bodies or memory cells that provide defense in subsequent 
encounters. Additionally, specialized antigen-presenting 
cells (APCs), like dendritic cells (DCs), capture and process 
antigens from diverse sources. These cells then migrate to 
the lymph nodes, presenting the antigens to T cells, activat-
ing them, and kickstarting the adaptive immune response.

Interstitial fluid, known as lymph once it enters the lym-
phatic system, plays a crucial role in transporting immune 
cells, proteins, cancer cells, drugs, and other substances 
(O’Melia et al 2019; Arasa et al 2021; Birmingham et al 
2020; Apoorva et al 2018; Permana et al 2021). When lymph 
transport is compromised, it can result in lymphœdema, a 
condition characterized by an abnormal accumulation 
of fluid in the tissues. Lymph nodes play a major role in 
regulating lymph transport: indeed one of the causes of 
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lymphœdema is the excision and removal of lymph nodes 
(Moore Jr and Bertram 2018; Tobbia et al 2009). The lymph 
transport within the node is important from a biological 
point of view, but it also presents some interesting math-
ematical and mechanical challenges. From a mechanical 
perspective, the lymph node comprises two primary com-
ponents: the lymphoid compartment (LC), which forms the 
porous bulk region of the node, and the subcapsular sinus 
(SCS), a narrow free-fluid channel located near the wall that 
surrounds the LC (Margaris and Black 2012). The lymph 
can permeate the LC from the SCS through a network of 
conduits established by fibroblastic reticular cells (FRC) that 
form the porous structure of the node (Novkovic et al 2020; 
Grebennikov et al 2016; Savinkov et al 2017). Initially, the 
lymph flows inside the subcapsular sinus of the node, and 
then a part of the lymph goes into the lymphoid compart-
ment and the remaining part (the majority) leaves the node. 
The dendritic cells and macrophages present in the lymph 
are transported at the interaction surface between the SCS 
and the LC, initiating the immune response. The lymph node 
is a highly vascularized organ, and inside the LC compart-
ment, there are blood vessels that allow the exchange of 
fluid and substances, making the LN an important connec-
tion between the lymphatic and the blood system.

The movement of lymph within the lymph node is a highly 
significant and intriguing physical process. It involves a com-
plex multiscale architecture with an intricate microenviron-
ment and the interplay between the free-fluid region in the 
subcapsular sinus and the porous lymphoid compartment. 
Moreover, this process integrates interactions between the 
lymphatic and blood systems, crucial for immune surveil-
lance and response. Understanding these dynamics is piv-
otal, as deviations can lead to various pathologies, from 
lymphœdema to cancer metastasis. Thus, the lymph node 
serves as a connection where fluid dynamics, immune func-
tion, and physiological intricacies converge, shaping our 
understanding of health and disease. However, yet, only a 
few mathematical models in literature explore it (Novkovic 
et al 2018; Shanti et al 2018; Jayathungage Don et al 2023). 
An image-based modeling approach to obtain data regard-
ing the internal structure of the lymph node is proposed in 
Cooper et al (2016, 2018), where they used these data to 
find the permeability of a Darcy equation used to describe 
the lymph flow in the whole node. Another computational 
flow model is studied in Jafarnejad et al (2015), in which 
they study a mouse popliteal LN in an idealized spheroidal 
geometry, differentiating the fluid flow in the SCS (using a 
Navier-Stokes equation) and the fluid flow in the LC (using 
a Darcy-Brinkman equation). Setukha and Tretiakova (2022) 
propose numerical simulation using boundary integral equa-
tions to simulate the fluid flow in the lymph node. In the lit-
erature, some more computational models describe the fluid 
flow in a lymph node. In Tretiakova et al (2021) they develop 

an artificial neural network model based on Setukha and Tre-
tiakova (2022) and on the experimental results of Adair et al 
(1982); Adair and Guyton (1983, 1985) to describe the lymph 
node drainage function. A three-dimensional geometry of 
the fibroblastic reticular cell graph network generated by 
an object-oriented computational algorithm is developed in 
Grebennikov et al (2016); Savinkov et al (2017) to study the 
lymph flow through the conduit system network. Another 
interesting approach used to describe the fluid flow within 
the node is to use a microfluidic platform, like in Shanti et al 
(2020) the authors simulate the fluid flow in a microenviron-
ment mimicking the lymph node properties; another micro-
fluidic platform that recreates the lymph node’s subcapsular 
sinus microenvironment is developed by Birmingham et al 
(2020), where they investigate how physiological flow pat-
terns impact the adhesion of metastatic cancer cells. All the 
papers presented above have a computational and experimen-
tal nature; in Giantesio et al (2021, 2022) we have the first 
attempts to analytically study the lymph movement within the 
lymph node. An analytical and a numerical solution are pre-
sented in a time-dependent setting in simplified geometries (a 
cylindrical geometry in Giantesio et al (2021) and a spherical 
geometry in Giantesio et al (2022)), without considering the 
drainage of the blood vessels. In particular, in Giantesio et al 
(2022) we coupled the lymph flow in the subcapsular sinus 
with the flow in the lymphoid compartment using stream 
functions, without considering the blood vessels and the fluid 
exchange within them. The drainage function of the blood 
vessels inside the node and the multiscale nature of the latter 
are considered in Girelli et al (2023), obtaining a rigorous 
mathematical model using the asymptotic homogenization 
technique (Gerisch et al 2018; Hornung 1997; Auriault et al 
2009) describing the fluid flow inside both the FRC and the 
blood vessels networks, without considering the subcapsular 
sinus, in a steady setting. We found an analytical solution, in 
a simplified spherical geometry, which describes the fluid 
flow and the fluid exchange between the FRC and the blood 
vessels. In this work, we extend the results of our previous 
work Girelli et al (2023) taking into account the fluid flow in 
the subcapsular sinus, coupling this flow with the flow inside 
the lymphoid compartment in a more realistic geometry, giv-
ing detailed results for the entire lymph node.

