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Abstract. Many biological materials exhibit the ability to actively deform,
essentially due to a complex chemical interaction involving two proteins, actin

and myosin, in the myocytes (the muscle cells). While the mathematical de-

scription of passive materials is well-established, even for large deformations,
this is not the case for active materials, since capturing its complexities poses

significant challenges.

This paper focuses on the mathematical modeling of active deformation of
biological materials, guided by the important example of skeletal muscle tissue.

We will consider an incompressible and transversely isotropic material within a

hyperelastic framework. Our goal is to design constitutive relations that agree
with uniaxial experimental data whenever possible. Finally, we propose a novel

model based on a coercive and polyconvex elastic energy density for a fiber-

reinforced material; in this model, active deformation occurs solely through a
change in the reference configuration of the fibers, following the mixture active

strain approach. This model assumes a constant active parameter, preserving
the good mathematical features of the original model while still capturing the

essential deformations observed in experiments.

1. Introduction

The ability to actively deform is one of the key features of most biological ma-
terials, first of all muscle tissue [31]. The cardiac cycle, peristalsis, brain activity,
lymphatic pumping, and voluntary muscle contractions are all phenomena that re-
sult from an interplay between some chemo/electrophysiological reactions and a
modification of the mechanical properties of the material, leading to movement or
force generation.

The mathematical description of a passive material is a well-established field,
thanks to the powerful tools of Continuum Mechanics developed over the last two
centuries, which have contributed to the advancements in Civil Engineering [4]. The
main innovation in this field lies in the ability of biological materials to undergo large
deformations, requiring the use of Nonlinear Elasticity. In Section 3 we describe the
passive behavior of the muscle through a hyperelastic energy, which is a function
of a the invariants of the deformation gradients. This strategy is customary in
literature [4, 7]. After reviewing the main properties, we propose two examples
of passive energy which are polyconvex and coercive. More precisely, the first
energy is particularly popular in the literature for modeling skeletal muscle behavior
[10, 8, 11, 13, 15], while the second one is a new energy proposal for fiber-reinforced
materials. The material parameters of these two energies are chosen in such a way
that the stress capture the experimental trend reported in [23].

Conversely, a mathematical description of active deformation is more challenging,
because the mechanics can vary significantly between materials and is closely linked
to their microscopic properties [6]. For example, muscle contraction involves a cyclic
interaction between actin and myosin proteins, sustained by ATP supply [9, Ch. 6].
Since the process produces macroscopic effects, it is important to develop simpler
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and stable mathematical models at the macroscale that can be readily implemented
in standard numerical computing applications.

A crucial aspect is establishing a connection between the mathematical features
of the passive and active material. Ideally, within a hyperelastic setting, one would
prefer to deal with elastic potentials that are polyconvex and coercive, due to their
numerical stability and the compatibility with the methods of the Calculus of Vari-
ations [2, 5]. However, if active deformation is simply modeled via an additional
stress term fitted to experimental data (the so-called active stress approach, see
Sect. 4.1), this new term might cause the loss of the original mathematical proper-
ties. On the other hand, the active strain approach (see Sect. 4.2) aims to model
active deformation by a change of the reference configuration, without affecting the
functional form of the elastic potential; hence, the mathematical features of the
model can be preserved [1].

Nevertheless, for better agreement with the experimental data, the change in the
reference configuration is sometimes assumed to depend on the actual deformation
gradient, which again compromises the good properties of the original model [13].
Therefore, in Sect. 5.2 we propose a new model based on the mixture active strain
approach [35], where the change in reference configuration is constant and the
mathematical properties of the original model are maintained.

2. Skeletal muscle tissue and the experiment of Hawkins & Bey

Skeletal muscle tissue produces movement and force, maintains body posture
and stabilizes joints. Muscle fibers are the cells of this tissue: they have a preferred
alignment and they are composed of myofibrils. The filaments of actin and myosin
presented in the fibers are responsible for the contraction. Each individual fiber is
surrounded by connective tissue, which is essentially isotropic.

To describe the behavior of the muscle, we take advantage of the well-known
paper by Hawkins and Bey [23] which describes the stretch along the fibers and the
developed stress of a tetanized rat tibialis anterior. Other experimental models are
proposed in literature in order to capture the tension-elongation relations, see for
instance [21, 26, 36].