In Sect. 2, we recall the steady mathematical model that 
describes the fluid flow inside both the subcapsular sinus 
and the lymphoid compartment. In Sect. 3 we describe the 
numerical simulations used to solve the steady problem and we 
describe the results using physiological parameters obtained 
from the lymph node literature. In particular, in Sect. 3.1 we 
study the steady lymph flow in a spherical geometry and we 
compare the results with the analytical founding of Girelli et al 
(2023), and Sect. 3.2 is devoted to the steady lymph flow in an 
oblate spheroidal geometry, which is a more realistic geometry 
for a lymph node (Jafarnejad et al 2015; Tretiakova et al 2021; 
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Margaris and Black 2012; Giantesio et al 2021; Shanti et al 
2020; O’Melia et al 2019).

2  Mathematical model

In this section, we introduce the mathematical model that 
we use to describe the fluid flow inside the lymph node in a 
steady setting. In Fig. 1 we can see a sketch of the geometry 
of our problem, showing the subcapsular sinus (SCS), the 
lymphoid compartment (LC), and, on the right-hand side, the 
microstructure of the conduit system network, formed by FRC 
lymph conduits represented by the geometry Ωm and the blood 
vessels represented by Ωv . We emphasize that the cylinders 
forming the geometry Ωv physically represent vascularized 
regions rather than individual vessels, as described in Girelli 
et al (2023).

We suppose that the lymph is an incompressible Newtonian 
fluid similar to water (Moore Jr and Bertram 2018) so that the 
fluid in the subcapsular sinus can be described by the steady 
Stokes equation due to the small velocity and small charac-
teristic length

where � is the viscosity, uf  is the velocity in the SCS, and pf  
is the pressure in the SCS.

For the lymphoid compartment (porous bulk region of the 
lymph node) we use the model proposed in Girelli et al (2023) 
to describe the fluid flow and the fluid exchange between the 
lymph and the blood vessels. Here we summarize the model; 
see Girelli et al (2023) for more details about its derivation.

First of all, we define the average operator as

where y is the variable that describes the microscale prob-
lem, which is connected to the macroscale variable x by the 
relationship y = x∕� , with

(1)
{

�Δuf = ∇pf ,

∇ ⋅ uf = 0,

(2)⟨h⟩Ω�
=

1

�Ω� �
∫Ω�

hdy, � = m, v,

d is the microscale characteristic length related to the dis-
tance of the centers of the cylinders in the cell domain of 
Fig. 1 (d physically represents the distance between two vas-
cularized regions) and L is the macroscale characteristic 
length.

The macroscopic model of the fluid flow for the FRC 
phase Ωm is as follows

where u(0)
m

 and p(0)
m

 are the leading-order velocity and pres-
sure of the asymptotic homogenization expansion pre-
sented in the model of Girelli et al (2023) of the phase Ωm , 
respectively; Lp is a quantity that describes the geometry 
and the tissue wall material at the intersection between the 
two phases described in  ms−1  Pa−1 (Waniewski 2006), Stot 
is the total blood vessels surface, |Ωtot

m
| is the total volume 

of the phase Ωm , � is the Staverman’s reflection coefficient 
that describes the leakiness of the capillary membrane to 
proteins, �v and �m are the oncotic pressure of phase Ωv and 
Ωm , respectively, and Wm is a second-order tensor obtained 
as the solution of the following cell problem (obtained by the 
asymptotic homogenization technique in Girelli et al 2023):

Here Γ is the interface between the phases Ωm and Ωv , n 
is the outer normal to Ωm , � any tangential vector to the 
interface Γ , � is the second-order identity tensor, Km is 

𝜖 = d∕L ≪ 1,

(3)⟨u(0)
m
(x, y)⟩Ωm

= −
d2

�
⟨Wm(x, y)⟩Ωm

∇xp
(0)
m
(x),

(4)

∇x ⋅ ⟨u
(0)
m
(x, y)⟩Ωm

=

−
LpS

tot

�Ωtot
m
�

�

p(0)
m
(x) − p(0)

v
(x) − �

�

�m − �v
��

,

(5)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

K−1
m (x, y)Wm(x, y) − �∗ΔyWm(x, y) − � +

(

∇ygm(x, y)
)T = � in Ωm,

∇y ⋅Wm(x, y) = � in Ωm,
WT

m(x, y)n = � on Γ,

WT
m(x, y)� = −

√

Km(x,y)
�

[(

∇yWT
m(x, y)

)

n
]

� on Γ,
⟨gm(x, y)⟩Ωm

= � in Ωm.

Fig. 1  A 2D representation of 
the microscale and macroscale 
geometries. On the left-hand 
side, there is a sketch of the 
macroscale of the lymph node. 
On the right-hand side, there is 
the periodic cell representing 
the microscale
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the hydraulic conductivity of the phase Ωm , �∗ is the ratio 
between the effective viscosity �e (Brinkman 1949) and the 
fluid viscosity � , � is the Beavers-Joseph-Saffman param-
eter (Beavers and Joseph 1967; Saffman 1971), and gm is a 
vector obtained exploiting the asymptotic homogenization 
technique in Girelli et al (2023). The last equation of system 
(5) ensures the uniqueness of the solution.

For the macroscopic model of the fluid flow for the blood 
vessel phase Ωv , we have

where Kv is the hydraulic conductivity of the phase Ωv , u(0)v
 

and p(0)
v

 are the leading-order velocity and pressure of the 
asymptotic homogenization expansion presented in the 
model of Girelli et al (2023) of the phase Ωv , respectively; 
gv is a vector obtained by the solution of the following cell 
problem (obtained by the asymptotic homogenization tech-
nique in Girelli et al (2023)):

Again, the last equation of system (8) ensures the uniqueness 
of the solution.

We assume to have an afferent lymphatic vessel at the upper 
part of the lymph node and an efferent lymphatic vessel at 
the lower part. The boundary conditions that we impose are: 
uniform flow velocity vin as inlet condition in the upper lym-
phatic vessel, the pressure pout as outlet condition in the lower 
lymphatic vessel, no-slip condition at the external wall. At the 
macroscopic interface ΓM between the free fluid region (SCS) 
and the porous region (LC) we impose the following interface 
conditions (Discacciati and Quarteroni 2009)

(6)
⟨u(0)

v
(x, y)⟩Ωv

=

−
d2

�
⟨Kv(x, y)

�

� + (∇ygv(x, y))
T
�

⟩Ωv
∇xp

(0)
v
(x)

(7)

∇x ⋅ ⟨u
(0)
v
(x, y)⟩Ωv

=

LpS
tot

�Ωtot
v
�

�

p(0)
m
(x) − p(0)

v
(x) − �

�

�m − �v
��

,

(8)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇y ⋅

�

∇ygv(x, y)Kv(x, y)
T
�

=

−∇y ⋅ Kv(x, y)
T , in Ωv

�

∇ygv(x, y)Kv(x, y)
T
�

⋅ n =

−Kv(x, y)
T
⋅ n on Γ,

⟨gv(x, y)⟩Ωv
= 0 in Ωv.

(9)uf ⋅ nM = ⟨u(0)
m
⟩Ωm

⋅ nM

(10)−
(

T(uf , pf )nM
)

⋅ nM = p(0)
m

(11)uf ⋅ �M
j
= −

√

Km

�M

��

nM ⋅ ∇
�

uf
�

⋅ �
M
j

where T is the Cauchy stress tensor of the free-fluid region, 
Km is the macroscopic permeability (obtained from the cell 
problem (5) of the phase Ωm , that in our specific case is 
constant due to the isotropy of the porous medium, i.e. 
Km(x) ≡ K� , where � is the second order identical tensor), 
�M is a parameter that needs to be estimated and depends on 
the physicochemical properties of the interface (Irons et al 
2017), nM is the normal vector related to ΓM , and �M

j
 for 

j = 1, 2 are the tangents related to the normal nM . The last 
interface condition is the so-called Beavers-Joseph-Saffman 
boundary condition (BJS). The BJS is an interface condition 
formulated experimentally in Beavers and Joseph (1967); 
Saffman (1971).

Equation (11) can be simplified letting �M → ∞ , which 
gives (Discacciati and Quarteroni 2009; Auriault 2010)

Using (12) in place of (11) we get a difference of about � 
with respect to the whole BJS (Discacciati and Quarteroni 
2009).

Remark 1 We note that the Beavers-Joseph-Saffman bound-
ary conditions were found experimentally in Beavers and 
Joseph (1967); Saffman (1971) and demonstrated in Jäger 
and Mikelić (2000, 2009), but only in a 2D laminar case 
(as mentioned in Auriault (2010)), and the extension to a 
generic geometry is non-trivial (Eggenweiler and Rybak 
2021; Shipley and Chapman 2010). Moreover, in Auriault 
(2010) they employ an asymptotic homogenization expan-
sion to study the interface between a free-fluid region and a 
porous region, and they found that the simplified boundary 
condition (12) is also valid for correctors of order higher 
than � . For these reasons, for most of the paper, we will con-
sider the simplified boundary condition (12), although some 
comparisons with the BJS boundary condition are made for 
the sake of completeness.

3  Numerical simulations

In this section we solve numerically the macroscopic flow 
related to the model described in the previous section, aimed 
at coupling the motion of the flow in the subcapsular sinus 
(SCS) and the lymphoid compartment (LC) in a steady set-
ting. Indeed, in Girelli et al (2023), we supposed a given 
pressure distribution for the SCS and we imposed this pres-
sure as a boundary condition for the porous bulk region 
(the LC). However, in general, we need to couple these two 
domains.

The physiological data are the same as in Girelli et al 
(2023, Appendix B), and they are summarized in Table 1. 

(12)uf ⋅ � j = 0 on ΓM , j = 1, 2.
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The cell problems (5) and (8) are solved using COMSOL 
Multiphysics in the same way as we did in Girelli et al (2023, 
Appendix C); the solution method is given in Sect. 4 for the 
reader’s convenience.

Here we discuss the weak formulation in the general 
case of the boundary conditions (9)– (11). Consider a test 
function

where Ω is the domain of the problem, H1(Ω) is the usual 
Sobolev space, and ΓD is the portion of the boundary where 
we have the Dirichlet boundary condition uf

|�ΓD

= g ; by 
using the classical weak formulation of the Stokes equation 
(1), we can focus on the boundary term of this weak form 
− ∫

ΓM
n ⋅ T(uf , pf ) w , so that the weak formulation of the 

interface conditions (9-11) can be written as (Discacciati and 
Quarteroni 2009)

w ∈ Wg = {w ∈ H1(Ω) ∶ wΓD
= g},

and hence we have, using (10) and (11)

We use the finite element method to solve numerically the 
Stokes equation and the macroscopic model given in Sect. 2 
using COMSOL Multiphysics. To have more information 

(13)

− ∫ΓM

n ⋅ T(uf , pf ) w =

− ∫ΓM

[

n ⋅ T(uf , pf ) ⋅ n
]

w ⋅ n

− ∫ΓM

2
∑

j=1

[

n ⋅ T(uf , pf ) ⋅ � j
]

w ⋅ � j,

(14)

− ∫ΓM

n ⋅ T(vf , pf ) w = ∫ΓM

p(0)
m
(w ⋅ n)

+∫ΓM

2
�

j=1

��M
√

K

�

uf ⋅ � j
��

w ⋅ � j

�

=

∫ΓM

(p(0)
m

⋅ n)w

+∫ΓM

2
�

j=1

�

��M
√

K

�

uf ⋅ � j
�

⋅ � j

�

w.

Table 1  Physiological and estimated parameters. For a complete review, we refer to Girelli et al (2023, Appendix B)

Name Physiological Range/Value Description

R 0.49 mm Macroscopic radius (Birmingham et al 2020; Giantesio et al 2022)
a, b 0.5 mm, 0.35 mm Major and minor spheroidal semiaxes (Jafarnejad et al 2015)
h 0.01 mm Subcapsular sinus height (Jafarnejad et al 2015; Ohtani and Ohtani 2008)
� 1

mg

mm s
Viscosity (Moore Jr and Bertram 2018; Bertram et al 2017)

� 0.75 Porosity (Shanti et al 2020)
�e

�

�
Effective viscosity (Ochoa-Tapia and Whitaker 1995a, b; Brinkman 1949; Tan and Pillai 2009)

�0 1
mg

mm3
Density (Moore Jr and Bertram 2018; Bertram et al 2017)

K̂m
3.84 × 10−9  mm2 Permeability of the interstitium (Shanti et al 2020; Savinkov et al 2017)