The experimental data obtained for the whole muscle in [23] are shown in Fig. 1.
These data were collected in two phases. First, the muscle is stretched in absence

of activation, and the passive response is measured. The stretching is performed
slowly (at a rate of about 1mm/s) in order to minimize viscous effects. Second,
the tissue is stimulated isometrically: after stretching the muscle at a given length,
the tissue is electrically activated up to its tetanized status, keeping the elongation
fixed, and then the stress is measured. Since in the activated case actin and myosin
in the fibers bind together, the shape of the stress-strain relation (total curve)
changes significantly compared to the passive curve.

The active curve (i.e. the curve due only to the contraction of the sarcomeres
and not to the elastic contribution of the tissues) is not directly measured by ex-
periments, but it is obtained by subtracting the passive force from the total one
(see Fig. 2).

3. Constitutive model

In this section we model the passive behavior of the tissue using standard notions
of Continuum Mechanics.

As it is customary, the motion of a body is described by an invertible smooth
map from a bounded subset Ω ⊂ R3 into R3: the function x = χ(X, t) associates
every point X in the reference configuration Ω with its current placement x. The



MODELING OF ACTIVE DEFORMATION IN BIOLOGICAL MATERIALS 3

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
stretch λ

0

20

40

60

80

100

st
re

ss
 [k

Pa
]

passive
total

Figure 1. Stress-stretch relationship of a rat tibialis anterior
muscle/tendon complex, as reported in [23]. The stress is com-
puted dividing the measured force by the cross-sectional area of
the whole muscle; the stretch is computed dividing the (instanta-
neous) distance between two markers by the distance between the
same markers in a state of zero stress. The compressive passive
stress (λ < 1) is essentially zero and has not been reported in the
figure.
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Figure 2. Difference between the total stress and the passive data
in [23].

deformation gradient

F = Gradχ, Fij =
∂χi

∂Xj
, i, j = 1, 2, 3

belongs to the space of linear operators with strictly positive determinant.
In the following, we set in the frame of hyperelasticity. For a hyperelastic mate-

rial, the first Piola (or nominal) stress tensor P, which describes the tensional state
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in a continuum medium, is derived from a strain energy density function W . By
assuming the principle of material frame indifference, W is a function of the right
Cauchy-Green tensor C = FTF, so that

(1) P
(
X,F(X)

)
= 2F(X)

∂W

∂C

(
X,C(X)

)
.

If the material is incompressible, it has to satisfy the constraint detF = 1 and the
expression of the Piola stress has to be written as

(2) P
(
X,F(X)

)
= 2F(X)

∂W

∂C

(
X,C(X)

)
− pF−T,

where p is the Lagrange multiplier of the constraint (the so-called hydrostatic pres-
sure). Hence the behavior of the elastic body is described by the hyperelastic strain
energy function ∫

Ω

W
(
X,C(X)

)
dX.

From now on, for the sake of simplicity we assume that the material is homogeneous,
so that W does not depend explicitly on X.

Let us list the additional assumptions that are important when modeling biolog-
ical tissues such as skeletal muscle.

• Incompressibility. In describing biological tissues it is customary to as-
sume that the material is incompressible, due to their typical high content
of water (more than 75% of the total volume in the case of skeletal muscle
tissue, see [28]). Then we will use (2) as the expression for the Piola stress
tensor.

• Transverse isotropy. It is due to the local alignment of the muscle fibers.
By introducing the direction m of the fibers in the reference configuration
and the structural tensor M = m ⊗ m, we can express the strain energy
density as a function of the two invariants

I1 = trC, I2 =
1

2

(
I21 − tr(C2)

)
and the two generalized invariants

I4 = tr(CM), I5 = tr(C2M)

which keep into account the transverse isotropy of the material (the third
invariant I3 = detC does not play any rôle since the material is incom-
pressible). Due to the Cayley–Hamilton Theorem, the invariant I2 and the
generalized invariant I5 can be replaced by

J2 = tr(C−1), J5 = tr(C−1M),

respectively (see [25]).

Moreover, when dealing with Nonlinear Elasticity, there are some assumptions
which are crucial in obtaining a mathematically well-posed model, the main two
being the following.