� 0.88 − 0.9 Staverman’s coefficient (Jafarnejad et al 2015; Cooper et al 2016, 2018; Tretiakova et al 2021)
�v − �m 3.41 × 105 − 2.08 × 106 mPa Oncotic pressure difference (Jafarnejad et al 2015; Cooper et al 2016, 2018; Tretiakova et al 

2021; Adair et al 1982; Adair and Guyton 1983, 1985; Stohrer et al 2000)
Lp 5.475 × 10−12 − 3.67 × 10−8

mm

s mPa
Hydraulic conductivity of the blood vessel walls(Jafarnejad et al 2015; Cooper et al 2016, 2018; 

Tretiakova et al 2021)
p̄v 6.67 × 105 − 1.066 × 106 mPa Mean blood vessel pressure (Jafarnejad et al 2015; Cooper et al 2016, 2018; Tretiakova et al 

2021)
Stot, |Ωtot

v
| 13.4  mm2, 0.0322  mm3 Blood vessel surface and volume (Jafarnejad et al 2019; Kelch et al 2015)

N 1310 Number of cells (Girelli et al 2023, Appendix B)
rc, d 1.7 × 10−3 mm, 2 × 10−2 mm Microscale cylinders radius and mean distance (Girelli et al 2023)
L 1 mm Coarse scale characteristic length

Kv

d2

�
1.1 × 10−6

mm3 s

mg

Hydraulic conductivity of the blood vessels computed using the Kozeny-Carman formula 
(Kozeny 1927; Carman 1997; Girelli et al 2023)

K̄m 3.65 × 10−9
mm3 s

mg

Macroscopic interstitial hydraulic conductivity (solving system (5))

K̄v 4.12 × 10−7
mm3 s

mg

Macroscopic blood hydraulic conductivity (solving system (8))

vin 0.22
mm

s
Inlet velocity (Blatter et al 2016)

� 1 Beavers-Joseph-Saffman parameter of the cell problem (5)
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about the weak formulation of the Stokes equation, we 
refer to Formaggia et al (2009); Giantesio et al (2022). 
We implement this flow in COMSOL using the creeping 
flow module for the Stokes equation (1), with the Taylor-
Hood element ℙ3

2
− ℙ1 ; this means that, given a triangu-

lation T  of the domain Ω , we approximate the velocity 
and the pressure with the piecewise polynomial spaces 
ℙ
3
2
=
(

P2(T)
)3

∩ H1
0
(Ω) and ℙ1 = P1(T) ∩ L2

0
(Ω) , respec-

t ively,  where Pk(T) = {g ∈ C(Ω) ∶ g
�
∈ ℙ2,∀� ∈ T} , 

H1
0 (Ω) = {w ∈ H1(Ω):w

|�Ω = 0} , L20(Ω) = {w ∈ L2(Ω) ∶ w
|�Ω = 0} , 

H1(Ω) is a Sobolev space and L2(Ω) is a Banach space. To 
implement the boundary condition (14), we use the general 
stress boundary condition of COMSOL. Moreover, from 
equations (3), (4), (6), and (7), we have that the Darcy prob-
lems can be written as diffusion problems for the pressure 
and we refer to Quarteroni and Valli (1994); Johnson (1987); 
Quarteroni et  al (2007) for more information about the 
weak formulation and the numerical methods used to solve 
this kind of problem. For these equations, we use Darcy’s 
law module of COMSOL with a quadratic discretization. 
We solve these equations together using the fully coupled 
MUMPS direct solver.

3.1  Numerical simulations—spherical geometry

In this section, we numerically solve the model described in 
the previous sections in a simplified spherical geometry. We 
can see the 3D geometry of our problem in Fig. 2, where we 
refer to 2D concepts such as the polar angle and arc length 
because the 3D geometry exhibits symmetrical properties 
that allow for these 2D measurements to be relevant. Due to 
this symmetry, we have that the velocity is near zero at the 
axis of symmetry, i.e. at polar angle 0 and � in accordance 

with the results found with the stream function approach 
used to solve the Stokes equation (see Giantesio et al 2022). 
The numerical results have been compared and validated 
with the analytical solution given in Girelli et al (2023).

First of all, we want to see the effect of the Beavers-
Joseph-Saffman parameter �M in the interface condition 
(11). As we can see from the interface condition (11), we 
obtain the simplified interface condition (12) when �M → ∞ . 
In Fig. 3 we can see the velocity magnitude and the pres-
sure values with �M = 1 and �M → ∞ , and, as we can see, 
we have that this parameter does not influence much the 
velocity and the pressure in the whole domain (Shipley and 
Chapman 2010; Irons et al 2017). For this reason and for 
the reasons explained in Remark 1, from now on we fix the 
value �M → ∞ , which means we use the simplified interface 
condition (12).

In Fig. 4 we can see the interstitial pressure pm values in 
the LC varying the parameter Lp . We have similar behav-
ior to the one found in Girelli et al (2023): increasing Lp 
decreases the minimum of the interstitial pressure pm (and 
increasing the maximum of the blood vessels pressure pv ) 
and moves the minimum towards the center of the node. This 
behavior is due to a combination of the pressure variation 
given by the pressure of the Stokes flow in the SCS and the 
fluid exchange between phases. The values we found with 
these simulations are similar to the ones found in Girelli et al 
(2023) but slightly different: this is why it is important to 
take into account the coupling between the SCS and the LC.

Given a uniform inlet velocity of vin = 0.22
mm

s
 , the inlet 

fluid flow computed numerically is ≈ 1.083 × 10−3
mm3

s
 (with 

a relative error of about 1.5% from the value computed ana-
lytically of 1.1 × 10−3

mm3

s
 ). Part of the lymph goes from the 

SCS to the LC (and then back to the blood circulation), and 

Fig. 2  On the left, the mesh of the 3D simplified spherical geometry of our problem, inspired by a mouse popliteal lymph node as in Giantesio 
et al (2022); Girelli et al (2023). On the right, a representative plot of the geometric section parameters utilized throughout the entire paper
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the remaining part goes out from the efferent lymphatic ves-
sels: these quantities change with the parameter Lp , and we 
can see some results in Table 2. The sum of the columns 
“Outlet Flow” and “SCS → LC” must result approximately 
in the inlet fluid flow value ≈ 1.083 × 10−3

mm3

s
 . As expected, 

increasing Lp means increasing the fluid flow from the SCS 
to the LC, and it follows a lesser outlet fluid flow. We can see 
this behavior in Fig. 5, where the velocity near the efferent 
lymphatic vessel decreases as Lp increases.