• Polyconvexity We recall that an energy density W (F) is polyconvex if
there is a convex function g : R19 → R such that

W (F) = g(F, cof F,detF),

where the cofactor matrix is defined by cof F = F−T detF for any invert-
ible matrix F. Polyconvexity is a suitable generalization of the notion of
convexity which is compatible with the usual requirements of Continuum
Mechanics.
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• Coercivity The energy density has to fulfil a growth condition of the form

W (F) ≥ α[|F|p + | cof F|q + |detF|r] + β

for some α > 0, β ∈ R, p ≥ 2, q ≥ p/(p− 1), r > 1 (see [5, Section 7.7]).

For a polyconvex and coercive material there is a deep and celebrated existence
result, due essentially to John Ball [2], for the equilibrium boundary-value problem
of Nonlinear Elasticity.

Several hyperelastic energies satisfy these requirements [4]; we now recall two
constitutive models which have been used in the modeling of biological tissues.

3.1. An example of polyconvex and coercive hyperelastic material. Typi-
cal experiments in muscle tissue show a non-linear J-shaped behavior, which can be
successfully described using exponential functions. In [11, 10] the passive behavior
of the material is modeled by the strain energy density function

(3) W (C) =
µ

4

{
1

α

[
eα(Ip−1) − 1

]
+

1

β

[
eβ(Kp−1) − 1

]}
,

where

Ip =
w0

3
tr(C) + (1− w0) tr(CM), Kp =

w0

3
tr(C−1) + (1− w0) tr(C

−1M),

together with the incompressibility constraint

detC = 1.

Thanks to the notation introduced previously, we can also write

Ip =
w0

3
I1 + (1− w0)I4, Kp =

w0

3
J2 + (1− w0)J5.

The tensor M = m⊗m is the structural tensor (m being the local orientation of the
fibers), µ is an elastic coefficient, α > 0 and 0 ≤ w0 ≤ 1 are dimensionless material
constants. The quantities Ip and Kp are weighted combinations of the isotropic
and anisotropic components; in particular, w0 measures the ratio of isotropic tissue
constituents and 1−w0 that of muscle fibers. Moreover, the term tr(CM) represents
the squared stretch in the direction of m and is thus associated with the elongation
of the fibers, while the term tr(C−1M) describes the change of the cross-sectional
area of a surface element which is normal to the direction m in the reference
configuration and thus relates to the transverse behavior of the material [39, 8].

Keeping into account that

∂Ip
∂C

=
w0

3
I+ (1− w0)M,

∂Kp

∂C
= C−1

[w0

3
I+ (1− w0)M

]
C−1,

the Piola stress tensor is given by

(4) P = 2F
∂W

∂C
− pF−T =

µ

2
F
{
eα(Ip−1)

[w0

3
I+ (1− w0)M

]
−eβ(Kp−1)C−1

[w0

3
I+ (1− w0)M

]
C−1

}
− pF−T,

where p is the hydrostatic pressure due to incompressibility.
One of the mathematical features of (3) is that it is polyconvex and coercive

[39, 11], hence the equilibrium problem with mixed boundary conditions is well
posed. We remark that C is the identity tensor I in the reference configuration,
so that Ip = Kp = 1, i.e. we have the energy- and stress-free state of the passive
muscle tissue.
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Figure 3. Passive stress of Sect. 3.1 for µ = 0.1599 kPa, α =
19.69, β = 1.19, w0 = 0.7388.

The material parameters of the model can be obtained from real data. The ex-
perimental data of [23] are collected during a uniaxial deformation along the fibers.
Hence we consider the uniform incompressible transversely isotropic deformation

(5) Fλ = λm⊗m+
1√
λ
(I−m⊗m),

so that λ =
√
I4.

It is now easy to compute Ppas(λ) = Pmm(Fλ) and, fitting the parameters, we
obtain Fig. 3, which is in very good agreement with the experimental data, except
for a small discrepancy in the interval between 1.1. and 1.3.

3.2. Fiber-reinforced materials. Another possible method is to model the mus-
cle as an additive composition of two phases, the isotropic phase described by the
energy Wiso and the transversely isotropic phase described by Wani:

(6) Wfrm = Wiso(I1, I2, I3) +Wani(I4, I5).

The strain energy density Wiso takes into account the isotropic constituents of the
tissue, while Wani describes the fibers and takes into account the contraction of the
tissue during the activation process (we will see in Sect. 4.3 why such a specification
will be useful in modeling the active deformation of the material).

In this paper we propose a new kind of energy, given by

(7)

Wiso(I1, J2) =
µ

4

{
1

α

[
eα(I1/3−1) − 1

]
+

1

β

[
eβ(J2/3−1) − 1

]}
,

Wani(I4, J5) = Wani,1(I4) +Wani,2(J5),

Wani(I4, J5) = −κ

[
e−p(

√
I4−s)2

√
I4 +

(
3− s

2

)
e−p(

√
J5−s)2

]
,

where κ, p and s are positive parameters.
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Figure 4. Passive stress of Sect. 3.2 for µ = 4.94 kPa, α = 30.5,
β = 2.08, κ = 71.81 kPa, s = 0.51, p = 0.0169.

Computing again them⊗m component of the Piola stress tensor for the uniaxial
deformation (5), we obtain Ppas(λ) = Piso(λ) + Pani(λ), where

(8)

Piso(λ) =
µ

4

{[
eα(I1/3−1) − 1

] ∂I1
∂λ

+
[
eβ(J2/3−1) − 1

] ∂J2
∂λ

}
,

I1 =
1

3

(
λ2 +

2

λ

)
, J2 =

1

3

(
1

λ2
+ 2λ

)
∂I1
∂λ

=
1

3

(
2λ− 2

λ2

)
,

∂J2
∂λ

=
1

3

(
− 2

λ3
+ 2

)
Pani(λ) = κp

[
(λ− s) (3λ− s) e−p(λ−s)2λ −

(
3− s

λ2

)(
1

λ
− s

)
e−p( 1

λ−s)2
]
.

We remark that Pani(1) = 0 for any choice of the parameters. Moreover, once
the parameters have been chosen as in Fig. 4, the energy is polyconvex.

By tuning the parameters on the experimental data, we obtain Fig. 4. This
model, in comparison to the previous one, will have better mathematical features
of the active deformation model that we will employ in Sect. 4.3.

4. Active deformation

It is now important to include in our mathematical model the mechanical effect of
activation. In the case of muscle tissue, the muscle fibers can contract thanks to the
sliding of actin and myosin filaments and produce an effect also on the connective
tissue. Several methods have been proposed in literature in order to describe the
active state of the tissue.

4.1. Active stress. Perhaps the easiest and widely used approach is the active
stress one: a new term is added in the expression of the stress tensor, which keeps
into account the active part of the stress. Hence the total stress is additively
decomposed as

(9) Ptot = Ppas + Pact,
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Fe = FF−1
a

F

Fa

Figure 5. Bilby-Kröner-Lee decomposition for the active strain approach.

where Pact is the active stress, which has to be constitutively provided. This ap-
proach has been widely used in the case of cardiac mechanics [32, 20, 34] as well as
in the case of skeletal muscle tissue [29, 3, 24].

To remain within the framework of hyperelasticity, the new term must be inter-
preted as the derivative of a new component of the energy, named active energy, so
that one has the additive decomposition

Wtot = Wpas +Wact.

This method is mainly phenomenological and does not account for the mechanics
of activation. More importantly, from a mathematical viewpoint the form of the
energy changes significantly and the mathematical properties can be lost.

4.2. Active strain. In this approach, the form of the strain energy function re-
mains unchanged; conversely, a multiplicative decomposition of the deformation
gradient is introduced.

Following the active strain approach [13], we rewrite the deformation gradient
using the Bilby-Kröner-Lee decomposition

(10) F = FeFa,

where Fe represents the elastic part and Fa describes the active contribution (see
Fig. 5). The active strain Fa signifies a change in the reference volume elements
due to sarcomere contraction, and therefore it does not store any elastic energy.
A reference volume element distorted by Fa requires further deformation by Fe to
match the actual volume element, which accommodates both the external forces
and the active contraction. Note that neither Fa nor Fe necessarily represents
the gradients of any displacement, meaning that they do not need to fulfill the
compatibility condition curlFa = 0 or curlFe = 0.

The volume elements are modified by the internal active forces without affecting
the elastic energy. Therefore, the strain energy function of the active material has
to be computed using Ce = FT

e Fe, considering Fe = FF−1
a . We then obtain the total

hyperelastic energy density

(11) Wtot(C) = (detFa)W (Ce) = (detFa)W (F−T
a CF−1

a ).