We observe that varying the other parameters gives 
results with behavior similar to what we found in Girelli 
et al (2023).

The plots and the data above are obtained with 
pout = 6.18 × 105  mPa, that is a value inspired by the 
experiments of Bouta et al (2014) (the minimum of the 
value range); in Jafarnejad et al (2015) they used a value of 
pout = 4 × 105 mPa, and in Cooper et al (2016, 2018) they 
used a value of pout = 0 mPa. Considering that the value of 
the pressure is important to study the fluid exchange between 
phases, we want to see the differences between using a dif-
ferent outlet pressure. Hence now we fix pout = 4 × 105 mPa. 
In the second part of Table 2 we can see the fluid flow com-
puted with different Lp in this case; as we can see, to have 
the same outlet fluid flow (and the same SCS → LC fluid 

Fig. 3  The first two plots (upper plots) represent the velocity mag-
nitude in the SCS in mm

s
 with respect to the arc length spanning the 

polar angle from 0 to �  as shown in Fig. 2, with two different value 
of �M = 1 and �M → ∞ . The lower two plots represent the pressure 
values in the LC in mPa with �M → ∞ and the pressure difference 

between the pressures pm with the values of �M → ∞ and �M = 1 , 
normalized with respect to pout . As we can see, the general value 
does not change much with respect to �M . Here we used the param-
eters vin = 0.22

mm

s
 , pout = 6.18 × 105  mPa, �v − �m = 1.02 × 106  mPa, 

Lp = 5.475 × 10−11
mm

s mPa
 and p̄v = 1.06 × 106 mPa

Table 2  Outlet fluid flow and the fluid flow passing through the 
external surface of the LC from the SCS in mm3

s
 varying the capil-

laries permeability L
p
 . Here we used the parameters vin = 0.22

mm

s
 , 

pout = 6.18 × 105 mPa – 4 × 105 mPa, �
v
− �

m
= 1.02 × 106 mPa, and 

p̄
v
= 1.06 × 106 mPa

L
p

Outlet Flow SCS → LC pout

5.475 × 10−12
mm

s mPa 1.05 × 10−3
mm3

s
3.44 × 10−5

mm3

s
6.18 × 105 mPa

1 × 10−11
mm

s mPa 1.02 × 10−3
mm3

s
6.28 × 10−5

mm3

s

1.6 × 10−11
mm

s mPa 9.83 × 10−4
mm3

s
1 × 10−4

mm3

s

3 × 10−11
mm

s mPa 8.97 × 10−4
mm3

s
1.87 × 10−4

mm3

s

5.475 × 10−11
mm

s mPa 7.44 × 10−4
mm3

s
3.4 × 10−4

mm3

s

7.94 × 10−11
mm

s mPa 5.93 × 10−4
mm3

s
4.9 × 10−4

mm3

s

5.475 × 10−12
mm

s mPa 1.065 × 10−3
mm3

s
1.84 × 10−5

mm3

s
4 × 105 mPa

1 × 10−11
mm

s mPa 1.058 × 10−3
mm3

s
3.35 × 10−5

mm3

s

1.6 × 10−11
mm

s mPa 1.01 × 10−3
mm3

s
5.35 × 10−5

mm3

s

3 × 10−11
mm

s mPa 9.83 × 10−4
mm3

s
1 × 10−4

mm3

s

5.475 × 10−11
mm

s mPa 8.8 × 10−4
mm3

s
1.82 × 10−4

mm3

s

7.94 × 10−11
mm

s mPa 8 × 10−4
mm3

s
2.62 × 10−4

mm3

s
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flow) as in the case with pout = 6.18 × 105 mPa, we need a 
higher value of Lp . If we fix the same outlet fluid flow value 
of ≈ 9.83 × 10−4 mm3

s
 (that is chosen by the fact that more than 

90% of the lymph remain in the SCS without entering the LC 
(Jafarnejad et al 2015)), we have Lp = 1.6 × 10−11

mm

s mPa
 for 

pout = 6.18 × 105 mPa and a value of Lp = 3 × 10−11
mm

s mPa
 for 

pout = 4 × 105 mPa. As we can see in Fig. 6, with these dif-
ferent values we have the same pressure behavior and range 
but with different pressure values.

In Fig. 7 we can see the outlet flow computed in the 
efferent lymphatic vessel varying p̄v and Lp . As we can see, 
increasing Lp results in decreasing the outlet flow (and a 
consequent increase of the fluid that goes into the LC, as we 
can see above); instead, increasing p̄v results in increasing 
the outlet flow (and a consequent decrease of the fluid that 
goes into the LC). Moreover, we can see that there is a linear 
relation between the outlet flow computed and the variation 
of the parameters p̄v and Lp : a similar behavior is reported 
in Jafarnejad et al (2015).

From the simulations we can estimate the pressure p̄v 
for which we have an inversion of the fluid exchange flow 
direction: when we have pout = 6.18 × 105 mPa, we have 
a flow inversion at p̄v = 1.54 × 106 mPa ≈ 11.6  mmHg, 
similar to the ones found in Girelli et al (2023); instead, 

for pout = 4 × 105 mPa, we have a f low inversion at 
p̄v = 1.35 × 106 mPa ≈ 10.1 mmHg, similar to the one found 
in Jafarnejad et al (2015).

In Fig. 8 we can see the velocity magnitude and the 
velocity behavior inside the lymph node: as we can see, 
the velocity inside the porous bulk region (the lymphoid 
compartment) is extremely lower with respect to the one 
in the subcapsular sinus. The velocities that we found in 
our simulations inside the lymphoid compartment are in 
agreement with the founding in the literature, where the 
velocity range from 1.5 × 10−5

mm

s
 to 6 × 10−4

mm

s
 (Shanti 

et al 2020; Chary and Jain 1989; Jafarnejad et al 2015; 
Tomei et al 2009; Dafni et al 2002). If we compare this 
solution with the one that we found analytically in Girelli 
et al (2023) using a given pressure distribution found by 
the stream function approach in Giantesio et al (2022), 
the qualitative behavior remains the same (a higher pres-
sure near the inlet, a lower pressure near the outlet, and a 
lower pressure region near the center of the node, and the 
same for the velocity), but here we have a higher maximum 
velocity respect to the values we found analytically: this is 
because here we couple the fluid flow in the SCS with the 
fluid flow in the LC, and this allows us to find more precise 
boundary data for the LC.

Fig. 4  The interstitial pressure values pm in the LC with different values of Lp . Here we used the parameters vin = 0.22
mm

s
 , 

pout = 6.18 × 105 mPa, �v − �m = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa
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3.2  Numerical simulations—oblate spheroidal 
geometry

In this section we numerically solve the model presented in 
the previous sections in a more realistic lymph node geometry. 
Indeed, a lymph node generally has an oblate spheroidal shape 
(Birmingham et al 2020; Jafarnejad et al 2015; Tretiakova et al 

2021; Giantesio et al 2021). We represent this geometry in the 
x − z plane in this way

with major semiaxis a = 0.5  mm, minor semiaxis 
b = 0.35 mm (Jafarnejad et al 2015), and subcapsular sinus 

(15)
[

x

z

]

=

[

a cos �

b sin �

]

,

Fig. 5  The velocity magnitude in the center of the SCS with respect 
to the arc length spanning the polar angle from 0 to � as shown in 
Fig.  2, with different values of Lp . Here we used the parameters 

vin = 0.22
mm

s
 , pout = 6.18 × 105 mPa, �v − �m = 1.02 × 106 mPa, and 

p̄v = 1.06 × 106 mPa

Fig. 6  The pressure values in the LC with different values of pout and Lp but with the same fluid flow values of Tables 2 and 3.1. Here we used 
the parameters vin = 0.22

mm

s
 , �v − �m = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa
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Fig. 7  The outlet flow computed in the efferent lymphatic vessel with 
different values of p̄v (on the left) and Lp (on the right), with the fluid 
flow values of Table 1. Here we used the parameters vin = 0.22

mm

s
 , 

�v − �m = 1.02 × 106  mPa, Lp = 5.475 × 10−11
mm

s mPa
 (for the plot on 

the left) and p̄v = 1.06 × 106 mPa (for the plot on the right)

Fig. 8  The velocity magnitude computed in the subcapsular sinus 
center with respect to the spherical arc length spanning the polar 
angle from 0 to � as shown in Fig. 2 (upper on the left) and on the 
lymphoid compartment (upper on the right) and the velocity mag-

nitude together with the velocity arrows in the LC (lower), with 
the fluid flow values of Tables  2. Here we used the parameters 
vin = 0.22

mm

s
 , �v − �m = 1.02 × 106  mPa, Lp = 5.475 × 10−11

mm

s mPa
 

and p̄v = 1.06 × 106 mPa
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thickness h = 10 � m (Jafarnejad et al 2015; Giantesio et al 
2022). It follows that the parametric equation that describes 
the LC geometry on a x − z plane is

We can see the 3D geometry in Fig. 9 (where we rotate the 
2D geometry described above with respect to the z-axis).

As in Sect. 3.1, we use the no-slip interface condition (12) 
because, as happens in the spherical case, the behavior of the 
result with different �M is very similar.

We can see the shear stress at the interface between the 
SCS and the LC in Fig. 10 with respect to the arc length of 
the interface varying the inlet velocity. As we can see, we 
have the maximum shear stress near the inlet (arc length near 
zero) and then, near the outlet (arc length near � ) we have a 
local maximum but smaller than the inlet one; this happens 
because part of the lymph “vanishes” from the lymph node 

(16)
[

x

z

]

=

[

a cos �

b sin �

]

− h

[

1

a2
cos �

1

b2
sin �

]

√

cos2 �

a4
+

sin2 �

b4

.

due to the fluid exchange with the blood vessels inside it and 
this result in a lesser outlet flow (and lesser shear stress near 
the outlet). Increasing vin also increases shear stress; for the 
shear stress curve obtained with vin = 0.58

mm

s
 , we obtain 

the same behavior and values obtained in Jafarnejad et al 
(2015). The importance of this behavior at the interface lies 
in its direct connection to cell adhesion on the exterior of the 
LC, which correlates directly with shear stress (Birmingham 
et al 2020). Furthermore, it is worth noting that shear stress 
also plays a crucial role in certain pathologies, for instance, 
B-cell lymphoma (Apoorva et al 2018).

In Fig. 11 we can see the interstitial pressure behavior 
with different Lp . As we can see, increasing Lp results in 
a decrease of the minimum pressure and the moving of 
this minimum towards the center of the node. This behav-
ior means that, as Lp increases, more lymph moves from 
the lymph node to the blood vessels inside it, resulting in a 
lesser outlet fluid flow. We can see this behavior in Fig. 12. 
This is the same behavior that we found in the spherical 
case. Varying the other parameters results in the similar 
behavior we found for the spherical case in Sect. 3.1 and in 

Fig. 9  On the left, the mesh of the 3D geometry of our problem, inspired by a mouse popliteal lymph node (Jafarnejad et al 2015). On the right, 
a representative plot of the geometric section parameters utilized throughout the entire paper

Fig. 10  Shear stress at the 
interface between the SCS and 
the LC in mPa varying the inlet 
velocity (in mm

s
 ) with respect 

to the spheroidal arc length 
spanning the ellipsoidal angle 
from 0 to � as shown in Fig. 9. 
We use these chosen param-
eters: pout = 6.18 × 105 mPa, 
�v − �m = 1.02 × 106 mPa, 
Lp = 5.475 × 10−11

mm

s mPa
 and 

p̄v = 1.06 × 106 mPa
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Girelli et al (2023). Moreover, we have that with the same 
value of Lp , for the spheroidal case we have a higher outlet 
fluid flow. In particular, if we fix, for instance, the value 
Lp = 3 × 10−11

mm

s mPa
 , we have for the spherical case an outlet 

flow of 8.97 × 10−4
mm3

s
 (see Table 2), instead for the sphe-

roidal case we have an outlet flow of 9.6 × 10−4
mm3

s
.