Therefore, instead of introducing a new part of the energy, the active part Fa of the
deformation gradient needs to be constitutively modeled. From a mathematical per-
spective, the active strain approach preserves the desired properties of the energy,
namely polyconvexity and coercivity, at least if Fa is assumed to be independent
of the deformation. However, in many cases it is convenient to assume that the
active part Fa changes with the deformation; in such cases the good mathematical
properties of the passive energy might be lost (see also the remark below).
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The active strain approach was first proposed by Taber and Perucchio [37] for
cardiac tissue and it has been developed by several authors (see for example [30, 1,
17, 18, 13]).

Remark 1. It is debatable whether the framework of hyperelasticity is appropriate
in the context of active materials. Indeed, the mechanics of biological activation
usually involves chemical reactions that can alter the energy balance, transforming
other forms of energy into elastic energy.

In the case of active strain, another subtle mathematical problem can occur. If
Fa is assumed to change with F, one has

W (F;Fa) = Wpas(FF
−1
a (F))

where we assumed for simplicity that detFa = 1. Hence the Piola stress tensor
should be given by

P =
∂Wpas

∂F
(FF−1

a )F−T
a + FT ∂Wpas

∂Fa

∂F−1
a

∂F
.

However, for biological tissues the simpler expression

P =
∂Wpas

∂F
(FF−1

a )F−T
a

is often used, as if Fa were not depending on F. Then, it is no more assured that the
Piola stress tensor is the derivative of a potential and the hyperelastic framework
can be lost. See [14] for a discussion about this topic.

4.3. Mixture active strain. In the case of a fiber-reinforced material (6), it can
be assumed that only the anisotropic component of the energy contributes to active
deformation. For instance, in the case of skeletal muscle, only the muscle fibers are
capable of shortening. Hence, the total strain energy of the active material is
expressed as

(12) Wfrm = Wiso(C) + (detFa)Wani(Ce).

If detFa = 1, the Piola stress tensor then writes

(13) Pfrm = Piso(F) + Pani(FF
−1
a )F−T

a − p̂F−T.

This approach has been considered in [12, 19, 33, 16, 35] and will be used in the
important example given in Sect. 5.2.

4.4. Mixed-active-stress-active-strain approach. In [27], the Authors propose
a new approach where the total stress is obtained in the following way

(14) Ptot =
∂W1

∂F
+

∂W2

∂Fe
F−T
a + Pa − p̂F−T.

In this case, the strain energy W is still divided into an isotropic contribution W1

and an anisotropic part W2, with only the latter contributing to active deforma-
tion, as in the mixture active strain approach. Additionally, an active stress Pa is
introduced to account for the coupling with the elastic matrix.

However, we believe that there are few benefits to pursuing this approach, since
it introduces an additional term akin to the active stress approach and does not
contribute in producing a well-posed mathematical model.
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4.5. Active Fibers. Finally, it should be mentioned that active deformation has
sometimes been described just by changing the zero-strain energy of contracting
fibers. More precisely, suppose that the passive energy is a function Wpas(I1, I2, I4),
then the total energy can be obtained by modifying the influence of the muscle fibers
properties through a factor a:

W = Wpas(I1, I2, I4 + a), 0 ≤ a < 1.

This approach is sometimes called active fibers and it has been applied in [10, 14, 22].

5. Two proposals for active strain-type models

In this section we focus on the active deformation approaches described in Sect. 4
which involve the multiplicative decomposition of the deformation gradient (10),
aiming to model skeletal muscle tissue using the data of Hawkins and Bey [23] as
a benchmark.

First of all, a suitable form of Fa must be chosen in order to apply the Bilby-
Kröner-Lee decomposition. A rather popular choice in literature [12, 15, 35] is the
following

(15) Fa = (1− a)m⊗m+
1√
1− a

(I−m⊗m),

where 0 ≤ a < 1 is a dimensionless parameter representing the relative contraction
of activated fibers (a = 0 meaning no activation).

This choice aims to take into account some macroscopic aspects of the contrac-
tion of the muscle tissue: without entering in the molecular details of the interaction
between proteins in the sarcomeres, the main mechanical output is that the acti-
vation in the muscle tissue induces a shortening of the muscle fibers, which results
in a shortening of the tissue in the direction of the fibers. The model (15) tries to
capture this essential physiological feature.

Notice that we assumed that detFa = 1, so that we describe a volume-preserving
active contraction along the fiber direction. Moreover, (15) and (10) imply that also
detFe = 1 and the material is elastically incompressible.