We can see better how the parameters that regulate the 
fluid exchange between the lymph and the blood vessels 

affect the outlet fluid flow in the plots of Fig. 13. As we 
can see, increasing Lp and Δ� results in a linear decrease 
of the outlet fluid flow, meaning that more lymph moves 
in the blood vessels; instead, increasing p̄v results in a 
linear increase of the outlet fluid flow, meaning that 
less lymph moves inside the blood vessels. This behav-
ior is in agreement with the findings of Sect. 3.1 and of 
Girelli et al (2023); Jafarnejad et al (2015). Moreover, 
for pout = 6.18 × 105 mPa, we have a flow inversion at 

Fig. 11  The interstitial pressure values pm in the LC with different values of Lp . Here we used the parameters vin = 0.22
mm

s
 , 

pout = 6.18 × 105 mPa, �v − �m = 1.02 × 106 mPa, and p̄v = 1.06 × 106 mPa

Fig. 12  The velocity magnitude 
(in mm/s) in the SCS center 
with respect to the spheroi-
dal arc length spanning the 
ellipsoidal angle from 0 to � (as 
shown in Fig. 9) with differ-
ent values of Lp . Here we used 
the parameters vin = 0.22

mm

s
 , 

pout = 6.18 × 105 mPa, 
�v − �m = 1.02 × 106 mPa, and 
p̄v = 1.06 × 106 mPa
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p̄v = 1.54 × 106 mPa ≈ 11.6mmHg , similar to the ones 
found in Girelli et al (2023) and the same we found for 
the spherical case.

The last plot (lower-right) of Fig. 13 describes the vari-
ation of the outlet flow with respect to the inlet velocity 
vin . In this case, we normalize the outlet flow with respect 
to the inlet flow (computed as �R2

LV
vin ) to see the % of the 

fluid that reaches the efferent lymphatic vessel; moreover, 
it is obvious that increasing the inlet flow results in an 
increasing of the outlet flow too, therefore, normalization 
is performed to mitigate the presence of this behavior as 
well. As we can see, increasing the inlet velocity vin results 
in an increase of the normalized outlet flow, meaning that 
a greater % of the lymph reaches the efferent vessel. This 
happens because increasing the inlet velocity means that 
the residence time of the lymph in the node decreases, 

which means a lesser time for fluid exchange inside the 
node. This result is found experimentally in Adair et al 
(1982).

In Fig.  14 we can see the velocity behavior inside 
both the SCS and the LC with two different values of Lp : 
Lp = 5.475 × 10−11

mm

s mPa
 is the same value that we used in 

Fig. 8 of Sect. 3.1, and Lp = 2 × 10−11
mm

s mPa
 is the value 

for which about 90% of the afferent lymph goes out of 
the lymph node from (as found in Jafarnejad et al 2015). 
As in the spherical case, the velocity inside the lymphoid 
compartment is extremely lower with respect to the one in 
the subcapsular sinus. The biological motivation is that B 
cells seem to engage in a progressive buildup of antigens 
over time, rather than experiencing instant activation upon 
encountering antigens. This implies the occurrence of mul-
tiple cycles of antigen acquisition, as indicated by Carrasco 

Fig. 13  The outlet flow (in mm3

s
 ) computed in the efferent lymphatic 

vessel with different values of Lp (upper-left), p̄v (upper right), Δ� 
(lower-left), and vin (lower-right, here the outlet flow is normal-
ized with respect to the flow values of �R2

LV
vin , and it is dimension-

less) with the fluid flow values of Table 1. Here we used the param-
eters (when not varying) vin = 0.22

mm

s
 , �v − �m = 1.02 × 106  mPa, 

Lp = 5.475 × 10−11
mm

s mPa
 and p̄v = 1.06 × 106 mPa
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and Facundo (2007). The significance of the porous region’s 
remarkably low velocity becomes evident, as it grants ample 
time for both antigens and cells carrying antigens to locate 
lymphocytes and initiate their activation, a point empha-
sized by Shanti et al (2020). Moreover, the maximum veloc-
ity inside the LC (in the region near the inlet condition) 
in the spheroidal case is slightly bigger than the spherical 
one but remains in the literature range from 1.5 × 10−5

mm

s
 

to 6 × 10−4
mm

s
 (Shanti et al 2020; Chary and Jain 1989; 

Jafarnejad et al 2015; Tomei et al 2009; Dafni et al 2002). 
Between the two plots with different Lp , the maximum veloc-
ity of the case with a smaller Lp is lesser than the one with a 
higher Lp : this is consistent because less fluid enters the LC 
when Lp is smaller.

Fig. 14  The velocity magnitude (in mm/s) computed at the center 
of the subcapsular sinus with respect to the spheroidal arc length 
spanning the ellipsoidal angle from 0 to � as shown in Fig. 9 (left) 
and the velocity magnitude together with the velocity arrows in 

the LC (right), with the fluid flow values of Tables  2 in a spheroi-
dal geometry, with two different values of Lp (in mm

s mPa
 ). Here we 

used the parameters vin = 0.22
mm

s
 , �v − �m = 1.02 × 106  mPa, and 

p̄v = 1.06 × 106 mPa

Fig. 15  The cell problem 
domains Ωv (left) and Ωm (right) 
in a non-dimensional form. The 
normalized cube has side 1 and 
the normalized tricylinder has 
radius r̄ = rc∕d
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4  Cell problem numerical simulations

In this section, we recall and discuss the numerical simu-
lations used to solve the cell problems (5) and (8) in the 
geometry represented in Fig. 15 and with the data of Table 1.

We assume that both porous media are isotropic, hence 
solutions of (5) and (8) becomes

where Wm and Gv are constants due to the hypotheses used.
We solve these cell problems using COMSOL Mul-

tiphysics in the same way as we did in Girelli et al (2023, 
Appendix C). We report the methods and the results here 
for the readers’ convenience. To address the cell problem 
described by equation (5) within the geometry Ωm , we 
employ the COMSOL Brinkman equations module, using 
a PARDISO solver. Moreover, we use a ℙ3

2
− ℙ1 discre-

tization for the fluid and pressure variables, respectively. 
Figure 16 displays the velocity solution in the e1 direction. 
It is noteworthy that the solution remains the same across 
all directions due to the symmetry of the geometry and the 
isotropy of the porous medium.

The value of the hydraulic conductivity ⟨Wm⟩Ωm
 in (3) 

computed by our simulation is

We perform an adaptive mesh refinement study to analyze 
the mesh used in our simulation, and we find a value of

giving a relative error of ≈ 0.026%.
The cell problem expressed by equation (8) within the 

geometry Ωv takes the form of Poisson’s equation. To solve 
it, we employ COMSOL Poisson’s equation module using 
quadratic element order for discretization, and we use 
MUMPS as the solver. We can see the solution in Fig. 17 

Wm = Wm�, ∇xgv = Gv�,

(17)⟨Wm⟩Ωm
≈ 9.1163 × 10−6.

(18)⟨W ref
m
⟩Ωm

≈ 9.1187 × 10−6,

computed in the direction e1 (as in the previous case, we 
have the same solution for every direction).

The value ⟨Gv⟩Ωv
 computed by our simulations for the 

hydraulic conductivity (6) is

Performing an adaptive mesh refinement study for this prob-
lem we find a value of

giving a relative error of ≈ 0.01%.

5  Conclusions

In this paper, we have presented some numerical results 
that describe the fluid flow in an entire lymph node. The 
scope of the paper was to couple the subcapsular sinus 
(free fluid region) with the model for the lymphoid com-
partment (porous bulk region) (Girelli et al 2023) in a 

(19)⟨Gv⟩Ωv
≈ −0.60060.

(20)⟨Gref
v
⟩Ωm

≈ −0.60054,

Fig. 16  The velocity solution of cell problem (5) in the geometry Ωm in a non-dimensional form using the physiological data of Table 1

Fig. 17  The solution of cell problem (8) in the geometry Ωv in a non-
dimensional form using the physiological data found in Table 1
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geometry more similar to a real lymph node to study in 
more detail the fluid flow inside the whole system. For 
this purpose, we have performed numerical simulations 
to study the behavior of the lymph inside the lymph node 
in different cases. In Sects. 2 and 3 we have studied the 
fluid flow using the Stokes equation in the subcapsular 
sinus (free-fluid region) and the model found in Girelli 
et al (2023) for the porous bulk region (lymphoid com-
partment). In particular, we have used two different geom-
etries: the simplified spherical geometry to compare the 
results with the analytical founding in Girelli et al (2023), 
and an oblate spheroidal geometry, which is more realistic 
to describe the lymph node (Jafarnejad et al 2015; O’Melia 
et al 2019; Tretiakova et al 2021; Giantesio et al 2021; 
Birmingham et al 2020; Shanti et al 2020) and to see the 
impact in using different geometries.

We have compared the results found in this paper with 
both data and findings available in the lymph node literature, 
and we have found that our results are in line with these data. 
Thanks to these simulations, we can study the lymph inside 
the lymph node in a more general and realistic geometry, and 
this affects the fluid behavior inside the node.

From these simulations, we were able to confirm that, 
even though the pressure in the blood vessels is higher 
than the interstitial pressure within the node, lymph flows 
from the node into the bloodstream. This happens because 
the blood vessels have a higher protein concentration with 
respect to the lymph. In our model, this behavior is rep-
resented by a sink term in the LC of the node, as we have 
shown in different plots of the solution. This sink term con-
tributes to the motion of lymph within the lymph node along 
with the pressure gradient generated by the movement of 
lymph within the SCS, thereby creating an intermediate 
situation between these two phenomena, regulated by the 
microscale interfacial properties between blood vessels and 
lymph. This clearly shows that the multiscale properties of 
the lymph node are highly significant. Furthermore, it seems 
that this phenomenon occurring within the lymph node has 
been crucial for the balance and regulation of fluid within 
the lymphatic system. Indeed, damage or removal of lymph 
nodes leads to a situation called lymphœdema, which is con-
nected to an impairment of lymphatic transport (Moore Jr 
and Bertram 2018; Tobbia et al 2009). Finally, understand-
ing the biophysical forces and the lymph movement inside 
the node can help in understanding the immune and drug 
transport in the whole lymphatic system (Arasa et al 2021; 
O’Melia et al 2019; Birmingham et al 2020; Shanti et al 
2020). In particular, a non-functioning lymphatic system can 
lead to a severe increase in the interstitial pressure which 
can in turn impair blood and drug convection within bio-
logical systems affected by cancer diseases, see, e.g., Jain 
et al (2007).

The current work is open for improvements. First, we can 
take into account the time behavior of the lymph inside the 
node, so that we can impose a pulsatile inlet condition for 
the velocity to mimic the lymphangion contraction (Girelli 
et al 2024). Moreover, it could be interesting to couple the 
fluid flow motion in the lymphangion and the lymph node 
together.

A very interesting extension of this model would be to 
incorporate the temporal and spatial dependence of protein 
and drug concentrations within the node, in both the FRC 
and the blood vessels network, to allow a more detailed 
description of the fluid exchange between these two phases 
(Penta et al 2015).

We simplified the model presented in Girelli et  al 
(2023) by assuming that multiscale forces were both zero; 
such forces can play a significant role, especially when uti-
lizing electromagnetic fields (for example in cancer hyper-
thermia, see Penta 2022; Al Sariri et al 2023). Therefore, 
it is essential to consider the influence of inhomogeneous 
volume loads when we get access to physiological data, as 
outlined in Penta et al (2020).

To simplify the model and address the scarcity of rel-
evant biological data, we employed a rigid porous matrix 
in this study. However, a possible improvement for this 
model in the future could involve integrating a deformable 
matrix that interacts with the lymph flow within the node.

Finally, we opted for an ellipsoidal shape (Jafarnejad 
et al 2015; Cooper et al 2016, 2018; Giantesio et al 2021; 
Tretiakova et al 2021; O’Melia et al 2019; Shanti et al 
2020). Acquiring more precise data on the lymph node 
morphology, potentially through the use of medical imag-
ing techniques, could facilitate the refinement of our mod-
eling approach, enabling us to numerically compute mac-
roscopic solutions. This advancement would empower us 
to generate meaningful physiological predictions in the 
future.
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