Other constitutive choices of Fa can be made such as an isotropic fibre dis-
tribution, a shortening along the compressible fibers [1, 30, 33, 13] or an active
deformation induced by shear strains [27].

5.1. Active strain model. We start from the exponential passive energy density
given in (3) and we apply an active strain approach using Fa given in (15).

Moreover, in order to accommodate the experimental data of Fig. 1, the activa-
tion parameter a cannot be constant [35]. Indeed, it is a key feature of the skeletal
muscle tissue that the active part of the stress grows with the stretch until a maxi-
mum and then decreases; this behavior is probably due to the molecular structure
of the sarcomere, in which the overlap between actin and myosin depends also on
the stretch [38, 10]. Hence we assume that the activation parameter a depends on
the deformation. A reasonable choice is to take a as a function of the (squared)
stretch along the fibers, which is measured by

I4 = tr (CM),

so that Fa = Fa(I4). In that case, taking into account that detFa = 1, the corre-
sponding first Piola stress tensor is given by

(16) P̂ = 2F
∂Ŵ

∂C
− p̂F−T = 2F

∂

∂C

[
W

(
F−T
a (I4)CF

−1
a (I4)

) ]
− p̂F−T,

where p̂ accounts for the incompressibility constraint detC = 1.
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Figure 6. The activation function (18) with p0 = −11.89, p1 =
58.23, p2 = −107.66, p3 = 98.04, p4 = −44.46, p5 = 8.03.

Taking into account the form of Fa given in (15) and the expression of the
energy (11), substituting in (3) one gets

(17) Ŵ (λ, a(λ)) =
µ

4

[
1

α
(eα(Ie−1) − 1) +

1

β
(eβ(Ke−1) − 1)

]
,

where

λ =
√
I4 =

√
trCM,

Ce =
λ2

(1− a)2
m⊗m+

1− a

λ
(I−m⊗m),

Ie =
w0

3
tr(Ce) + (1− w0) tr(CeM) =

(
1− 2

3
w0

)
λ2

(1− a)2
+

2w0

3λ
(1− a),

Ke =
w0

3
tr(C−1

e ) + (1− w0) tr(C
−1
e M) =

(
1− 2

3
w0

)
(1− a)2

λ2
+

2w0λ

3(1− a)
.

We now look for a polynomial expression of a(λ) of the form

(18) a(λ) = p5λ
5 + p4λ

4 + p3λ
3 + p2λ

2 + p1λ+ p0,

where pj , j = 0, . . . , 5 are the fitting parameters.
The profile of a(λ) can be obtained numerically by least squares optimization of

the equation
Ptot(λ, a(λ)) = total data ,

where Ptot = tr(P̂M) represents the component along M of the total first Piola
stress tensor (16). We can directly compute Ptot from the corresponding strain
energy density (17):

Ptot(λ, a(λ)) =
∂Ŵ

∂λ
(λ, a(λ)).

where, as is customary in active strain, we neglect the term involving the derivative
of a(λ) with respect to λ (see Remark 1).

The behavior of a(λ) is shown in Fig. 6 and the plots of the total and active
stress are given in Fig. 7. As one can see, the fitting with experimental data is very
good. This is one of the major advantages of choosing a non-constant activation
parameter: the achievement of a very accurate fitting of the data.
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Figure 7. Total stress-strain relation with activation func-
tion (18). The values of the parameters are given in Fig. 6.
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Figure 8. Total stress-strain relation with activation function
a(λ) of polynomial type p1, p2, p3, p4. More precisely: p1(λ) =
−0.65λ+0.93, p2(λ) = −0.075λ2 − 0.48λ+0.85, p3(λ) = 0.51λ3 −
1.76λ2 +1.33λ+0.21, p4(λ) = −0.5λ4 +2.69λ3 − 5.28λ2 +3.82λ−
0.45.

In Fig. 8 we plot the stress by choosing the activation parameter as a polynomial
function of the stress with a lower degree than the form proposed in (18). We
underline that in order to capture the trend completely it is necessary to have a
polynomial of degree 5 and therefore we need to fit six parameters.

5.2. A mixture active strain model with constant activation parameter.
Referring to Sect. 3.2, we start from the energy density (6) for an incompressible
fiber-reinforced material

Wfrm = Wiso(I1, J2) +Wani(I4, J5)
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Figure 9. Fiber-reinforced material with mixture active strain:
the values of the parameters are the same of Fig. 4 and a = 0.68.

with the constitutive prescription (7)

Wiso =
µ

4

{
1

α

[
eα(I1/3−1) − 1

]
+

1

β

[
eβ(J2/3−1) − 1

]}
,

Wani = −κ

[
exp

(
−p(

√
I4 − s)2

√
I4

)
+

(
3− s

2

)
exp

(
−p(

√
J5 − s)2

)]
.

Following the procedure as in the previous section, using the mixture active
strain approach (12) and the uniaxial deformation (5) we can compute

Wfrm(λ, a) = Wiso(I1(Cλ), j2(Cλ)) +Wani(I4(Cλ,e), J5(Cλ,e))

where

I1(Cλ) = tr(C) =

(
λ2 +

2

λ

)
, J1(Cλ) = tr(C−1) =

(
1

λ2
+ 2λ

)
,

I4(Cλ,e) =

(
λ

1− a

)2

, J5(Cλ,e) =

(
1− a

λ

)2

.

It is important to remark that, unlike in the previous example, the activation
parameter remains constant here. This ensures that the total energy density retains
its mathematical properties such as polyconvexity and coercivity.

The total stress is then computed by

Ptot(λ, a) =
∂Wiso

∂λ
(λ) +

∂Wani

∂λ
(λ, a) =: Piso + Pani.

In particular, the anisotropic part of the total stress is given by

(19) Pani = κp

[
1

1− a

(
λ

1− a
− s

)(
3

λ

1− a
− s

)
e−p( λ

1−a−s)
2
( λ

1−a )

− (3− s)
1− a

λ2

(
1− a

λ
− s

)
e−p( 1−a

λ −s)
2

]
.

The stretch/stress plot is shown in Fig. 9.
Since the activation parameter is constant, it is easy to study the case of a

progressive activation of the muscle tissue from the passive case (a = 0) to the
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Figure 10. Fiber-reinforced material with mixture active strain:
the values of the parameters are the same of Fig. 4 and a =
0, 0.4, 0.6, 0.68.

tetanized case (a = 0.68). In Fig. 10 we compare the passive and tetanized stress
with the two intermediate cases a = 0.4 and a = 0.6.

6. Conclusion and discussion of the results

In this paper we focused our attention on “active deformation” of the skeletal
muscle tissue and we proposed two hyperelastic models which are able to capture
the trend of the experimental data of Hawkins and Bey [23], i.e. the dependence of
the stress developed by a fully activated (tetanized) muscle on its imposed exten-
sion. Both of these two models fall into the classification of hyperelastic materials
as regards the passive part, while to describe active deformation we used the mul-
tiplicative decomposition of stress.

First of all, in Sect. 5.1 we used the passive energy proposed in [10] and we
followed the typical active strain approach, similar to [13]. The novelty here is
that we proposed in (18) a new expression for the active parameter, which has a
polynomial shape and needs only 6 fitting parameters. Furthermore, unlike what
has been done in [14, 15], the derivative of the activation parameter is not considered
here.

The most relevant part is definitely Sect. 5.2, where, inspired by [35], a new
hyperelastic model is proposed to describe the behavior on active deformations of
skeletal tissue. In this case we used a fiber reinforced material governed by (7) and
the active strain Fa is now constant.

We remark that the two models described in Sect. 5.1 and in Sect. 5.2 involve
a different number of parameters. The active strain model developed in Sect. 5.1
considers an energy already proposed in the literature which perfectly captures the
trend of passive data on a uniaxial deformation. To obtain the active behavior
as well, we therefore need a greater number of parameters in the polynomial that
describes the active state, that is in the expression (18). On the contrary, in the
other section we tried to build an energy as simple as possible and therefore with
as few parameters as possible.

The parameters of the models here studied are obtained to replicate the trend
of the data presented in [23]. It would be interesting to have more data on skeletal
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tetanized muscle in passive and active regimes to further validate our model. More-
over, experiments are typically performed on uniaxial deformations: exploring other
types of deformations would be necessary for practical applications [16]. Finally,
here we dealt only with time-independent models, where the system is at equilib-
rium and the viscous effects are negligible. In future work, we aim to enhance our
model by considering the variation of stress-strain curves with the external loading
rate.
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